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Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4
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ABSTRACT
Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In
response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular
details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and
mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a
humanEC cell model QGP-1were blocked by themechanosensitive channel blocker D-GsMTx4.

In the present study we aimed to characterize the effects of themechanosensitive ion channel inhibitor
spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2
transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by
immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-
dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell
membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and
inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and
efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition
of Piezo2mechanosensitive currents by the spider peptide D-GsMTx4.
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Introduction

In the gastrointestinal (GI) epithelium enterochromaf-
fin (EC) cells are known to be the primary mechano-
sensory cells, where their responses to mechanical
forces define GI epithelium mechanosensitivity.1-3EC
cells are responsible for synthetizing, storing and
releasing about 95% of the total systemic serotonin (5-
hydroxytryptamine,
5-HT).4 Application of mucosal pressure in small
bowel leads to 5-HT release fromEC cells.3 Previous
studies have implicated molecules such as G-protein
coupled receptors5 and purine receptors P2Y and
P2X,6-8 although none of these molecules are known
to be primaryEC cell mechanosensors.

Our group is interested in understanding the molecu-
lar mechanisms ofEC cell mechanotransduction. We
recently discovered that the mechano-gated ion channel
Piezo2 is expressed in human and mouseEC cells from
small bowel, where it is required for coupling of

mechanical forces to 5-HT release.9 In this study, electro-
physiological recordings using the tumor-derived
humanEC cell model QGP-1, identified mechanosensitive
currents that inactivate within milliseconds and that can
be blocked by the spider peptide D-GsMTx4, a known
mechano-gated channel inhibitor,10 and in particular
Piezo1.11

Piezo proteins are mechanically activated cationic
channels involved in several mechanotransduction
processes and critical for survival in vertebrates.12-14

Piezo1 is expressed in multiple tissues, such as smooth
muscle, red blood and vascular endothelial cells, and
epithelial cells from kidney and bladder. Piezo1 is a
mechanically gated cation channel that directly senses
membrane tension15-17 in response to shear stress, cell
volume changes18-23 and cell crowding.24 Multiple
studies have associated Piezo1 mutations with diseases
such as Xerocytosis.25,26
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Unlike Piezo1, which appears to be important for
general cellular mechanosensation, Piezo2 is impor-
tant for specialized mechanosensation, such as in light
touch perception, proprioception,13,18,27-29 and vis-
ceral sensation.30 Mutations in human Piezo2 lead to
musculoskeletal diseases.31-33

Piezo channels are inhibited by some non-specific
drugs, such as gadolinium (Gd3C) and the pore blocker
ruthenium red (RR), which have been shown to inhibit
mechano-gated channels.27 GsMTx4 is a peptide origi-
nally isolated from the venom ofGrammostola spatulata
spider that specifically targets mechano-gated chan-
nels.34 It acts as a gating modifier, meaning that it
increases the membrane tension required for channel
activation, which favors the closed state of themechano-
sensitive ion channels.35 Piezo1 channels are known to
be inhibited by GsMTx4.11,36 Because of their low ste-
reospecificity, both enantiomers D-GsMTx4 and L-
GsMTx4 have been shown to be equally effective in
blocking Piezo1 mechanosensitive currents.35 However,
to date no studies have examined whether GsMTx4
inhibits Piezo2 currents. Our previous work showed
that D-GsMTx4 inhibited single cell mechanosensitive
currents in theEC cell model QGP-1 and 5-HT release
from Piezo2-expressingEC cells. In the present study, we
expressed a human Piezo2 construct in HEK-293 cells
and found that D-GsMTx4 dose-dependently and
reversibly inhibits Piezo2 mechanosensitive currents,
shifting the mid-point of sensitivity to membrane com-
pression and decreasing peak response to force.

Methods

Drugs

D-GsMTx4 was freshly made on the day of experi-
ments by dissolving directly into the relevant extracel-
lular solution.

Cell culture

QGP-1 cells: QGP-1 (passages 17 to 20) (kind gift of
Dr. Valeria Giandomenico, Uppsala, Sweden) were
cultured in modified RPMI 1640 with 10% FBS, 1%

Penicillin-Streptomycin, and 1% L-Glutamine. Cells
were grown to 50–60% confluence in T25 flasks. On
the day of experiments, cells for electrophysiology
experiments were lifted with trypsin-EDTA (0.5%)
and plated onto the test chamber.

