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Abstract
Background.  Glioblastoma (GBM) is the deadliest primary brain cancer in adults. Emerging innovative thera-
pies hold promise for personalized cancer treatment. Improving therapeutic options depends on research relying 
on relevant preclinical models. In this line we have established in the setting of the GlioTex project (GBM and 
Experimental Therapeutics) a GBM patient-derived cell line (GBM-PDCL) library. A multi-omic approach was used 
to determine the molecular landscape of PDCL and the extent to which they represent GBM tumors.
Methods.  Single nucleotide polymorphism array, expression arrays, exome sequencing, and RNA sequencing 
were used to measure and compare the molecular landscapes of 20 samples representing 10 human GBM tumors 
and paired GBM-PDCLs.
Results.  Copy number variations were similar for a median of 85% of the genome and for 59% of the major focal 
events. Somatic point mutations were similar in a median of 41%. Mutations in GBM driver and “druggable” genes 
were maintained in 67% of events. Mutations that were not conserved in the PDCL were mainly low allelic fraction 
and/or non-driver mutations. Based on RNA expression profiling, PDCLs cluster closely to their parental tumor 
with overexpression of pathways associated with cancer progression in PDCL.
Conclusions.  Overall, PDCLs recapitulate pivotal molecular alterations of paired-parental tumors supporting their 
use as a preclinical model of GBM. However, some driver aberrations are lost or gained in the passage from tumor 
to PDCL. Our results support using PDCL as a relevant preclinical model of GBM. Further investigations of changes 
between PDCLs and their parental tumor may provide insights into GBM biology.
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Glioblastoma (GBM) is the most common and the most 
devastating primary brain cancer in adults. Despite 
intensive treatments (ie, surgery, radiation therapy, and/
or chemotherapy), prognosis of GBM patients remains 
dismal, with a median overall survival between 12 and 
18 months appealing for new treatments.1

Most of the innovative therapeutic strategies for can-
cer treatment developed in the last decade incorporate 
drugs targeting specific oncogenic proteins or signaling 
pathways. Such promising approaches are already used 
in non-CNS tumors.23 The potential of these approaches 
is being enhanced by the comprehensive molecu-
lar mapping of thousands of tumors, thus identifying 
novel oncogenic targets.4 In addition, the growing num-
ber of targeted drugs5 should enable the application of 
tumors’ molecular information to offer a growing num-
ber of therapeutic options, personalized to each patient’s 
disease state.

Development of novel treatments is highly dependent 
on relevant preclinical models recapitulating biology of 
human tumors. Indeed, before reaching clinical routine, 
innovative treatments are tested most often in cancer cell 
lines (CCLs) and animal models. Accordingly, efforts to 
create large molecularly comprehensively annotated CCL 
libraries were carried out.6

The use of CCLs as models to investigate potential effi-
cacy of novel drugs is built on the assumption that impor-
tant parts of tumor biology are represented in these cellular 
models. Hence, it seems important to examine in a quanti-
tative manner whether indeed CCL libraries represent the 
molecular landscape of parental tumors.

We have established a cell line library of GBM patient-
derived cell lines (GBM-PDCLs). In this study, we meas-
ured and compared the molecular profiles, obtained using 
high-throughput technologies, of a set of parental tumors 
and paired GBM-PDCLs. Multi-omics is the study of those 
biological factors that end with “-omic,” such as genomic, 
proteomic, transcriptomic, and metabolomic. Indeed, we 
hypothesize that the measurement of multi-omics molec-
ular profile changes in this cohort of paired tumors/GBM-
PDCLs can address and shed light on potential molecular 
aberrations and biological processes that are being lost 
or gained during the transition from human GBM to 
GBM-PDCL.

Materials and Methods

Human GBM Samples

Fresh tumor samples from 10 patients with newly diag-
nosed de novo GBM were collected. The patient char-
acteristics are given in Table  1. Blood samples were 
available for 7 patients. Samples come from the tissue 
bank OncoNeuroThèque and were accrued over 6 years. 
The PDCL derivation success rate was 32%. Collection 
of tumor and blood samples, clinicopathological infor-
mation, and molecular analysis were undertaken with 
informed consent and with the relevant ethical board 
approval in accord with the tenets of the Declaration of 
Helsinki.

