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Abstract

Segmenting regions of high angiogenic activity corresponding to malignant tumors from DCE-

MRI is a time-consuming task requiring processing of data in 4 dimensions. Quantitative analyses 

developed thus far are highly sensitive to external factors and are valid only under certain 

operating assumptions, which need not be valid for breast carcinomas. In this paper, we have 

developed a novel Statistical Learning Algorithm for Tumor Segmentation (SLATS) for 

automatically segmenting cancer from a region selected by the user on DCE-MRI. In this 

preliminary study, SLATS appears to demonstrate high accuracy (78%) and sensitivity (100%) in 

segmenting cancers from DCE-MRI when compared to segmentations performed by an expert 

radiologist. This may be a useful tool for delineating tumors for image-guided interventions.

I. Introduction

DCE-MRI has proven to be a useful technique with very high sensitivity to non-invasively 

distinguish regions of angiogenic activity corresponding to cancer from normal parenchyma 

[1]. Several papers in the literature have utilized mathematical models to study the 

pharmacokinetics and obtain quantitative information on angiogenesis. The methods to 

quantify pharmacokinetics can be broadly divided into two groups [2] - 1) black box 

methods and 2) tissue-contrast modeling.

The black box methods study the intensity profile of each voxel and quantify the dynamic 

flow of contrast (Gd-DTPA) in terms of heuristic, institution-dependent metrics such as 

maximal enhancement (ME) [3], initial rate of enhancement (IRE) [4], time to peak (TTP) 

[5], signal enhancement ratio [6], and wash-out slope (WOS) [7] without modeling or 

making any assumption on the underlying physiology. These metrics, however, are 

extremely restrictive and only use information from small segments of the intensity curve. In 

addition, these metrics are sensitive to a number of external parameters such as imaging 

pulse sequence, intensity inhomogeneity, patient physiology, hormonal status, tissue type, 

tracer delays, timing and speed of bolus injection, thereby leading to inaccurate 

segmentations. In contrast, pharmocokinetic modeling methods mathematically describe the 

underlying physics of diffusion of contrast through the vasculature into the extracellular 

space. Such pharmacokinetic modeling allows the quantification of physiologically relevant 
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parameters such as Ktrans (amplitude or initial slope of the time-intensity curve) [8], Kep 

(rate of exchange of contrast between the blood plasma and the interstitial space of the 

tissue) [2] and Ve (extracellular extravascular leakage volume fraction) [8]. Several models 

have been developed depending on the experimental conditions. Kety describes a model in 

[9] assuming that the flux of contrast agent is limited by blood flow. In [10], the Tofts model 

has been developed to quantify the pharmacokinetic process by assuming that the contrast 

uptake is limited by tissue permeability. In [11], a more complex model has been developed 

wherein both flow and permeability may limit uptake of contrast. Each method has its own 

assumptions leading to limited applicability of such models. A recent paper [12] 

mathematically elucidated the shortcoming of the Tofts and extended Tofts model, 

demonstrating the narrow range of applicability of the model to highly perfused or weakly 

vascularized tissue, both of which are not necessarily applicable to breast carcinomas.

Recent advances in data mining approaches have shown some success in characterizing and 

delineating the boundaries of enhancing regions. One such method is the fuzzy cmeans 

clustering method [13]. However, such methods still rely on clustering algorithms based on 

scalar heuristic parameters obtained from the intensity curves, thereby suffering from the 

same problems of the black-box methods. In a recent paper, probabilistic models based on 

Hidden Markov Models (HMMs) have shown great promise in segmenting and estimating 

breast density from breast tomosynthesis images [14].

In this paper, we have developed the Statistical Learning Algorithm for Tumor Segmentation 

(SLATS), a novel method to delineate regions of angiogenic activity from DCE-MRI, which 

highly correlates to regions of cancer. This method overcomes several problems of the black 

box and pharmacokinetic models detailed above. The segmentation of the pixels in healthy 

and tumor classes is done in the frequency domain on short time intervals (using Short Time 

Fourier Transform), effectively suppressing frequencies outside the time window, making it 

less sensitive to noise and biases, thereby overcoming a major problem associated with the 

black-box method. Also, the entire data contained in the time-intensity curve is utilized in 

contrast to conventional methods of reducing the information to a single scalar metric. Also, 

the threshold for selecting healthy and tumor class is automatically set, thereby avoiding any 

heuristics in displaying tumor maps. Since the method is independent of any underlying 

physiological model, it can be widely utilized to segment structures from 4D dynamic 

images and also avoids the limitations imposed by the pharmacokinetic models.