HEK-293 cells transfection: cDNA plasmid con-
tained human Piezo2 and eGFP. Piezo2 was tran-
siently expressed by transfection with Lipofectamine
2000 Reagent (Invitrogen, Carlsbad, CA) into the
human embryonic kidney cell line (HEK-293,
American Type Culture Collection, Manassas, VA)
and electrophysiological recordings were performed
24–48 hours after transfection.

Immunohistochemistry (IHC)

IHC protocol: Cells were grown to 50–60% confluence
on poly-L-lysine (Sigma, St. Louis, MO) coated cover-
slips. Cells were fixed in 4% PFA-PB for 10 minutes
separately, washed in PBS and permeabilized with
0.2% Triton-X in PBS and blocked with 200 mL/slide
of 1% BSA/PBS/10% normal donkey serum in a
humidity chamber. Primary antibodies (Table 1) were
added in 200 mL/slide of 1% BSA/PBS/10% normal
donkey serum and were incubated at 4�C overnight in
humidity chamber. Slides were then rinsed 3 times for
5 minutes in PBS. Secondary antibodies (Table 1)
were incubated for 30 minutes in the dark. Slides were
mounted in slowfade gold with 40,6-diamidino-2-phe-
nylindole (DAPI, Life Technologies, Grand Island,
NY) mounting buffer. Imaging was performed using
Olympus BX51W1 (40£) (Olympus Corporation,
Tokyo, Japan).

Single cell electrophysiology

Solutions
The extracellular solution contained (inmM): 150NaC, 5
KC, 2.5 Ca2C, 1 Mg2C,160 Cl¡, 10 HEPES, and 5.5 glu-
cose, pH 7.35, 300 mmol/kg; the intracellular solution
contained (in mM): 140 CsC, 150 Cl¡, 4 Mg2C, 2 Ca2C,
10 HEPES, and 5 EGTA, pH 7.3, 300mmol/kg.

Table 1. Antibodies used in this study.

Source Titer Secondary Source Titer

Piezo2 Novus (NBP1-78624) 1:250 (4ug/ml) Cy3 Jackson ImmunoReseach (111-165-003) 1:500 (3ug/ml)
5-HT Abcam (ab66047) 1:1000 (0.50ug/ml) Cy5 Jackson ImmunoResearch (705-175-147) 1:500 (3ug/ml)
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Data acquisition
Standard whole cell voltage clamp were used as
before.37-39 Electrodes (Kimble KG12 glass) were
pulled by Sutter P97 puller (Sutter Instruments,
Novato, CA), coated with R6101 (Dow Corning,
Auburn, MI) and fire polished to 2–3 MV. Stimula-
tion and data acquisition were done with an Axopatch
200B patch clamp amplifier, CyberAmp 320 signal
conditioner, Digidata 1550A and pClamp 10.5 soft-
ware (Molecular Devices, Sunnyvale, CA). Once the
cells were voltage-clamped mechanical stimulation
was applied via fire-polished glass microelectrodes
(10–25% of cell size) driven by a piezo-transducer P-
621.1CD attached to an E-625.CR controller (PI,
Physik Instrumente, Germany).27,40 Cells were sub-
jected to a series of mechanical steps of 0.3 mm incre-
ments or single steps of 3.5 or 5.0 mm depending on
the experiment.

Data analysis
Whole cell patch clamp data were analyzed in pClamp
10.5 (Molecular Devices, Sunnyvale, CA). The peak cur-
rents within 10 msec of stimulus start were selected for
analysis. pClamp (Molecular Devices, Sunnyvale, CA)
and Origin 2016 (OriginLab Co., Northampton, MA,
USA) were used for electrophysiology data analysis. Cur-
rent-voltage relationships were fit with a linear function,
V D AC B�I, where I is current, V is voltage, A is the y-

intercept and B is the slope. Displacement-current curves
were fit in using a Boltzmann function I D A2 C (A1 –

A2)/(1C exp[(x – x0)/dx]), where I is current, A1 is the y-
intercept, A2 is peak, x is displacement, x0 is half-point
displacement and dx is slope displacement. Error bars are
standard errors (SE). Significance was assigned when
P<0.05 by unpaired t-test withWelch’s correction, using
GraphPad Prism version 7 (GraphPad Software, San
Diego California USA, www.graphpad.com).