GBM–PDCL Preparation

Within 3 hours post-resection, tumors collected in Hank’s 
Buffered Salt Solution were mechanically dissociated and 
then maintained in neurosphere growth conditions using 
Dulbecco’s modified Eagle’s medium/F12 supplemented 
with 1% penicillin/streptomycin, B27 (Life Technologies), 
epidermal growth factor (EGF; 20ng/mL), and basic fibro-
blast growth factor (20ng/mL) (Peprotech). Tumor cells in 
culture were amplified for at least 8 passages, after which 
the cell line was considered established.

To standardize cell material preparation, 1×106 cells, 
from established PDCLs (ie, ≥8 passages) were plated in a 
T75 flask. Three days later, culture medium was renewed, 
and after 24 hours, cells were collected, centrifuged, and 
snap frozen.

Copy Number Variation Analysis

Copy number variation (CNV) analysis was performed 
using the iSelect Infinium HumanOmniExpress v1.0 
Illumina chip platform and the GPHMM (Global Parameters 
Hidden Markov Model) algorithm.7

Whole Exome Sequencing

Exome capture was performed using the Capture Agilent 
SureSelect All Exon V5+UTR kit according to manufactur-
er’s protocol and for 5 samples using the Nextera Rapid 
Capture Exome Kit. A  paired-end 2×75 base sequenc-
ing was performed by HiSeq 2000. Data analysis used 
Genome Analysis Toolkit (GATK) best practices pipeline8 
as detailed in the Supplementary materials. Somatic 
mutation analysis used Mutect9 for tumor samples with 
blood-paired DNA data and the GATK HaplotypeCaller8 
for tumor samples without blood-paired DNA data. For 
the tumor samples without blood-paired DNA data, 
only mutations that were not described in the Single 
Nucleotide Polymorphism Database (dbSNP) were 
considered.

Table 1  Patient characteristics

Patient PDCL Blood Age Sex

2197T 4339 NA 59 F

2211T 4371 NA 76 F

3716T 5706 3716_S 67 M

3718T 6190 NA 78 F

3427T 6240 3427_S 72 F

3719T 7015 3719_S 74 M

3722T 7060 3722_S 59 M

3523T 7097 3523_S 70 F

3724T 7142 3724_S 65 M

4724T N13-1520 4724_S 53 M
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Point Mutations Annotation and Interpretation

Point mutations were annotated by Oncotator.10 IntOGen 
software11 was used for functional impact prediction in 
the cancer biology context. All mutations of the exome 
were analyzed. We also examined mutations in several 
gene subsets: (i) the Catalogue of Somatic Mutations in 
Cancer (COSMIC) Gene Census: 547 general cancer-related 
genes,12 (ii) GBM driver genes: 23 frequently mutated GBM 
driver genes,13 and (iii) “druggable genes”: 69 genes that 
can be targeted by FDA-approved drugs.14

RNA Chip Analysis

Expression array analysis was performed by Affymetrix 
Human Genome U133 Plus 2.0 array. Data analysis meth-
ods are given in Supplementary materials. The Limma 
package15 was used for differential expression analysis (P 
< .05 with false discovery rate [FDR] correction). GBM sub-
type16 classification was performed using single-sample 
gene set enrichment analysis (ssGSEA) in GenePattern,17 
as reported by Brennan et al.13

RNA Sequencing (RNA-Seq) Analysis

Libraries were generated from total RNA and constructed 
according to manufacturer protocols. Paired-end sequenc-
ing (2×150bp) was performed by a Nextseq 500 machine 
using the High Output Kit (300 cycles). Data analysis meth-
ods are given in the Supplementary materials.

Pathway Analysis

Qiagen’s Ingenuity Pathway Analysis (IPA)18 was used to 
assess pathways involving genes that were differentially 
expressed between parental tumors and PDCLs. Two sta-
tistical measures were used for pathway assessment: 
(i) P-value for the enrichment of each pathway’s genes in 
the set of differentially expressed genes, FDR correction 
applied (P < .05), and (ii) the activation/inhibition measure 
for each pathway, with threshold Z=1.

GSEA19 was performed for the complete transcriptome 
using GenePattern17 implementation. Gene lists represent-
ing the pathways of Biocarta, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and the Pathway Interaction 
Database (PID) were extracted from MsigDB (the Molecular 
Signatures Database).20

Clonal Analysis

Clonal analysis was performed by Absolute algorithm.21 This 
algorithm requires input of basic CNV segmentation profiles 
and somatic point mutations. For the CNV segmentation, 
we used the CBS (circular binary segmentation) algorithm22 
and the somatic point mutation data as described above.

Statistical Analysis

Statistical analysis was performed using the R program-
ming language.

