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Abstract

As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, 

it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in 

engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed 

for each new fuel. In principle, suitability of a fuel should be completely determined by its 

chemical composition. This composition can be probed through use of detailed analytical 

techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, 

chromatograms would be used to determine the details of the composition. In the approach taken 

in this paper, the chromatogram is assumed to be entirely representative of the composition of a 

fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive 

of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application 

could then be ascertained by using this model to compare its chromatogram with those of the fuels 

already known to be suitable for that application.

In this paper, we lay the mathematical and informatics groundwork for a predictive model of 

hydrocarbon properties. The objective of this work was to develop a reliable model for 

unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of 

their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel 

fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles 

obtained. These profiles were then analyzed using multi-way principal components analysis 

(MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a 

kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to 

recover descriptive models of the fuels, their linear nature obscured some of the finer physical 

details due to the widely varying composition of the fuels. The SOM was able to find a descriptive 

classification model which has the potential for practical recognition and perhaps prediction of 

fuel properties.
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1 Introduction

The development of alternative fuels has been identified by the United States Office of 

Science and Technology Policy (OSTP) as a critical need for the transportation industry [1]. 

It is expected that feedstocks for fuels will transition to some combination of conventional 

sources, unconventional sources such as tar sands and shale oil [2], and biomass [1]. The 

substances that are produced from refining these different feedstocks differ in their 

composition and therefore their suitability for use as fuel may not be known.

Determining whether a fuel is suitable for use in a particular application can be a lengthy 

and expensive process. This is especially true in aviation, due to the certification required by 

regulatory bodies such as the United States Federal Aviation Administration (FAA) [1]. In 

order to certify a new fuel for service, full-scale engine tests must be performed that can 

consume millions of liters of fuel. In principle, these tests must be conducted for each new 

fuel that is produced.

Use of technologies such as electric or hybrid powertrains may reduce or eliminate the need 

for exhaustive fuel certification. However, the OSTP does not anticipate that these 

technologies will be usable for aviation in the foreseeable future. Furthermore, the same 

pressures on the aviation industry also affect other transportation industries, even if to a 

lesser degree. Aviation is, therefore, well-placed to be an industry leader in alternative fuels 

research and applications.

The FAA has begun a program for new means of certification for alternative jet fuels called 

the National Jet Fuels Combustion Program [1]. One of the goals of this program is to 

develop computational models that can be used to certify fuels without the expense of the 

current process. This research program currently advocates the use of detailed, 

computationally expensive, numerical simulations to predict engine performance when using 

a proposed fuel.

In this paper, we propose a different approach: the use of an algorithm to predict 

performance based on a detailed physiochemical analysis of the fuel. A fuel's performance is 

in principle entirely determined by its composition, and that composition can be readily 

determined, or at least probed, by analysis methods such as nuclear magnetic resonance 

spectroscopy, mass spectrometry, and gas or liquid chromatography. Usually, the output 

from such an analysis is examined by an expert and then the features of the output are 

assigned to components of the mixture. In our approach, however, there is no need to 

identify and quantify each component. Instead, the raw or minimally-processed output from 

these analysis methods is used directly as an input to an algorithm, trained against a library 

of known fuels, that will predict the circumstances under which the fuel will be usable.

For the study presented here, a set of hydrocarbons including gasoline, kerosene, highway 

diesel fuel, marine diesel oil, and biodiesel fuel were collected. Gas chromatography 

coupled with mass spectrometry (GC-MS) was used to characterize the fuels and the 

resulting chromatogram was used as input to three chemometric algorithms in order to 

classify and group the fuels. It was found that the fuels fell into roughly three classes, which 

were the diesel fuels, kerosenes, and biodiesels. The model generated in this study could be 
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used to determine the similarity of a new fuel to any of these three classes and therefore its 

suitability for these applications. As the library of suitable fuels grows, the power of the 

model to classify new substances will grow commensurately.

2 Methods

2.1 Chemometric methods for fuel analysis

GC-MS and its more sophisticated alternative, comprehensive two-dimensional gas 

chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS), have 

been the methods of choice for the analysis of fuels. The spectra generated contain a wealth 

of data about the composition of the fuel. Multivariate analysis methods can help to extract 

information from the GC-MS [3-6] and GCxGC-TOFMS [7-9] results, and these methods 

can be used for rapid analysis of fuels [10-13].