Results

QGP-1 cells express Piezo2

QGP-1 is a widely usedEC cell model that produces and
releases serotonin (5-HT) in response to chemical41-43

and mechanical stimulation.9 We first used immunohis-
tochemistry (IHC) to determine whether QGP-1 cells
contained 5-HT and expressed Piezo2. We found that
QGP-1 expressed Piezo2 and contained 5-HT and that
the labeling for Piezo2 and 5-HT overlapped (Fig. 1).
Piezo2 labeling was mostly membrane bound, whereas 5-
HT labeling was found homogenously distributed
throughout the cytoplasm. Appropriately, negative con-
trols lacking either 5-HT or Piezo2 primary antibodies
were negative (Fig. 1, middle and bottom row,
respectively).

Figure 1. QGP-1 cells contain 5-HT and express Piezo2. Top row, epifluorescence images of Piezo2 and 5-HT immunohistochemistry with
DAPI overlap. Middle row, omission of Piezo2 primary antibody eliminates Piezo2 labeling. Bottom row, omission of 5-HT antibody elim-
inates 5-HT labeling. Scale bar 50 mm.
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D-GsMTx4 inhibition of QGP-1 cell mechanosensitive
currents is dose-dependent

We previously showed that QGP-1 cells had mecha-
nosensitive ionic currents.9 These QGP-1 mechano-
sensitive currents had properties that closely
resembled Piezo2 currents, such as cationic permeabil-
ity, linear current-voltage relationship and fast inacti-
vation kinetics.9 The application of 5 mM D-GsMTx4
blocked about 90% of response to a maximum dis-
placement stimulus of 5 mm.9 Further, Piezo2 siRNA
knockdown almost completely removed the whole-
cell current responses to mechanical stimulation. Our
previous data, therefore, strongly suggested that QGP-
1 mechanosensitive currents were carried by Piezo2.

Since D-GsMTx4 is known to specifically block
mechanosensitive cation channels and in particular
Piezo1,11 we wanted to examine the effects of this peptide
on the current-distance sensitivity of mechanosensitive
currents in QGP-1 cells. Whole-cell voltage clamped
QGP-1 cells were stimulated with a piezo-driven blunt
glass probe (Fig. 2). While other techniques such as
tensile stress (stretch), shear stress and cell swelling
(hypo-osmotic solutions) also allow the study of mecha-
nosensation, compression of the cell membrane with a
fine piezo-driven glass probe allows to record whole cell
currents initiated by stimuli ranging from nanometers to
millimeters within milliseconds. This makes the piezo
driven glass probe an excellent tool for the study of fast
activating and inactivating mechanosensitive channels. A
displacement of 3.5 mm was applied to the cells and

compared before and after application of 5 and 10 mM
D-GsMTx4. We did not find mechanosensitive currents
after treatment with 10 mM D-GsMTx4 (n D 4)
(Fig. 2A). Application of 5 mM D-GsMTx4 significantly
inhibited currents by 80.2 § 18.4% (n D 4, �P < 0.05)
(Fig. 2B).

D-GsMTx4 blocks heterologously expressed Piezo2
currents in HEK-293 cells

Our data thus far suggested that theEC cell model
QGP-1 possesses Piezo2 protein and mechanosensi-
tive currents that closely resemble Piezo2 based on
their biophysical properties. These currents were
inhibited by D-GsMTx4. Therefore, we next examined
whether D-GsMTx4 inhibited Piezo2 by applying it to
HEK-293 cells transiently transfected with a human
Piezo2 construct. Piezo2-transfected HEK-293 cells
were voltage-clamped and mechanically stimulated by
a piezo-electrically driven blunt glass probe as
described above for QGP-1 cells. Increasing steps of
0.3 mm displacement generated increasing current
responses (peak current ¡598.6 § 76.7 pA, n D 3)
and 5 mM D-GsMTx4 significantly decreased peak
current by 55 § 8.6% (¡598.6 § 76.7 to ¡269.6 §
23.2 pA, n D 4, �P < 0.05) (Fig. 3A and B). Addition-
ally, the current-distance relationships showed that
5 mM D-GsMTx4 significantly shifted the mid-point
sensitivity from 3.4 § 0.1 mm to 4.2 § 0.1 mm (n D 4,
�P < 0.05) (Fig. 3B). Therefore, our data show that D-
GsMTx4 inhibits Piezo2. Consistent with other studies
of GsMTx4 inhibition of mechanosensitive ionic cur-
rents44 we found that D-GsMTx4 induced a right shift
in displacement-current sensitivity, suggesting a
decrease in potency of mechanical stimuli on Piezo2
activation. We then assessed whether inhibition of
Piezo2 currents by D-GsMTx4 is reversible (Fig. 3C)
and currents elicited by a mid-point displacement of
3.5 mm were compared before and after application of
the inhibitor. Indeed, we found that D-GsMTx4
(5 mM) reversibly inhibited 55.7 § 21.4% of the peak
mechanosensitive current. (Control ¡213.4 § 57.5
pA, n D 4 versus 5 mM D-GsMTx4 ¡94.6 § 20.2 pA,
n D 5, �P < 0.05) and as shown in representative trace
in green (Fig. 3C), after washout the mechanically-
gated currents elicited by the same displacement were
restored to control values. We then examined dose-
dependence of D-GsMTx4 inhibition of Piezo2. The
effects of 10 mM D-GsMTx4 could be examined when