Results

Copy Number Variations

The frequencies of CNV, in parental tumors and paired 
PDCLs, are reported in Fig. 1. As expected in the parental 
GBM, the most common chromosomal alterations are: (i) 
chromosome 7 gain 100%, (ii) chromosome 10 loss 90%, 
(iii) chromosome 6 loss 50%, and (iv) chromosome 9 loss 
20%. Classical focal genomic alterations targeting GBM 
driver genes are also detected: (i) EGFR amplification 50%, 
(ii) CDKN2A homozygous deletion 60%, (iii) MDM2 amplifi-
cation 10%, (iv) PIK3CA amplification 10%, and (v) CDKN2C 
homozygous deletion 10%.

Copy number state (gain, normal, or loss) was compared 
between parental GBM and paired PDCLs. The median 
level of agreement, compared at bins of 1000 base pairs, 
was 85% (range: 46%−99%) (Fig. 1A). The level of agree-
ment for the most common large alterations (chromosome 
7 gain, chromosome 10 loss, chromosome 6 loss, and chro-
mosome 9 loss) was 90%. The 10% difference consisted 
of chromosome 6 loss in one PDCL and chromosome 
9 loss in 2 PDCLs that were not detected in their paired 
parental tumor.

Across the parental tumor samples, 15 focal genomic 
alterations (high-level amplifications and homozygous 
deletions) of known GBM driver genes were detected 
(Fig. 1B): (i) 10/15 were maintained in their paired PDCLs 
and (ii) 5/15—including 2 EGFR amplifications, one CDKN2C 
homozygous deletion, one CDKN2A homozygous deletion, 
and one CDK4 amplification—were not detected in paired 
PDCLs. Of note, 2 CDKN2A homozygous deletions meas-
ured in the PDCL were not found in the parental tumor.

The frequencies of copy-neutral loss of heterozygosity 
(CN-LOH), in the parental tumors and PDCLs, are reported 
in Fig.  1C. The most common large chromosomal level 
CN-LOH was in chromosome 9 (30%), and the level of 
agreement between tumors and PDCLs was 100% for large 
chromosome CN-LOH. Comparison of all areas defined 
as CN-LOH showed poor agreement between tumor and 
PDCL (range 0–72%) with median of 24%. For all types of 
LOH (CN-LOH, deletion-LOH, and gain-LOH), the level of 
agreement range is 28%–94% with a median of 77%.

Point Mutations

Exome sequencing analysis was performed for the 10 
tumors, 10 paired PDCLs, and 7 corresponding available 
blood samples. Mean coverage was 76X ±13. Point muta-
tion analysis was carried out to identify somatic mutations 
for the 14 samples with corresponding blood DNA and to 
identify non-dbSNP mutations (termed “novel”) for the 6 
samples without blood DNA (Fig. 2). Overall 1988 somatic 
mutations (including intronic and silent mutations; see 
Supplementary file 1) were detected across the samples: (i) 
median 41% mutations existed in both tumor and PDCL, (ii) 
median 19% mutations were present in the parental tumors 
only, and (iii) median 36% were present in the PDCL only. 
Of note, the 2 samples presenting the lowest frequency of 
maintained mutations (PDCLs 7015 and N13-1520: 14% and 
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Fig. 1  Copy number variation landscape. (A). Tumor and PDCL heatmap. Tumors (T) and their paired PDCL (C) are adjacent to each other. Red 
denotes gain and blue denotes loss in relation to estimated ploidy. Darker color stands for higher gain or deeper deletion. The bar chart at the 
bottom gives the level of agreement for each tumor–PDCL pair. (B) Heatmap filtered for high-level amplification (CN≥ploidy+3) is denoted in red, 
and deeper deletions (CN=0 or CN≤1 if ploidy is 4) are colored blue. The bar chart at the bottom gives the level of agreement for each tumor–PDCL 
pair. (C) Heatmap describing estimated CN-LOH. The bar chart at the bottom gives the level of agreement for each tumor–PDCL pair with purple for 
general LOH and light green for CN-LOH. (D). Genomic landscape of the group of PDCLs (top) and group of tumors (bottom).
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17 %, respectively) contained 2 different missense TP53 
mutations (C176F and R248Q, respectively) that appeared 
only in the PDCL and not in the parental tumor. These 2 
mutations are described as frequent somatic mutations 
in the COSMIC database and are predicted to have high 
impact on protein activity. Interestingly, a minority of cells 
in parental tumors corresponding to these PDCLs stained 
positive for tumor protein (TP)53—suggesting the exist-
ence of these mutations in minor subclones that were 
positively selected when cultured as PDCLs (Fig. 2D). When 
considering mutations in the subset of COSMIC genes, a 
median of 44% of mutations existed in both tumors and 
PDCLs. For the subset of GBM driver genes, the corre-
sponding number was 50%.