Due to the number of compounds present in most fuels and the limited capacity of the 

chromatographic columns, there is a tendency for GC-MS chromatograms to exhibit raised 

baseline humps known as unresolved complex mixtures (UCM). This effect has motivated 

the use of GCxGC-TOFMS for petroleum analysis [14-18]. GCxGC-TOFMS has its 

disadvantages, however. The instrumentation required is expensive and complex, limiting the 

number of facilities with access to it. Furthermore, the analysis of GCxGC-TOFMS data is 

not nearly as mature as GC-MS. Both methods, therefore, remain popular.

Several literature studies have used GC-MS and/or GCxGC-TOFMS as input to advanced 

analysis algorithms. Pierce and Schale [13] used partial least squares (PLS) to quantify the 

composition of blends of biodiesel and conventional diesel using GC-MS and GCxGC-

TOFMS, discussing the advantage and disadvantage of each method of analysis. Johnson et 

al. [19] used multi-way chemometric tools to characterize fuel blends by GC-MS, obtaining 

qualitative and quantitative features for a series of diesel fuel and heavier heating oil blends. 

Parastar et al. [20] used GCxGC-TOFMS combined with chemometric methods to resolve 

and quantify mixtures of compounds such as polycyclic aromatic hydrocarbons (PAHs) in 

heavy fuel oil. Cramer et al. [21] used parallel factor analysis (PARAFAC) and GC-MS to 

develop an improved peak selection strategy to automatically detect minute compositional 

changes in fuels. Kehimkar et al. [22] and Freye, et al. [23] applied PLS to rocket kerosene 

data obtained using GCxGC-TOFMS and GCxGC coupled with flame ionization detection, 

respectively, to develop multivariate predictive models of fuel composition and engine-

relevant fuel properties.

Others studies have used other chemometric techniques to analyze fuel. Dupuy et al. [24] 

used PCA and soft independent modeling of class analogy classification (SIMCA) combined 

with near infrared (NIR) spectroscopy to study heavy marine fuels. Pasquini and Bueno [25] 

used PLS and NIR spectroscopy to predict the true boiling point curve and to estimate the 

specific gravity of petroleum in refineries. Feng et al. [26] used the least square support 

vector machine (LS-SVM) and PLS, and NIR spectroscopy for analysis of six diesel fuel 

properties (i.e., boiling point, cetane number, density, freezing temperature, total aromatics, 

and viscosity). Yousefinejad et al. [27] classified three types of oil with the use chemometric 

methods and attenuated total reflectance fourier transform infrared (ATR-FTIR) 
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spectroscopy. Da Silva et al. [28] used near infrared (NIR) and medium infared (MIR) 

spectra of distillation residue to classify gasoline as with or without additives using PLS, 

PCA, and linear discriminant analysis.

However, these studies have all relied on a small sets of samples that may not be readily 

obtainable by researchers wishing to repeat that work. To improve reproducibility, therefore, 

we would encourage the use of a standard library of fuel samples. Ideally, such a library 

would be composed of petroleum and unconventional Certified Reference Materials (CRMs) 

with well-characterized chemometric data. The set of substances used in this study do not 

necessarily represent such a library, but it is intended to show what such a library might look 

like.

2.2 Chemometric methods used in this paper

Chemometric methods such as those used in this paper are intended to aid in the analysis 

and visualization of complex data sets. In such data sets, the variation in the data can often 

be explained by a relatively few factors within the data space. This is expressed 

mathematically by the data existing in some low-dimensional subspace. Chemometric 

methods therefore are designed to find this subspace in order to make the data easier to 

interpret. In all cases, data with hundreds or thousands of variables are reduced to a few 

dimensions, usually two or three in order to aid human pattern recognition. The methods 

used in this study are multi-way principal components analysis (MPCA), parallel factor 

analysis (PARAFAC), and Kohonen's self-organizing map (SOM). MPCA and PARAFAC 

are linear classifiers, while SOM is a nonlinear classifier. Each method presents a different 

way of visualizing the data. MPCA determines those directions in the data space that are 

responsible for differences between the samples, but does not necessarily help assign 

physical interpretations to those differences. PARAFAC identifies physical components that 

are responsible for separating the samples, although these will not correspond to pure 

substances in this case due to the complexity of the hydrocarbon mixtures. SOM fits a low-

dimensional manifold to the data that captures the most variability, but the manifold is 

nonlinear and therefore the results of the SOM are more difficult to interpret.