Figure 2. QGP-1 mechanosensitive currents are inhibited by the
tarantula peptide D-GsMTx4 in a dose-dependent manner. QGP-1
cells were voltage-clamped and force was applied via graded
membrane displacement by a piezo transducer driven glass
probe. (A) Typical fast inward QGP-1 mechanosensitive currents
in response to 3.5 mm membrane displacement in absence (con-
trol, black) and presence of 5 mM (red) and 10 mM (purple) D-
GsMTx4. (B) Compared to the peak current in control, there was a
significant decrease in peak current when Piezo2 was inhibited
by 5 mM D-GsMTx4 (80.2 § 18.4% inhibition, n D 4, �P < 0.05
by unpaired t-test with Welch’s correction).
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cells were challenged to a maximum stimulation
(5 mm displacement), because we did not find currents
at lower displacements. We analyzed individual cell
responses to a single maximum stimulus and com-
pared control responses (¡634.9 § 53.0 pA, n D 4) to
application of 5 or 10 mM D-GsMTx4 (Fig. 3D and
E). Control currents were significantly inhibited by
both 5 and 10 mM D-GsMTx4 (¡232.3 § 37.2 and
¡67.6 § 0.9 pA, respectively, n D 5, �P < 0.05). Non-
transfected HEK-293 cells did not respond to mechan-
ical stimulation (no changes in holding current before
and after, n D 3) (Fig. 3D).

Discussion

EC cells are the primary mechanosensory cells in the
GI epithelium, where they are known to release 5-HT
in response to mechanical stimulation. In a recent
study, our group showed that Piezo2 contributes to
the mechanosensitive currents and 5-HT release by a
humanEC cell model QGP-1.45

In the present study, we examined the inhibitory
properties of the stereoisomer of the tarantula peptide
GsMTx4 (D-GsMTx4) in both QGP-1 and human
Piezo2 transiently transfected in HEK-293 cells.