II. Tumor Segmentation Algorithm

Key techniques used in SLATS include the Fast Fourier transform (FFT), Short-time Fourier 

Transform (STFT), the k-means clustering algorithm and the Hidden Markov Model 

(HMM). The flow chart of the algorithm is shown in Figure 1. Our algorithm is based on 

modeling the transition of each voxel in time and segmenting the voxel into healthy and 

tumor classes. First, a region of interest (ROI) is delineated by a human operator on the 

dynamic image data. The time-intensity profile of each voxel in the ROI is provided to the 

FFT algorithm, and the frequency components of the time-intensity profiles are computed. 

The voxels are approximately clustered based on the magnitude of the FFT into “tissue type” 

classes using the k-means clustering algorithm. A small sample of points from the two 
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classes of voxels are then provided to train two discrete HMMs corresponding to healthy 

(normal parenchyma) (λ1) and tumor (λ2) classes. For the remaining pixels, the probability 

of observing the discrete sequence is computed from HMM λ1 and HMM λ2. A similarity 

ratio χ is then evaluated to determine the similarity to the healthy or tumor class. The ratio 

χ is then converted to a color scale and overlaid with the original images to determine the 

position of the tumor. We now go over each component of the pipeline in more depth.

Short-time Fourier Transform

The observation sequence to train the discrete HMM is created from the interpolated time 

intensity curves. First, the time-domain curves are converted into the corresponding Fourier 

transforms to extract the information from the enhancement curves. The Fourier transform 

preserves the information in the signals and can be computed efficiently. However, the 

Fourier transforms lack the temporal localization of the frequencies. Therefore, we use the 

Short-Time Fourier Transform (STFT) in short time periods and obtain a feature vector 

corresponding to each time window [15]. The STFT is computed as,

(1)

where γ(τ − t′) is the sampling window of the trajectory. The Fourier transform in each 

sampling window is computed by the Fast Fourier Transform (FFT) algorithm. Information 

loss is minimized by overlapping the STFT windows. In each sampling window, the STFT 

consists of the magnitude of N discrete frequency contributions. Multiplication of the signal 

by the relatively short window effectively suppresses the signal outside the analysis time 

point, thereby acting as a bandpass filter.

Vector Quantization

Since the HMM structure considered in this paper is discrete, we convert the N tuple vector 

in each time interval into a single discrete observation symbol using the k-means clustering 

algorithm [16]. The k-means algorithm partitions the p vectors at different time intervals into 

L = 16 sets so as to minimize the within-cluster sum of squares. The discrete observation 

symbol is the index of the codebook vector closest to the given N tuple vector, i.e., the 

cluster in which the vector belongs.

Hidden Markov Model

Our HMM analysis is based on the approach and notation of Rabiner [17]. The parameters 

of the HMM model are defined as follows:

• The HMM is assumed to have N (= 4) states. The transition probability between 

state i to j is given by

(2)
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• Each state also has M (= 16) possible observation symbols Ot. The probability of 

observing a particular symbol Ot in state j is

(3)

• Also a state prior πi is defined, which is initial probability of beginning in Si

In short the HMM can be represented as λ = (A,B, π). The model λ is trained according to 

the time-intensity curves obtained from a sample of points from each class.

HMM Training

Having generated the discrete observation symbols, the observation sequence is provided to 

the HMM network to obtain the updated model λ̂. The parameters of the models are 

estimated by maximizing the auxiliary function

(4)

This optimization problem is solved iteratively by the Baum-Welch method [17]. Two 

HMMs are trained correspoding to the “Healthy” (λ1) and “Tumor” (λ2) class.

HMM Prediction

Once the HMMs have been trained, the next step is to measure whether the HMM classifies 

the nature of the time-intensity curves. That is, we evaluate the likelihood that a particular 

HMM describes the observation sequence. The probability of predicting the observation 

sequence given the HMM model is computed inductively using the forward-backward 

algorithm:

(5)

where αT (i) = P(O1O2…OT, qt = Si|λ) is the forward variable. The reader is referred to [17] 

for greater details.

Similarity Ratio

A similarity ratio χj is computed to evaluate if a particular point j belongs to the tumor or 

healthy class and is converted to a scalar color map. The measure is defined as

(6)
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III. Results

Ten breast examinations of women diagnosed with node negative and estrogen receptor 

positive breast cancer were analyzed under a protocol approved by the Institutional Review 

Board and compliant with Health Insurance Portability and Accountability Act (HIPAA). 

The average age of the patients was 55 years. The women were imaged prone in a 1.5T 

scanner (GE LX echo, GE Healthcare, or Siemens Sonata, Siemens); matrix size: 512 × 512; 

slice thickness: 2.4–4.4 mm; flip angle: 25° or 30°. The DCE-MRI consisted of 4 data 

points. For each breast examination, an expert radiologist delineated the primary node of the 

tumor using the DCE-MRI run in a movie format. A visual inspection of brightly enhanced 

portions of the DCE-MRI was utilized for delineating the tumor boundaries. The radiologist 

focused on delineating only the dominant mass-like portion of the malignancy and not on 

any associated non-mass like or smaller components, for the purposes of a study focusing on 

mass characterization by DCE-MRI. This segmentation was considered as the reference for 

SLATS. Although, this segmentation mask cannot be considered as a gold standard, this 

provides a good reference for SLATS to verify if the algorithm can perform as good or better 

than a radiologist.

