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Schizophrenia research is plagued by enormous challenges 
in integrating and analyzing large datasets and difficulties 
developing formal theories related to the etiology, patho-
physiology, and treatment of this disorder. Computational 
psychiatry provides a path to enhance analyses of these 
large and complex datasets and to promote the development 
and refinement of formal models for features of this disor-
der. This presentation introduces the reader to the notion of 
computational psychiatry and describes discovery-oriented 
and theory-driven applications to schizophrenia involving 
machine learning, reinforcement learning theory, and bio-
physically-informed neural circuit models.
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Introduction

Computational approaches may assist the field of schizo-
phrenia research in dealing with its own disordered 
thoughts. Schizophrenia researchers engaged in discov-
ery-oriented research are overwhelmed by the complex-
ity of large datasets and the challenge of “convergence 
science,”1 ie, the effort to integrate many types of data 
in the pursuit of deep insights into etiology, pathophysi-
ology, and treatment. The field also has struggled to 
develop formal theory that might guide research con-
ducted within a hypothesis-testing framework. The appli-
cation of recently developed analytic and mathematical 
modeling approaches to psychiatry, “computational psy-
chiatry,”2–4 is facilitating both discovery-oriented and 
hypothesis-based research. This commentary is intended 
to introduce readers to computational psychiatry and 
its applications to schizophrenia and thereby raise 

awareness and broaden the adoption of these computa-
tional approaches in schizophrenia research.

Computational Psychiatry

Discovery-oriented computational psychiatry approaches 
have their roots in statistics and computer science.5 This 
research is exemplified by the application of machine 
learning techniques, such as random forests, support vec-
tor machines, linear discriminant analysis, and k-means 
clustering. These approaches are most useful when ana-
lyzing highly complex datasets, as they enable one to 
uncover relationships that are not evident from summary 
or simple statistics and then to make accurate predictions 
based on these statistics. Examples of this approach are 
the effort to predict the response to treatments6 or to clus-
ter patients on the basis of biological or behavioral traits 
to supplement or supplant current diagnostic groupings.4

Another important approach in computational psychi-
atry is the application of a Bayesian statistical framework 
to reinforcement learning (RL) theory.2,4,5 In Bayesian sta-
tistics, predictions (ie, statistical models) are updated with 
each new observation. Each salient new piece of infor-
mation teaches you something new because it is, to some 
degree, different from one’s prior expectations, in other 
words there is a mismatch between the new information 
and the prior model. This difference, known as a “predic-
tion error,” causes one to update one’s prior model. In 
a simplified way,2 this process may be represented using 
the following equation, δt  =  rt−Vt, where δt is the pre-
diction error, rt is the salient new information, and Vt is 
your prior, what you expected to see at time t. The rate 
of new learning may be represented as αδt, where α may 
be mediated via neuromodulators like dopamine or ace-
tylcholine. These models provide a powerful framework 
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for studying disturbances in reward learning and concept 
formation. However, as will be discussed later, “model-
based” forms of RL are complemented by “model-free” 
forms that establish relatively rigidly expressed forms of 
thought or behavior, such as habits or fixed beliefs.7

A second important domain of theory-driven compu-
tational psychiatry research emerged as a clinical trans-
lation of computational neuroscience. Computational 
neuroscience emerged with advances in neurophysiol-
ogy, computing capacity, informatics, and computational 
modeling.8 Increasingly, neural simulations emerged 
that were informed by the specific biophysical properties 
of actual neural circuits and that represented signaling 
alterations that were implicated in psychiatric disorders. 
One early example of this was the modeling of deficits in 
the maintenance of persisting prefrontal neural activity, 
thought to underlie working memory deficits in schizo-
phrenia.2 The emergence of advances in mechanistic 
psychiatric research employing psychopharmacology, 
genomics, and molecular brain imaging, and functional 
neuroimaging created new opportunities to apply neural 
simulations derived from preclinical models to data from 
individuals diagnosed with psychiatric disorders. In this 
way, computational psychiatry could facilitate, for the 
first time, the development of formal hypotheses regard-
ing the nature of microcircuit dysfunction in psychiatric 
disorders.2–4 In so doing, these approaches set the stage 
for deep understanding of brain-behavior relationships 
and the development of novel therapeutics.