Detailed description, focused on the non-silent muta-
tions, in the subsets of GBM driver genes and “druggable” 
genes is of special interest due to the genes’ biological 
and therapeutic relevance. Mutations in GBM driver genes 
were maintained in 11/16 events across the samples. Only 
1/16 mutations was detected in parental tumors and dis-
appeared in their paired PDCLs (NLRP5 mutation). Four of 
20 mutations were not detected in the parental tumors but 
were found in PDCL (one SPTA1 mutation, one TCHH muta-
tion, and 2 TP53 mutations). For the subset of “druggable” 
genes (including EGFR), 6/8 events were maintained. One 
of 8 mutations was detected in a parental tumor but was 
not detected in its paired GBM-PDCL (PARP1 mutation). 
One of 8 mutations was found in GBM-PDCL, while it was 

Fig. 2  Point mutations landscape. (A) Point mutations for GBM driver genes (top) and druggable genes (bottom, below the red line). Tumors and 
their paired PDCL are adjacent to each other. Different colors are given for the mutation types. For the left 7 pairs, germ line information was used 
for somatic mutations inference. For the right 3 pairs, germ line information was unavailable and mutations defined as “novel” are shown (see 
“Methods” section). (B) Frequency of mutations that appeared in both tumor and PDCL (yellow), tumor only (blue), PDCL only (red). (C) Mutation 
characteristics for the combined set of somatic mutations. In each histogram, the distribution of allelic fraction (x-axis) of mutations is given. The 
y-axis denotes mutation count. Each histogram bar is divided for the tissues in which the mutations were detected: (i) both tumor and PDCLs, (ii) 
PDCL only, and (iii) tumor only. The 6 histograms are ordered in columns and rows. The columns define gene set groups: (i) all genes, (ii) COSMIC 
genes, (iii) GBM driver genes. The rows define the predicted functional impact class (“impact,” “no impact”). (D) TP53 staining for parental 
tumors 4724T and 3719T.
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not detected in the paired parental tumor (PARP14 muta-
tion). As expected, silent mutations in both gene subsets 
were significantly less preserved compared with non-silent 
mutations (0/5 preserved events, P = .003, binomial test).

In order to further characterize the mutations that were 
different between parental tumors and paired PDCLs, we 
estimated allelic fraction of the mutations (ie, how many 
cells carry this mutation). As shown in Fig. 2C, mutations 
that appear in parental tumor only or PDCL only have lower 
allelic fraction compared with mutations that appear in 
both parental tumor and PDCL (P < 2.2e-16, chi-square test).

We used IntOGen functional prediction for each muta-
tion to classify into putatively functional mutations ver-
sus nonfunctional mutations (Fig. 2C). Forty-six percent of 
mutations detected in both tumors and PDCLs were puta-
tively functional versus 33% of the mutations detected in 
tumors or PDCL exclusively (P = 7.8E-8, chi-square test). For 
the subset of COSMIC genes, 65% of mutations detected in 
both tumors and PDCL were putatively functional versus 
38% of the mutations detected in tumors or PDCL exclu-
sively (P = .057). Finally, for GBM driver genes, 92% of 
mutations detected in both tumors and PDCLs were puta-
tively functional versus 50% of the mutations detected in 
tumors or PDCLs exclusively (P = .06).

Interestingly, when considering only mutations with 
allelic fraction >10% and putatively functional biological 
impact, the median agreement between parental tumors 
and PDCL raised and reached 48%, 67%, and 79% for all 
genes, COSMIC genes, and GBM driver genes, respectively.

The subgroup of mutations that were detected in tumor 
only and not in PDCL are of special interest. Overall, a 
median of 19% of mutations belong to this group. These 
mutations have lower allelic fraction compared with muta-
tions detected in both tissues (0.15 vs 0.32, P < 2.2e-16, 
chi-square test). Fewer of these mutations are predicted 
to have functional impact (38% vs 46%, P = .02, chi-square 
test). A  minority (6%) of functional COSMIC gene muta-
tions belong to this group (CAMTA1, SLC45A3, PTPRB, 
KDM6A) with low median allelic fraction of 0.11. Only one 
functional mutation in GBM genes (4%, NLRP5) belongs to 
this group with allelic fraction of 0.07.