The 4D images were loaded in 3D Slicer, an open-source image processing and navigation 

software (www.slicer.org). A region of interest was delineated on the DCE-MRI using the 

expert radiologist’s segmentation as a reference. The time-intensity curve for each voxel was 

logged and provided to SLATS, which was run on MATLAB. The workflow of a typical 

case is shown in Figure 2.

The result for SLATS compared to the radiologist’s finding is shown in Figure 3. All the 

tumor foci delineated by the expert radiologist were detected by SLATS resulting in a 

sensitivity of 100%. For three cases an additional focus of tumor was also detected, resulting 

in an accuracy of 77%. As mentioned earlier, the radiologist only focussed on the dominant 

tumor mass, for the purposes of a study focusing on mass characterization by DCE-MRI. 

This additional focus could either be spurious noise detected by SLATS or could be a true 

positive. In the absence of biopsy results, the only way to characterize the additional mass is 

by observing the type of enhancement in the additional mass and compare the enhancement 

to the time-intensity curves in the primary mass and a known normal parenchyma region. 

Figure 4(ii) shows the time-intensity curve at three locations shown in Figure 4(i). As seen 

in Figure 4(i), ROI (a) corresponds to the primary mass, ROI (b) to the secondary mass and 

ROI (c) to normal parenchyma tissue. Figure 4(ii) shows that the enhancement curve for 

ROI(b) more closely resembles that of ROI(a) than ROI(c), thereby implying that the 

secondary mass is more likely to correspond to tumor than normal parenchyma tissue. This 

was also independently confirmed in a blinded study conducted by a second radiologist.

The Dice Similarity Coefficient (DSC), which measures the amount of overlap between 

SLATS detected tumor and manually outlined tumor, is 0.72 ± 0.2. Considering only the 

primary mass, the DSC is measured to be 0.81 ± 0.08, thereby showing a good correlation 

between the SLATS detected tumor region and the manually segmented region. In order to 

test the stability of the algorithm, the DCE-MRI and the associated tumor map Tt was 

translated by an arbitrary amount, which in this case was RAS (−20, 37, 16) mm. The ROI 
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was chosen again and the time-intensity profiles were logged and provided to the SLATS 

algorithm based on which the tumor map T was obtained. The DSC computed between Tt 

and T was 0.99, thereby showing a robust stability to translational disturbances. In addition, 

random noise was also added to the DCE-MRI to evaluate the noise disturbance rejection 

capability. The DSC between the tumor map generated from the noisy DCE-MRI and 

original map was 0.995, showing excellent noise rejection capability. The SLATS result was 

also compared to the tumor maps generated from CADstream, a commercially available 

software from GE Healthcare Systems, for three patients. The DSC computed between the 

SLATS and CADstream generated tumor map is 0.85. The result, shown for two patient 

cases in Figure 5, illustrates differences in the tumor maps generated from SLATS and 

CADstream. A detailed validation in a larger study is required to confirm the differences in 

the two tumor maps.

IV. Conclusion

In this paper, we describe a novel algorithm to segment regions of tumor. SLATS uses the 

frequency components of the time-intensity curves, thereby making the algorithm invariant 

to absolute intensities, MR bias or choice of pulse sequence. The algorithm is robust to noise 

and translational disturbances. However, deformation of the breast during imaging needs to 

be addressed using non-linear deformable registration algorithms. SLATS shows very high 

sensitivity and accuracy when compared to an expert radiologist’s finding. Further validation 

of the algorithm using biopsy samples obtained under image-guidance is currently 

underway.
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Fig. 1. 
SLATS
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Fig. 2. 
Workflow of the SLATS algorithm. (a) DCE-MRI loaded into 3D Slicer (b) ROI delineated 

(c) Time-intensity curves obtained from all voxels under ROI and provided to SLATS (d) 

Tumor map is generated
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Fig. 3. 
Results of SLATS for 6 cases. (Top row) SLATS tumor map with segmentation outline by an 

expert radiologist shown in green (Bottom row) Overlap between SLATS and expert 

segmentation shown in green. Excess region segmented by SLATS shown in red.
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Fig. 4. 
(i) DCE-MRI with SLATS and expert segmentation showing three ROI. ROI(a): within the 

mass detected by SLATS and Experts, ROI(b): within the mass detected by SLATS only, 

ROI(c): outside SLATS and Expert segmentation region (ii) Time-intensity curves 

corresponding to the three ROIs
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Fig. 5. 
(a) CADstream map (b) SLATS tumor map generated for Patient 1. (c) CADstream map (d) 

SLATS tumor map generated for Patient 2.
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