Three Brief Exemplars of Applications of 
Computational Psychiatry to Schizophrenia

Increasingly, computational psychiatry approaches9,10 are 
applied in both discovery-oriented and theory-oriented 
studies of schizophrenia. For example, a recent discov-
ery-oriented study applied machine learning to data from 
a large randomized study, the European First Episode 
of Schizophrenia Trial (EUFEST).11 It identified a set of 
variables that predicted multiple clinical outcomes with 
over 70% accuracy at 4 weeks and 1 year of treatment.

Computational psychiatry approaches building on 
temporal difference RL approaches have contributed 
advances in theory, including a cognitive theory of delu-
sions.7 In this model, simplified here, aberrant prediction 
errors in the right lateral prefrontal cortex are generated 
by a number of factors associated with psychosis, such as 
heightened salience of irrelevant stimuli as a consequence 
of increased striatal dopamine release, distortion of infor-
mation in memory, and other factors.7 Distortions in the 
resulting beliefs produce “top-down,” ie, cortically driven 
distortions of perceptual processes that reinforce aber-
rant expectancies. The cycle of altered perceptual experi-
ences and false inference formation recurrently reinforce 
each other as a result of the need to attempt to recon-
cile sensory experiences, memories, and expectancies. 

This repetitive process appears to shift the learning of 
expectancies, ie, the formation of beliefs, from a model-
based to model-free form of learning. In other words, the 
beliefs lose the properties of “regular” beliefs, which are 
recalled voluntarily and updated flexibly, and acquire the 
properties of habits, ie, they are fixed and not falsifiable. 
This aberrant process may be maintained by high levels 
of dopamine D2 receptor signaling, as D2 receptor antag-
onists can alleviate delusions.

Lastly, a biophysically-informed computational model 
of cortical microcircuits sheds light on disturbances in 
microcircuits that might arise in schizophrenia as a con-
sequences of deficits in glutamate signaling, particu-
lar signaling mediated by NMDA glutamate receptors 
(NMDA-R). In these models, NMDA-Rs contribute to 
recurrent excitation in layer 3 of the lateral prefrontal 
cortex that underlies the maintenance of information 
in working memory.2 Reductions in NMDA-R signal-
ing undermine sustained activity, compromising work-
ing memory-related PFC activity and working memory 
performance. These findings are consistent with subse-
quent studies of NMDA-R antagonist effects on work-
ing memory-related PFC activity in humans and reduced 
working memory-related PFC activity associated with 
schizophrenia. However, these models also suggest that 
reduced excitatory drive of interneurons would impair 
working memory in schizophrenia by undermining the 
suppression of “noisy” neural activity at rest and during 
working memory. Loss of spatial tuning also reduces the 
precision of memory.12 Again, these disturbances in cor-
tical activity could be demonstrated in healthy subjects 
administered ketamine and in schizophrenia. Further, 
this model predicted that in patients who have reduced 
working memory precision, a metabotropic-2 gluta-
mate receptor agonist (mGluR2) would improve mem-
ory function by restoring the balance of excitation and 
inhibition in disinhibited networks. This hypothesis has 
yet to be tested. However, mGluR2 agonists do attenu-
ate ketamine-related impairment in working memory in 
humans13 and may have therapeutic effects in subgroups 
of schizophrenia patients.14

Toward Computational Schizophrenia Research

Computational psychiatry is not a panacea, but it consti-
tutes both a conceptual and a practical advance. Advances 
in this area highlight the limitations of prior analytic 
approaches and missed opportunities to develop formal 
theories related to schizophrenia etiology, pathophysiol-
ogy, and treatment. In order to achieve the opportunities 
created by computational psychiatry, clinical investi-
gators may need to establish new collaborations with 
computational neuroscientists, statisticians, computer 
scientists, as well as scientists and engineers in related 
fields. This breaking down of the intellectual silos that 
separate fields should benefit everyone. Further, there is 
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an opportunity to train a new generation of translational 
and clinical investigators in the emerging computational 
methods. For them, the field of computational psychiatry 
will be a foregone conclusion.
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