Expression Profiling of mRNA

Transcription levels were measured for all tumor–PDCL 
pairs. One pair was excluded from the analysis due to low 
quality of tumor RNA. The GBM transcription subtype16 
was maintained for 5/9 pairs (Supplementary Table  1). 
Multidimensional scaling (MDS) performed on all the 
measured genes resulted in distinct clusters: one for all the 
parental tumors and another for all the PDCLs (Fig. 3A).

There were 2643 genes significantly differentially 
expressed between parental tumors and PDCLs. As shown 
in Fig. 3B, MDS performed after the exclusion of the differ-
entially expressed genes resulted, as expected, in one uni-
fied cluster, but in addition the average distance between 
tumors and their paired PDCLs was shorter compared with 
the overall average pairwise distance (after exclusion of 
the outlier tumor 3719T, overall average Euclidean distance 
was 54 vs average tumor–PDCL pair distance of 34 on the 
MDS scale, P = .049, t-test).

In order to characterize the functional importance of this 
set of 2643 differentially expressed genes, pathway analysis 
was carried out. Fig. 3C and Supplementary Fig. 1 describe 
the pathways for which activation/inhibition state could 
be inferred. These pathways can be generally assigned 
as belonging to 3 groups: (i) immune pathways that were 
underexpressed in PDCL, such as “complement system”; 
(ii) cell cycle and DNA repair pathways that were activated, 
such as “ataxia telangiectasia mutated (ATM) signaling”; 
and (iii) a cell cycle and DNA repair pathway that was inhib-
ited, such as “G2/M DNA damage checkpoint regulation.” 
Of note, the OX40 pathway is an immune pathway but sur-
prisingly was measured as upregulated in PDCL. Detailed 
inspection of the genes’ group of this pathway shows that 
the classical immune genes (like human leukocyte antigen) 
were indeed strongly underexpressed, and several mito-
gen-activated protein kinase genes which are related to 
oncogenesis were overexpressed (Supplementary Table 2). 
Therefore, it seems that the immune part of the OX40 path-
way is inhibited in GBM-PDCL in accordance with the other 
immune pathways.

The set of 2643 differentially expressed genes was 
analyzed for expression fingerprints identifying poten-
tial upstream regulators. Most of the top regulators were 
genes related to cancer, and their predicted activation 
seems pro-oncogenic in the PDCLs compared with the 
parental tumors (Supplementary Table 3). The most signifi-
cant activation was for the fingerprint of the RABL6 gene 
(P = 3.7E-14), a Ras family–related protein (Supplementary 
Table 4). Only 2 upstream regulators were related to the 
immune system: (i) TGFB1 inhibition fingerprint (one of the 
major functions attributed to this gene in GBM is immu-
nosuppression23) and (ii) the IL13 activation fingerprint, 
which showed a trend for activation. Of note were 2 finger-
prints: (i) NURP1 (nuclear protein 1, a transcription factor 
activating the phosphatidylinositol-3 kinase/Akt pathway, 
an inhibition fingerprint in PDCL) and (ii) FBN1 (fibrillin-1, 
a structural glycoprotein related to extracellular matrix, an 
activation fingerprint in PDCL).

Pathway analysis was also carried out for the complete 
transcriptome (in contrast to the previously mentioned 
analysis for only the 2643 differentially expressed genes) 
using GSEA for the KEGG, Biocarta, and PID pathways 
sets (Supplementary Tables 5, 6). Many pathways involved 
in cell cycle regulation and DNA repair were shown to be 
upregulated in PDCL compared with parental tumors (eg, 
p53, BRCA, cell cycle, ATM). In addition, several meta-
bolic pathways were overrepresented in PDCL compared 
with parental tumors (eg, pyruvate metabolism). Many 
immune-related pathways were underrepresented in 
PDCL compared with parental tumors (Fc gamma medi-
ated phagocytosis and B-cell receptor signaling path-
ways). Thus, consistent with the pathway analysis noted 
above, several pathways involved in immunity were found 
enriched in parental tumors and several metabolic and 
cancer-related pathways were found enriched in PDCLs.