2.2.1 Multi-way principal components analysis (MPCA)—Principal components 

analysis [29] (PCA) reduces the dimensionality of complex data sets by identifying those 

directions in which the data have the greatest variance. The most common algorithm uses the 

singular value decomposition, which decomposes an observation matrix X into a set of 

scores T and loadings W such that T = XW. Each component of W will then describe one 

of the dimensions of the low-dimensional subspace and will be interpretable as, for instance, 

a chromatogram. Dimensionality is reduced by retaining only those L components of W that 

describe more than a certain amount of variance in the data, where L is strictly less than the 

rank of X.

PCA requires that the data be expressed as a two-way (alternatively, order two) array, 

meaning a matrix. In order to use PCA on data of higher order, the data must be recast into a 

two-way array. Employing PCA on such a recast array is multi-way PCA. As a three-way 

array, X has dimension I × J × K, so it must be unfolded into the two-way array X′ with 
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dimension I × JK. For instance, the GC-MS data considered here are three-way arrays, 

where the first way represents differing profiles, the second represents the mass spectra, and 

the third is the elution times. Recast as a two-way array, the first way still represents the 

differing profiles, while the second has the mass spectra and chromatograms interleaved 

together. Each component of W, if it is suitably reshaped and added to the sample mean, can 

be interpreted as a GC-MS profile.

2.2.2 Parallel factor analysis (PARAFAC)—PARAFAC is a multidimensional analogue 

to PCA [30], decomposing the multiway observation array X into a set of matrices. In the 

three-way case, each element of X can be expressed in terms of three matrices A, B, and C 
as xijk = Σfaifbjfckf , with appropriate generalizations to higher orders. The matrix A is of 

dimension I × F, B is J × F, and C is K × F, where F is the number of factors and is less than 

the minimum of I, J, and K. The matrices can then be interpreted as a scores matrix, a matrix 

corresponding to the chromatographic loadings and a matrix corresponding to the mass 

spectral loadings. The number of factors F in PARAFAC plays the same role as the number 

of components L in MPCA, and is strictly less than the rank of X.

PARAFAC has an additional advantage over PCA in that, because it is usually solved using a 

nonlinear optimizer such as alternating least squares, additional constraints can be added 

such as requiring that all components of A, B, and C be positive.

2.2.3 Kohonen's Self-Organizing Map (SOM)—A self-organizing map [31] is a type 

of neural network that will project the data into a two-dimensional space based on some 

notion of closeness. Each node is assigned to a physical location in the two-dimensional map 

and also to a location in the data space. As with all neural networks, the map is trained on 

the data using an iterative process. As the learning algorithm runs, each node that is already 

close to a sample in data space is moved closer to that sample, and nodes close in the map 

space to that node are moved with it. As long as there are more nodes in the map than there 

are samples in the training set, each sample will then be assigned to a neighborhood of nodes 

in the map. The proximity of any two samples on the map corresponds to how similar they 

are. The SOM has the ability to capture nonlinear relationships among the samples, because 

a straight line on the map may correspond to a convoluted and nonlinear path through the 

data space. As a result, however, distances on the map do not translate into distances in the 

data space except in a nonlinear and integrated sense. Essentially, flexibility is gained at the 

expense of ease of interpretation.

The nodes in the map can be described by an L × N grid, and each node has a point in the 

data space assigned to it, in this case a GC-MS profile. Therefore, the SOM can be described 

as a three-way array M, described by L × N × S elements, with any particular elements Mlns. 

Because the map represents two spaces, there are two distances that are meaningful between 

nodes. The first is the Euclidean distance dE on the map, which for two nodes Mln and Mop 

with locations (l,n) and (o,p) is just . The other distance 

is the distance in the data space, which here we take to be the Hellinger distance, dH, which 

for the same two nodes Mln and Mop is defined as . 

Note that for this expression to be valid, the two spectra must each be normalized so that 
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they sum to 1. The Hellinger distance is 0 if Mln and Mop have equal values for each 

component and it is 1 if Mln is zero everywhere Mop is positive and vice versa.