Figure 3. Human Piezo2 transiently transfected in HEK-293 cells produce mechanosensitive currents that are inhibited by D-GsMTx4. (A)
A stepwise (0.3 mm step) increase in cell membrane deformation resulted in a set of fast activating and inactivating mechanically-
induced inward currents, with blue traces highlighting current in response to a maximum stimulus, in both absence (Control) and pres-
ence (D-GsMTx4) of 5 mM D-GsMTx4. (B) Peak current-displacement relationship (n D 4) fitted by a two-state Boltzmann function in
Control solution (Black, midpoint of 3.5 § 0.1 mm) and perfused with 5 mM D-GsMTx4 (Red, midpoint of 4.2 § 0.1 mm). (C) Inward cur-
rents elicited by 3.5 mm displacement in control solution (black) are inhibited by 55.7 § 21.4% after application of 5 mM D-GsMTx4
(red) and washout (Green) restores peak current after exposure with 5 mM D-GsMTx4. (D) Typical inward currents evoked by a 5.0 mm
displacement (Imax) in control solution (Black) and application of 5 mM D-GsMTx4 (Red) or 10 mM D-GsMTx4 (purple). A typical non-
transfected HEK-293 cell response to mechanical stimulus is shown in gray. (E) Current-concentration whisker plot in presence of 0
(Black, ¡634.9 § 53.0 pA), 5 mM (Red, ¡232.3 § 37.2 pA) and 10 mM (Blue, ¡67.6 § 0.9 pA) D-GsMTx4 (�P < 0.05 by unpaired t-test
with Welch’s correction).
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We first immunolabelled QGP-1 cells using both
Piezo2 and 5-HT antibodies and found strong expres-
sion of Piezo2 in 5-HT positive QGP-1 cells (Fig. 1).
Controls using no 5-HT primary (second row) and no
Piezo2 primary (third row) antibodies were adequately
negative. After confirming Piezo2 expression, we
tested the effects of 5 and 10 mM D-GsMTx4 on cur-
rents elicited by 3.5 mm displacement (mid-point sen-
sitivity)9 in QGP-1 cells. Our previous work showed
that currents elicited by a maximum stimulus of
5.0 mm displacement were significantly inhibited by
application of 5 mM D-GsMTx4 and here we decided
to test the effects of the blocker to a smaller mechani-
cal stimulus. As previously described, cells were volt-
age-clamped and compressed using a piezo-driven
glass poker. QGP-1 mechanosensory currents were
inhibited by 5 mM D-GsMTx4 and fully blocked by
10 mM D-GsMTx4 (Fig. 2A and B), suggesting a dose-
dependency of the QGP-1 mechanosensitive ion chan-
nel block by D-GsMTx4. Our data presented here
support the use of QGP-1 cells as an adequate model
to study the role of Piezo2 in the mechanosensitivity
ofEC cells.

We next tested whether Piezo2 channels are inhib-
ited by D-GsMTx4 by testing inhibition in transiently
over-expressing human Piezo2 in HEK-293 cell line.
HEK-293 cells did not have mechanosensitive currents
prior to transfection, consistent with previous studies
of mock transfections used as negative controls for
Piezo1 experiments in HEK-293T cells.27 When
Piezo2 was transfected into HEK-293 cells, a ladder of
displacement (0.3 mm steps) generated mechano-
gated currents that activated and inactivated within
milliseconds (Fig. 3A). Application of 5 mM D-
GsMTx4 significantly inhibited peak current
responses and it significantly shifted the current-dis-
tance relationship. A right shift (decrease) in sensitiv-
ity is found in presence of the D-GsMTx4 with a
change in mid-point sensitivity from 3.4 § 0.1 mm
(Control) to 4.2 § 0.1 mm (5 mM D-GsMTx4)
(Fig. 3B). Our findings are consistent with previous
studies that showed that GsMTx4 is a gating modifier
of mechanosensitive ion channels.[refs] Next, we
tested the reversibility of the inhibition by D-GsMTx4
and found that washout can restore Piezo2 currents
after exposure to 5 mM D-GsMTx4 (Fig. 3C). These
findings support previous reports on Piezo-dependent
Ca2C influx inhibition by the peptide in chondro-
cytes46 and Piezo1 currents in HEK-293 cells.44

As previously shown in QGP-1 cells, currents eli-
cited by a maximum displacement (5 mm) were inhib-
ited by the blocker. In Piezo2-expressing HEK-293
cells, application of both 5 and 10 mMD-GsMTx4 sig-
nificantly Piezo2 mechanosensitive currents in
response to maximum displacements, showing the
peptide not only affects sensitivity but also the potency
of the responses to mechanical stimulation (Fig. 3D
and E). Previous studies have shown that GsMTx4
shifts Piezo1 sensitivity to mechanical stimulation and
reduces the efficacy of the responses. Other less potent
blockers, such as RR and Gd3C (30 mM) have been
shown to reversibly block about 80% of Piezo2-depen-
dent currents in HEK-293T cells, when subjected to a
maximum stimulus of 5 mm displacement.

In summary, we found expression of Piezo2 in
5-HT positive humanEC cell model QGP-1 and char-
acterized the biophysical effects of D-GsMTx4 in
HEK-293 cells transfected with human Piezo2.
Mechanically stimulated Piezo2 currents are dose-
dependently and reversibly inhibited by D-GsMTx4,
which decreases both the potency and efficacy of
mechanosensitive Piezo2 currents.

Abbreviations
5-HT 5-hydroxytryptamine
DAPI 40,6-diamino-2-phenylindole
EC enterochromaffin
Gd3C gadolinium
GI gastrointestinal
IHC immunohistochemistry
PB phosphate buffer
PFA paraformaldehyde
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