RNA Sequencing

RNA-seq analysis was performed for all parental tumor−
PDCL pairs. Mean reads count was 197×106X±33. One sam-
ple was excluded from the analysis due to being an extreme 
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outlier on principal component analysis. RNA-seq analysis 
aligned reads for 56638 Ensembl genes. Significantly dif-
ferentially expressed were 15046 of the genes between 
tumors and PDCLs. Of the 2643 genes identified by the 
expression array analysis, 2005 (76%) were also identi-
fied here as differentially expressed. IPA analysis was also 
performed for the most significant differentially expressed 
genes (P < .001, FDR; n=6606 genes) (Supplementary Figs. 
3–4). Comparable to the pathway analysis of expression 
array data: (i) several immune pathways were inhibited in 
PDCLs versus parental tumors, (ii) several pathways asso-
ciated with cancer were activated in PDCLs versus parental 
tumors, and (iii) several cholesterol metabolic pathways 
were significantly differentially modulated in PDCLs versus 
parental tumors. Many pathways were similar between the 
2 pathway analyses, specifically: (i) “dendritic cell matura-
tion,” (ii) “complement maturation,” (iii) “role of BRCA1 in 
DNA damage response,” (iv) “ATM signaling,” and (v) sev-
eral cholesterol metabolic pathways. Strikingly, upstream 
regulator analysis, conducted with RNA-seq data, revealed 
a list comparable to the one obtained with the expression 
profiling array data (Supplementary Table 7).

Fusion analysis was carried out for the RNA-seq data. No 
known GBM or cancer-related fusion12,24 was identified.

Clonal Analysis

Clonal analysis was carried out by Absolute algorithm21 
for the 7 samples with available blood DNA whole exome 
sequencing data. A mutation that is estimated to be carried 
by >90% of cancer cells was defined as clonal, whereas 
the others were defined as subclonal. There were signifi-
cantly more clonal mutations in tumors (65% clonal and 
35% subclonal) and more subclonal mutations in PDCLs 
(56% clonal and 44% subclonal) for the complete mutation 
lists (P = 3.7E-5, chi-square test). Although not statistically 
significant, this trend was maintained for COSMIC and 
GBM driver gene mutation subgroups. Clonal status was 
not significantly different between protein changing muta-
tions (eg, missense or nonsense mutations) and silent 
mutations.

The point mutation profiles of GBM driver genes (includ-
ing intronic and silent mutations) are given in Table  2. 
Fifteen mutations were detected only in one tissue type 
(tumor or PDCL): (i) 6/15 were clonal, (ii) 8/15 were sub-
clonal, and (iii) 1/15 was not classified by the algorithm. 
For the mutations that were detected in both tumors and 
PDCLs: (i) the predicted impact of the mutations is higher 
(P = .04, chi-square test), (ii) the cancer cell fraction was 

Fig. 3  Transcriptome (array data) landscape. (A). MDS for all measured genes. Each sample is denoted by a different color, tumors are marked as 
triangles and PDCLs as circles. (B) MDS for all genes excluding 2643 differentially expressed genes between the tumor and PDCL groups. (C) Ingenuity 
pathway analysis for the 2643 differentially expressed genes. Only biological pathways that are both significant and for which the activation/inhibition 
direction could be inferred are shown. Orange denotes pathway activation in PDCL compared with parental tumors and blue denoted pathway inhibition.
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>90% for 11/12 mutations, and (iii) in the mutations for 
which clonal status could be formally tested by the algo-
rithm, they were clonal in the tumor (5/5) but not necessar-
ily in the PDCL.

Discussion

The use of PDCLs as preclinical models of GBM to inves-
tigate potential response to novel drugs is built on the 
assumption that major aspects of human tumor biology 
are recapitulated in the PDCLs. Hence, it seems important 
to examine to which extent indeed GBM-PDCL libraries 
represent the molecular landscape of human tumors.

This question was also addressed measuring multi-
omic genomic profiles. In the original report of the Cancer 
Cell Line Encyclopedia (CCLE), the authors measured 
the genomic similarity of the reported CCL to published 
unpaired primary tumors of similar cancer types and con-
cluded that with relatively few exceptions, the CCLE may 
provide representative molecular proxies for primary 

tumors in many cancer types.6 By contrast, Domcke et al 
compared the molecular landscapes of 47 CCLs of high-
grade serous ovarian carcinoma from the CCLE and 
316 tumor profiles from The Cancer Genome Atlas. They 
reported pronounced differences between commonly 
used ovarian CCLs and unpaired high-grade serous ovar-
ian tumor samples. They identified several rarely used 
CCLs that more closely resemble cognate tumor profiles.25 
Lee et al showed, based on expression profiles, that GBM 
cell lines were clustered remotely from their parental 
tumors compared with tumor stem cells.26 Nevertheless, 
these studies compared genomic landscapes of CCLs 
and unpaired human tumors. A  major limitation of this 
approach is the inability to directly measure and quantitate 
the molecular change between primary tumors and CCLs 
due to the different biases of sample selection.