A SOM is usually interpreted in terms of its unified distance matrix or U-matrix U [32], 

which is a visual representation of the distance in data space between adjacent nodes on the 

map. Each element in U is defined as U2i–1,2j = dH(Mij, Mi−1,j), U2i,2j−1 = dH (Mij, Mi,j−1), 

and U2i−1,2j−1 = ½ dH(Mi−1,j, Mi,j−1)+ ½ dH(Mi,j, Mi−1,j−1). The even elements U2i,2j are not 

defined [32], and here we define them to be the minimum of their eight adjacent elements.

2.3 Chemometric methodology used for the analysis of data

The methodology used in the paper is summarized in Fig. 1. The three-way data array is 

shown in Fig. 1a. MPCA is then used to determine scores (shown in Fig 1b) and loadings (in 

Fig. 1c). The results of MPCA are used for variable selection to reduce the computational 

complexity of the PARAFAC and SOM models, as shown in Figs. 1d (Stage II a) and 1f 

(Stage II b). Components with the highest loading are chosen for these models. PARAFAC is 

applied to the reduced data array and used to determine chromatographic loadings, mass 

spectral loadings, and PARAFAC scores, shown in Fig. 1e, and the SOM is used to generate 

the two-dimensional map, shown in Fig. 1g.

2.4 Experimental procedure

2.4.1 Samples and Materials—The National Institute of Standards and Technology 

(NIST) provides a number of petroleum-related Certified Reference Materials (CRMs) 

characterized for various constituents. CRMs provided by NIST are known as Standard 

Reference Materials (SRMs). Samples of a number of these SRMs were obtained. In 

addition, gasoline (87 octane) was purchased from a local service station, and three jet fuel 

samples were provided by the Air Force Research Laboratory. Table 1 lists the sample 

materials.

SRM 1494 Aliphatic Hydrocarbons in 2,2,4-Trimethylpentane and SRM 2269 Perdeuterated 

PAH I Solution in Hexane/Toluene were used as internal controls. HPLC grade hexane was 

used as sample diluent.

2.4.2 Sample preparation—The petroleum samples and SRM 1494 were diluted as 

follows: 2 mL of hexane, 100 μL of SRM 2269, and 100 μL of the petroleum sample were 

volumetrically transferred to 4 mL amber vials and sealed. Approximately 1.5 mL of each 

mixture was then transferred to individual amber autosampler vials for analysis. One vial 

was prepared for each fuel sample.

2.4.3 GC-MS analysis—The GC-MS analysis was performed using a 0.25 mm (id) × 60 

m DB-17MS column (50 % phenylmethylpolysiloxane, 0.25 μm film, [17] (Agilent 

Technologies, Wilmington, DE). The column was held isothermally at 60 °C for 1 min, 

ramped at 45 °C per min to 100 °C, held for 10 min, then ramped at 2 °C per min to 290 °C 

and held for 60 min. All injections were done on-column (1 μL) with helium as the carrier 

gas at a constant flow rate of 1.2 mL/min. The injection port temperature was held in an 

oven-track mode (3 °C above the oven temperature), and the auxiliary line temperature was 
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held at 290 °C. Following an 8 min solvent delay, the MS scanned from 50 u to 350 u at 2.48 

scans per second with the electron multiplier voltage set to 2000.

SRM 1494 (diluted as described above with SRM 2269 and hexane) was the first sample run 

to obtain retention times for the aliphatic compounds present in that SRM and for the 

deuterated compounds present in SRM 2269. Each fuel sample was run in triplicate with one 

run of hexane after each fuel sample to ensure that there was no carryover.

2.4.4 GC-MS data processing—The retention time for fluoranthene-d12 (one of the 

components in SRM 2269) was used to check for any retention time shifting over the course 

of the runs, and the peak area based on the integration of ion 212 was used to assess the 

dilution of the samples. The retention time and peak area for this deuterated compound 

remained fairly constant (within 5 %) over the days that it took to run all of the petroleum 

samples. The Agilent data system was used to generate text files containing retention time, 

scan, and signal information used in the predictive schemes. Prior to creating the arrays, 

automated peak integrations were checked and corrected manually to baseline.

2.5 Data analysis and data construction

The data was arranged as a three-way array with dimension 60 × 23248 × 301, for the 

samples, GC elution times, and mass spectra respectively. This three-way array was then 

analyzed using a MPCA and PARAFAC models. For the SOM, to reduce computational 

complexity, principal components analysis was used to reduce the number of active data 

elements. More details of this selection process can be found in Section 3.3. This results in a 

two-way array with dimension 60 × 768.