A recent study compared the molecular landscape of 
GBM-PDCLs and their paired parental tumors for CNV and 
expression landscape (see below).27 This study, however, 
did not quantify the focal CNV events agreement. Moreover, 
point mutations were not measured and transcriptome 
information was measured solely by expression array.

Table 2  Clonal profile for point mutations in GBM genes. All mutations in GBM driver genes (including intronic) are presented.

Gene Sample ID Tissue Formal Clone Status Cell Fraction Functional Impact

NLRP5 3724T Tumor Subclonal 0.18 Medium

DRD5 3427T Tumor Subclonal 0.22 None

DRD5 7015 PDCL Clonal 0.83 None

DRD5 7015 PDCL Subclonal 0.73 None

DRD5 7015 PDCL Subclonal 0.27 None

ABCC9 7142 PDCL Clonal 1 None

DRD5 7015 PDCL Subclonal 0.73; 0.27 None

LZTR1 7015 PDCL Clonal 1 None

PIK3R1 N13-1520 PDCL Clonal 1 None

RB1 7015 PDCL Subclonal 0.38 Medium

SPTA1 7097 PDCL Clonal 1 Medium

TCHH 7015 PDCL Subclonal 0.21 High

TCHH 7015 PDCL Subclonal 0.24 Low

TP53 7015 PDCL Clonal 1 High

TP53 N13-1520 PDCL – 1 High

ATRX 3719T-7015 Both Clonal → clonal 1 → 1 High

EGFR 3427T-6240 Both – 1 → 1 Medium

EGFR 3722T-7060 Both Clonal → clonal 1 → 1 Low

GABRA6 4724T-N13-1520 Both – 0.91 → 1 Low

KEL 3719T-7015 Both Clonal → subclonal 1 → 0.64 High

NF1 3719T-7014 Both – 1 → 1 High

NF1 4724T-N13-1520 Both – 0.68 → 1 Medium

PIK3CA 3427T-6240 Both Clonal → subclonal 1 → 0.82 None

PIK3CA 3719T-7014 Both – 1 → 1 Medium

PTEN 3523T-7097 Both Clonal → clonal 1 →1 High

PTEN 3724T-7142 Both – 1 →1 High

SPTA1 3427T-6240 Both – 0.94 →0.84 Medium
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In the current study, paired GBM and PDCL samples' 
molecular characteristics were measured for CNV, point 
mutations, and transcriptome. There was generally good 
agreement between tumors and PDCLs for measures of 
gain/loss. CN-LOH agreements were low and could possi-
bly represent real differences between tumors and PDCLs, 
or could be explained by algorithmic inaccuracies for 
CN-LOH. Importantly, GBM-specific chromosome gains 
and losses were comparable between parental tumors 
and PDCLs. For focal events: 10/15 characteristic GBM 
homozygous deletions and high-level amplifications were 
maintained. Of note, there were 2 CDKN2A homozygous 
deletions found in PDCL while not being detected in the 
paired parental tumor. Overall, CNV profiles are well main-
tained in PDCLs, but caution is advised for focal events 
which might be lost or gained in the transition from tumor 
to PDCL.

The agreement between tumors and their paired PDCLs 
for point mutations seems to depend on 3 major fac-
tors: (i) allelic fraction of the mutation: mutations that 
were maintained in tumors and their paired PDCLs were 
of higher allelic fraction (a plausible explanation for this 
is that low allelic fraction mutations have a higher prob-
ability to be lost in the passage from tumor to PDCL and 
are more difficult to detect due to sequencing and algorith-
mic reduced sensitivity for such mutations9); (ii) functional 
impact of a mutation: mutations that were maintained in 
tumors and their paired PDCLs were more frequently of 
functional impact; and (iii) relevance of genes in the con-
text of GBM biology. Combining these 3 considerations, 
the median agreement between tumors and paired PDCLs 
was raised above the general median agreement of 41% 
and reached 67% and 79% for COSMIC genes and GBM 
driver genes, respectively. In the same manner, a minority 
of functional mutations were detected in tumors only for 
COSMIC and GBM genes and most have low allelic frac-
tion. Of note, TP53 mutations of 2 PDCLs were not detected 
in their parental tumors. They might have existed in very 
low allelic fractions (Fig. 2D) in the tumors and positively 
selected in PDCLs. These PDCLs showed the lowest simi-
larity with their parental tumors, and this possibly reflects 
that TP53 mutations allow acquisition of additional muta-
tions in PDCLs.