For the construction of the MPCA and PARAFAC models, the PLS toolbox version 3.51 

(Eigenvector Research, Manson, WA) was used, running in MATLAB R2015b. Construction 

of the SOM was performed with the PyMVPA 2.4.2 package, running in Anaconda 4.0.0 

with Python 2.7.11. No preprocessing was used beyond the peak alignment verification and 

manual baseline correction described in Section 2.4.4.

3 Results and Discussion

This study focused on using GC-MS data for the analysis of a wide range of petroleum-

based fuels (Table 1) as well as two biodiesels. As suggested in the study by Hupp et al [33], 

alignment of the chromatograms was checked using the retention time of fluoranthene-d12, 

a component in SRM 2269 which was added to all samples.

3.1 Multi-way principal components analysis (MPCA)

The data were loaded into PLS-toolbox software as a 23,248 × 301 × 60 array, representing 

the 23,248 elution times, the 301 masses in the mass spectra, and the 60 samples (20 

samples each run in triplicate). For the construction of the MPCA model, the number of 

principal components was chosen to capture more than 80% of the explained variance [29]. 

Other methods have been proposed, but generally do not give very different results [29, 

34-41].
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The samples fall into two superclasses, which essentially splits the biofuels from the 

petroleum-derived substances. This split is shown in Fig. 2a, which plots the samples with 

respect to the first three principal components. The confidence ellipse [42] represents the 

95% confidence limit for the petroleum class based on the Hotelling T2 [43, 44] distance. 

These substances lie essentially on a two-dimensional surface within this three-dimensional 

PCA space, and the two biofuels lie along a line extending perpendicularly from this surface. 

This separation makes chemical sense because biofuels tend to have a relatively invariant 

composition (composed primarily of fatty acid methyl esters), as compared to petroleum 

derivatives which can vary significantly depending on the source of the petroleum.

Within the petroleum superclass, the jet fuels (JP8, JP5 and Jet Fuel A) can be readily 

identified as a subclass, as shown in Fig. 2b. This figure shows the score plot using the 

second and fourth principal components. In the figure, the jet fuels can be seen as a tightly-

bundled group surrounded by the ellipse of confidence. In addition to the jet fuels, SRM 

1617b, SRM 1616b, and SRM 2299 fall within the ellipse of confidence. This grouping 

again makes sense because SRM 1616b and SRM 1617b are kerosenes, composed primarily 

of aliphatics in the C12 to C15 range, and the jet fuels are kerosene-based fuels [45] and 

consist mostly of aliphatic and aromatic hydrocarbons ranging from C8 to C17 or greater 

[45]. SRM 2299 is a gasoline composed of short aliphatics from C7 through C11, which is 

most similar to the jet fuel subclass.

Another point of interest is the proximity of SRM 2770 and SRM 1624d in principal 

component space. These substances are both diesel fuels with varying amounts of sulfur. 

SRM 2770 was made by mixing SRM 1624d and SRM 2723a [46-48] to achieve a target 

sulfur concentration. Thus, the chemical and physical properties of the SRM 2770 are 

similar to chemical and physical properties of these two substances. It should be noted that 

SRM 2723a was not available for the GC-MS analysis because it had been superseded by 

SRM 2723b [49]. If a sample of SRM 2723a had been available, it is likely that the three 

substances would have fallen essentially on a line. However, SRM 2723b is in the grouping 

of samples near the origin in the loadings plot in Fig. 2b, suggesting that it is less related to 

SRMs 1624d and 2770 than might be predicted. All four of these substances are labelled as 

No. 2 diesel fuels, but this definition is based on physical properties, such as viscosity, flash 

point, and cetane index, rather than composition [50]. The differences in the classifications 

highlights the potentially wide chemical variation among petroleum fuels.

3.2 Parallel factor analysis (PARAFAC) model

A limitation of the MPCA model is that the loadings do not have an easy interpretation in 

terms of chromatographic and mass profiles. The PARAFAC algorithm was designed to 

generate a model that would have a more straightforward physical interpretation. In 

principle, PARAFAC would be able to extract GS-MS profiles for the pure components that 

make up the mixtures, although the complex nature of petroleum distillates makes this ideal 

state impossible. Even so, PARAFAC is able to isolate a set of basis components, even if that 

basis set does not actually correspond to a pure substance.

The speed of the algorithm scales poorly with the size of the data matrix and so any amount 

of variable reduction will have great benefits in computational time. Here, the loadings 
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obtained by the MPCA model, which can be found in Supporting Information Fig. S1, were 

used for selection of variables. The first four principal components are plotted; there is little 

information present at elution times greater than about 100 minutes. Removing these 

elements allowed an increase in computational speed for the construction of the PARAFAC 

model.

The PARAFAC model was generated using PLS-toolbox. Non-negativity constraints were 

imposed in the three PARAFAC dimensions, since the true GC-MS values should be strictly 

positive. A convergence criteria value of 10−6 and a maximum number of 10000 iterations 

were used.

According to Skov and Bro [51], PARAFAC will provide a unique solution, but only when 

the proper number of factors is determined will the unique solution be chemically 

meaningful. Thus, this step is fundamental to the construction of the model [30]. Various 

methods are proposed for this choice [52-55]. In this work, the core consistency 

(CORCONDIA) test [53-55] was used for determining the number of factors, along with 

heuristics based on chemical knowledge about the problem. The CORCONDIA test provides 

information about degeneracy between factors, that is, whether two or more factors may be 

fitting the same feature which would be better described using only one factor. Heuristics 

must then be applied to determine whether the potential loss of uniqueness in the model is 

worth the additional degrees of freedom. The core consistencies and the explained variances 

of the models are seen in Table 2, and a four-factor model was chosen as best representative 

of this dataset. The core consistency of 99.0% for this model indicates there is no 

degeneracy in the recovered fuel classes. When five or six factors were used for model 

building, more than one fuel class was described by the same factor revealing degeneracy in 

the recovered factors.

The PARAFAC model divides the substances in a similar manner as the MPCA model. Fig. 

3 shows the score plot with respect to the 2nd through 4th factors in the PARAFAC model. 

As was the case for the MPCA model, the biofuel SRMs 2772 and 2773 are separated from 

the other substances along the 3rd factor. SRM 1848, which is an additive to lubricating oil, 

is separated from the other substances along the 2nd factor. SRM 1623c, a heavy fuel oil, is 

separated along the 4th factor, as are the jet fuels and the gasoline SRM 2299. Most other 

substances lie near the origin of this plot, meaning they are not represented by these three 

factors.

In order to show how well the PARAFAC model actually captures these substances, Fig. 4 

shows the chromatographic loadings for 2nd through 4th factors obtained by the PARAFAC 

model with experimental chromatograms for SRM 1848, SRM 2773, and SRM 1623c. The 

corresponding mass spectral loadings are shown in Fig. S2. The results were normalized by 

the maximum value. The experimental results shown in the figure are the total ion 

chromatograms averaged over the three replicates for a particular substance. As a measure of 

goodness-of-fit, the similarity was calculated between the experimental elution profiles and 

the calculated loading for each factor, as recommended by Amigo et al.[56]. This was 

calculated as follows:
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where xi corresponds to the ion intensity and  corresponds to the corresponding loading. 

SRM 1848 showed similarity of 92.9%. SRM 2773 and SRM 1623c showed similarity of 

83.3% and 81.4%, respectively. In the case of SRM 1623c, only that part of the 

chromatogram from 0 to about 80 minutes of elution time was used because there is a 

deviation from the baseline in the experimental response at longer elution times. The 

PARAFAC model developed was able to properly capture the chromatographic profile for 

these three classes.

Since the 2nd through 4th PARAFAC factors essentially describe singleton classes. the first 

PARAFAC component must therefore describe the remaining samples. To help determine 

whether this is the case, the scores with respect to the first PARAFAC factor for each sample 

are shown in Fig. 5. The first factor is responsible for the separation of SRM 2770 and SRM 

1624d from the other substances. The total ion chromatograms for these substances are 

shown in Fig. 6, along with the PARAFAC loading for the first factor. Mass spectral loadings 

are shown in Fig. S3. The loading is constructed from essentially a combination of these two 

chromatograms, which explains why these two substances have the similar scores for this 

factor. Again, this result is not terribly surprising, due to the similarities between these two 

substances as discussed in Section 3.1.