The transcriptome analysis showed that GBM expres-
sion subtypes were maintained in 5/9 of the paired 
PDCLs. One putative reason for disagreement is that sub-
types were defined for GBM tumors rather than in CCLs. 
The former may include transcription patterns typical of 
microenvironment cells and of interaction between tumor 
cells and the microenvironment.28 Indeed, Verhaak et al16 
reported that the identification of corresponding CCL 
subtypes is not easily achievable. In addition, these dif-
ferences can be attributed to intratumoral subtype heter-
ogeneity.29,30 Tumors are distinct from PDCLs and usually 
cluster in 2 different groups. After exclusion of the differ-
entially expressed genes, tumors clustered closely to their 
paired PDCLs. Accordingly, it seems that there is a strong 
expression pattern specific for tumors versus PDCLs; in 
addition, PDCLs maintain expression similarity of their 
parental tumors. The differences included the change of 
cell cycle regulators, underexpression of immune-related 
pathways, and change in lipid metabolism pathways in 

PDCLs. Upstream regulator analysis for the differentially 
expressed genes mostly revealed fingerprints associated 
with cancer-related genes. The cell cycle and DNA repair 
pathway changes seem to reflect enhanced proliferation of 
the PDCL. The underexpression of the immune pathways 
in PDCL seems to reflect the absence of immune cells in 
the PDCL microenvironment. Lipid metabolism changes 
possibly result from the radical change of metabolism of 
PDCLs in culture cell conditions. It seems, though, that the 
changes of cancer-related pathways in PDCLs compared 
with tumors may have significant influence on experi-
ments performed on PDCLs. For example, response to cyc-
lin dependent kinase inhibitors in PDCLs may not predict 
corresponding response in parental tumors, since cell cycle 
pathways are overexpressed in PDCLs. Further research 
is required in order to assess the importance of these 
changes. Analysis performed for RNA-seq data revealed 
comparable differences between PDCLs and tumors, and 
the confirmation of these results by an independent analy-
sis method strengthens the above-mentioned conclusions.

Clonal analysis of the point mutations shows that there 
are more clonal mutations in tumors and more subclonal 
mutations in PDCLs. Clonal mutations in GBM driver genes 
were better maintained in tumors and PDCLs, and this sup-
ports the suitability of PDCLs as a model for GBM.

Our results are in agreement with the conclusion of Davis 
et al27 regarding the extent of recapitulation of major chro-
mosomal CNV events and EGFR amplification. However, 
the general level of agreement of CNV between tumors and 
PDCLs seems higher in our dataset (median agreement of 
85% versus correlation of 0.5). Moreover, our results show 
that there is good preservation of LOH but not of copy-
neutral LOH. In terms of expression, Davis et al identified 
63 differentially expressed genes that involve metabolic 
pathways. By contrast, our study revealed 2643 genes that 
are differentially expressed between tumors and PDCLs, 
inhibition of immune pathways, and change of several cell 
cycle and DNA repair pathways. In addition, changes in 
cancer-related master regulators expression fingerprints, 
specific for the PDCL population, were identified.

The results presented in the current report demonstrate 
relatively good agreement between tumors and their 
paired PDCLs and support their use as preclinical GBM 
models. However, there are some discrepancies between 
tumors and PDCLs which might represent real biological 
differences. We hypothesized several reasons for the dis-
crepancies: (i) tumor heterogeneity which is well estab-
lished for many tumors31 and specifically for GBM,29 (ii) 
different selective pressures during PDCL culturing in vitro 
compared with the tumor biological environment, and (iii) 
the microenvironment (ie, absence of immune cells) of 
PDCL culture conditions differ markedly from that of their 
paired parental tumors.21

Although the molecular analysis was comprehensive 
and included several omics modalities, the sample size is 
relatively small and hence a larger set of paired parental 
tumors–PDCLs would be necessary to confirm our findings 
and to provide additional insights.

To conclude, the current study supports the use of 
GBM-PDCL as a human GBM model. Indeed, the majority 
of functional tumor molecular alterations detected in the 
parental tumor are maintained in PDCL. Further analysis of 
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molecular discrepancies between tumors and PDCLs may 
provide insights into GBM biology.
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