It should be noted, however, that the four PARAFAC components fail to describe most of the 

substances in the sample set. At first examination, this would appear to be due to 

underfitting the model, which could be solved by adding more factors. However, as 

discussed earlier in this section, adding more factors does not add to the model's predictive 

ability. The loadings for the six-factor are shown in Fig. S4. The fifth factor describes the 

kerosenes and jet fuels, which was not recovered in the four-factor model, but the sixth 

factor begins to describe fine differences between the biodiesels. Many samples such as the 

gasolines and diesels are not recovered even by the six-factor model.

The mass-spectrum loadings obtained by the PARAFAC model can be found in Supporting 

Information Figs. S2 and S3.

3.3 Kohonen's Self-Organizing Map (SOM)

As mentioned earlier, the MPCA and PARAFAC are linear classifiers, whereas the SOM is a 

nonlinear classifier that will capture a low-dimensional manifold representing the fuel 

samples. After the algorithm is complete, the map will represent, albeit in an abstract way, 

the manifold on which the samples lie.

Using the full data set, each node in the network has, in principle, a complete chromatogram 

assigned to it, meaning that the self-organizing map will require approximately seven 

million scalars per node times the number of nodes in the map. In order to reduce the 

computational complexity, the data space is first reduced using the results from an MPCA 
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model. In this case, the MPCA model is constructed using 10 components and the GC-MS 

component with the greatest loading is found. Those GC-MS components with loadings 

greater than 30% of the maximum are selected as active. This reduces each chromatogram 

from seven million scalars to 786. In this study, the map was chosen to be 60 by 60 nodes, 

with an initial radius of 60 and a learning rate of 0.5.

The U-matrix for the SOM is shown in Fig. 7a, where the separation among the classes can 

be seen. This plot shows the distance in the chromatographic space between adjacent nodes 

and also shows the location of the training samples on the map. Because there are many 

more nodes in the map than there are samples, each sample is assigned to its own region of 

the map where each node is very similar to it. The borders between the regions are darker or 

lighter depending on how different are the samples associated with the regions.

As with the other separation models, the biodiesel samples (SRMs 2772 and 2773) are 

strongly separated from the other samples by the SOM, as evidenced by the dark border that 

separates their associated region of the map from the rest. In addition, the motor oil additive 

SRM 1848 is strongly separated into another group. The remaining samples fall into one 

large group, which is essentially petroleum-derived fuels, with a weak separation between 

the diesel fuels and kerosene fuels.

To further elucidate these broad categories, we plot the Hellinger distance to every point in 

the map from three samples in a false-color image in Fig. 7b. The samples are SRM 2273, 

which is taken to be representative of the biodiesels, SRM 2771 of the kerosenes, and SRM 

1616b of the diesels. In this image, the separation among the classes is quite visible, with the 

biodiesels starkly separated from petroleum fuels and the kerosenes clearly distinct from the 

diesels. SRM 1848 forms an additional group separate from these three, and the gasolines 

form a subgroup that is related to, but not entirely the same as, the kerosenes.

The purpose of using a dimensional reduction technique such as MPCA, PARAFAC, or 

SOM is that the data are presumed to lie on some low-dimensional manifold within the data 

space. PCA and PARAFAC require that this manifold be linear. If the manifold is not linear, 

then projections into the PCA or PARAFAC space will not be able to identify patterns and 

the reduction is unlikely to reveal additional information. For instance, the PARAFAC model 

discussed in Section 3.2 does not adequately describe many of the fuels, and simply 

increasing the degrees of freedom available to the model cannot allow it to do so. As 

discussed in Section 2.3, the SOM fits a manifold to the data that is locally two-dimensional 

but is able to capture arbitrary structure in the data.

4 Conclusion

A set of petroleum-derived fuels and biofuels were analyzed using gas chromatography 

coupled with mass spectrometry (GC-MS). The resulting GC-MS chromatograms were 

analyzed using unsupervised classification algorithms, in particular multiway principal 

components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing 

map (SOM). All of the classification algorithms were able to generate models that were able 
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to differentiate among the various fuels. In addition, chemically meaningful 

chromatographic and mass spectral profiles were extracted by PARAFAC.

MPCA and PARAFAC are linear classifiers, while SOM is a nonlinear classifier. Due to the 

complex nature of the petroleum fuels, the linear classifiers proved to have some difficulty in 

generating a meaningful separation model. Some of the physical characteristics relevant to 

the distinction among the fuels proved to be obscured. The SOM, being nonlinear, proved 

highly able at generating a separation model. However, this flexibility comes at the cost of 

the model being more difficult to interpret than the linear models.

The results show that GC-MS combined with unsupervised chemometric analysis can be a 

powerful tool to solve similar analytical problems in which complex mixtures consisting of 

several hundreds of compounds need to be differentiated through pattern recognition. 

Furthermore, the combination of GC-MS and chemometric analysis can be employed as a 

general tool for the differentiation of petroleum-derived and other fuels.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this paper in order 

to specify the experimental procedure adequately. Such identification is not intended to 

imply recommendation or endorsement by the National Institute of Standards and 

Technology, nor is it intended to imply that the materials or equipment identified are 

necessarily the best available for the purpose.
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Figure 1. 
Schematic representation of the MPCA, PARAFAC, and SOM algorithms.
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Figure 2. 
(a) Multiway principal component scores for the first three principal components. The tan 

region is the ellipse of confidence for the petroleum fuels. (b) MPCA scores for the second 

and fourth principal components. The grey region is the ellipse of confidence for the jet and 

kerosene fuels.
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Figure 3. 
PARAFAC scores for the 2nd through 4th factors in the four-factor PARAFAC model.
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Figure 4. 
Chromatographic loadings for the 2nd through 4th factors in the four-factor PARAFAC 

model compared with total ion chromatograms for substances that are representative class 

members.
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Figure 5. 
PARAFAC scores for the first factor in the four-factor PARAFAC model.
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Figure 6. 
Chromatographic loadings for the first factor in the four-factor PARAFAC model compared 

with the total ion chromatograms for SRM 2770 and SRM 1624d.
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Figure 7. 
(a) Unified distance matrix for the self-organizing map, with corresponding locations for the 

sixty samples. (b) False-color map of Hellinger distances from each node to various samples 

on the map. The red channel corresponds to map nodes closer to SRM 2273, the green 

channel to SRM 2771, and the blue channel to SRM 1616b. Therefore, nodes that are more 

red, for instance, will be closer in data space to SRM 2273 and therefore be representative of 

biodiesels.
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Table 1
List of materials analyzed in this study

Name Title Description

SRM 1615 Gas Oil *certificate not available*

SRM 1616b Sulfur in Kerosene (Low-Level) Special low sulfur kerosene (No.1-K) for nonflue-connected applica

SRM 1617b Sulfur in Kerosene (High-Level) High sulfur kerosene

SRM 1620c Sulfur in Residual Fuel Oil (4 %) Commercial “No. 6” residual fuel oil

SRM 1623c Sulfur in Residual Fuel Oil (0.3 %) Commercial “No. 4 (light)” residual fuel oil

SRM 1624d Sulfur in Diesel Fuel Oil (0.4 %) Commercial “No. 2 D” distillate fuel oil

SRM 1848 Lubricating Oil Additive Additive used in manufacture of lubricating oil for gasoline engines

SRM 2299 Sulfur in Gasoline (Reformulated) Commercial reformulated unleaded gasoline

SRM 2721 Crude Oil (Light-Sour) Light-sour Texas crude oil

SRM 2722 Crude Oil (Heavy-Sweet) Heavy-sweet Texas crude oil

SRM 2723b Sulfur in Diesel Fuel Oil (10 mg/kg) Commercial “No. 2 D” distillate fuel oil

SRM 2770 Sulfur in Diesel Fuel Oil (40 mg/kg) Commercial “No. 2 D” distillate fuel oil

SRM 2771 Sulfur in Diesel Fuel Blend Stock Commercial diesel fuel blend stock

SRM 2772 Biodiesel (Soy-Based) Commercial 100 % biodiesel produced from soy

SRM 2773 Biodiesel (Animal-Based) Commercial 100 % biodiesel produced from animal products

SRM 2779 Gulf of Mexico Crude Oil Collected from 2010 Deepwater Horizon oil site

Gasoline Commercial 87-octane gasoline sold in 2015

Jet A Jet fuel from Air Force Research Laboratory (AFRL)

JP5 Jet fuel from AFRL

JP8 Jet fuel from AFRL
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Table 2
Core consistencies and the explained variances of the PARAFAC models

Factors CORE consistency Explained variance (%)

1 100 37.9

2 100 42.8

3 100 71.7

4 99 76.6

5 94 80.9

6 81 82.2

7 25 86.3

8 0 86.7
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