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Abstract

Smartphones have emerged as a promising type of equipment for monitoring human activities in 

environmental health studies. However, degraded location accuracy and inconsistency of 

smartphone-measured GPS data have limited its effectiveness for classifying human activity 

patterns. This study proposes a fuzzy classification scheme for differentiating human activity 

patterns from smartphone-collected GPS data. Specifically, a fuzzy logic reasoning was adopted to 

overcome the influence of location uncertainty by estimating the probability of different activity 

types for single GPS points. Based on that approach, a segment aggregation method was 

developed to infer activity patterns, while adjusting for uncertainties of point attributes. 

Validations of the proposed methods were carried out based on a convenient sample of three 

subjects with different types of smartphones. The results indicate desirable accuracy (e.g., up to 

96% in activity identification) with use of this method. Two examples were provided in the 

appendix to illustrate how the proposed methods could be applied in environmental health studies. 

Researchers could tailor this scheme to fit a variety of research topics.
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1. Introduction

Human activities are behaviors that individuals take to fulfill specific purposes during their 

everyday life. Location information about human activities is vital for a variety of 

environmental health studies such as activity pattern identification (Liao et al. 2007, Wan 

and Lin 2013), environmental exposure assessment (Elgethun et al. 2003, Wheeler et al. 

2010, Wu et al. 2011, Almanza et al. 2012), and clinical interventions (Schenk et al. 2011, 

Hermann 2011). GPS units could meet most such studies’ location measurement 

requirements because they can record spatial-temporal information more accurately and 

systematically than traditional measurements such as home address and street intersection. 
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GPS units’ ability to continuously record an individual’s location also makes it possible to 

obtain more complete information than can be obtained with traditional measurements of 

human activities, such as duration, activity type, trip purpose, and environmental contexts.

More recently, portable GPS units, especially smartphones, have emerged as an alternative 

equipment for capturing locations to analyze health behaviors and environmental exposure 

(Stopher 2009, Montoliu and Gatica-Perez 2010, Wiehe et al. 2010, Kerr et al. 2011, Schenk 

et al. 2011, Wan et al. 2013, Wan and Lin 2013). Compared to traditional GPS units, 

smartphones not only capture locations from more sources (e.g., GPS, cell tower 

triangulation, WiFi network locations), but also provide functions such as real-time data 

transfer, communication, and acceleration monitoring, which are not available from 

traditional GPS units (Schenk et al. 2011, Carson et al. 2013). In addition, since most 

individuals have their own smartphone nowadays (Pew Internet Research 2015), this data 

collection will reduce enrollment costs and greatly alleviate the burden of carrying extra 

devices. These advantages point to great potential of smartphones in environmental health 

studies.

However, smartphone-measured GPS data have two limitations with regard to inferring 

location-based activities. First, smartphone measurements may not be as accurate as those of 

larger GPS units (Wan et al. 2013). The decreased location accuracy may make the point 

characteristics that are critical for subsequent classification unreliable (Wan and Lin 2013). 

Second, the limited battery power of smartphones makes data loss very common during data 

collection, which poses challenges for further processing of these data. These limitations 

increase the difficulty in extracting health-related activity information from smartphone-

measured GPS traces. Current protocols of GPS data processing were primarily designed for 

transportation mode detection (Gonzalez et al. 2008, Zheng et al. 2008, Zhang et al. 2011, 

Gong et al. 2012), travel behavior analyses (Wolf et al. 2001, Auld et al. 2009, Papinski et al. 

2009, Schüssler and Axhausen, 2009, Clark and Doherty 2010, Oliver et al. 2010, Millward 

and Spinney 2011, Millward et al. 2013), and movement analyses (Ashbrook and Starner, 

2003, Vazquez-Prokopec et al. 2009). A common practice of these protocols is to divide the 

sequence of GPS points into segments based on similarities of point characteristics such as 

speed and acceleration. Then, GIS layers (e.g., street network, bus routes, land use and land 

cover) and short GPS-promoted surveys to derive such information of individuals (Lee-

Gosselin et al. 2006, Gonzales 2008, Gong et al. 2012, Auld 2009, Oliver 2010). For such 

studies, GPS devices tend to have a fine spatial accuracy by default and the data collection is 

generally implemented in outdoor situations that are characterized by decent GPS accuracy. 

Therefore, location inaccuracy was a minor concern for these segment-based methods, and 

the influence of GPS signal loss on study results was seldom accounted for (Wan and Lin 

2013). To extend segment-based GPS data processing to incorporate location specificity, one 

has to account for location uncertainties in smartphone GPS data processing.

This article presents a classification method that can automatically identify individuals’ 

activity statuses from smartphone GPS data. Taking advantage of fuzzy logic theory, this 

method could overcome the influence of inaccurate location observation while 

accommodating the non-linear relationship between point characteristics and activity 

statuses. In addition, this method draws on the characteristic of point groups rather than the 
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attributes of individual points when classifying GPS trajectories. The proposed scheme will 

be widely applicable to studies that use popular GPS units such as smartphones to monitor 

human activities.

Methodological challenges and potential solutions to activity-based GPS data processing

To capture an individual’s physical activities and the corresponding environmental factors 

effectively, GPS data should be processed to infer information such as activity location, type, 

duration, and environmental contexts (e.g., indoor/outdoor, exposure to pollutants, or 

proximity to green space). Current methods of GPS data processing are generally 

segmentation-based (Ashbrook and Starner, 2003, Liao et al. 2007, Guc et al. 2008, Zheng et 

al. 2008, Schüssler and Axhausen, 2009, Zhang et al. 2011), and are used mainly to identify 

transportation mode and travel behaviors. For example, a travel behavior study may be 

interested in when a commuter’s activity changes from walking to a bus station to riding on 

a bus. It is natural using current methods to divide the whole GPS trajectory into segments 

by characteristics of individual points (e.g., speed, acceleration). It is critical in these 

methods to determine change points (or critical points) at which an individual’s behavior 

pattern changes (e.g., from staying to walking, or driving to staying). Then, rule-based or 

deterministic methods can be adopted to determine an individual’s status for each segment. 

Although this scheme has been quite effective in transportation studies, it may not be 

suitable for environmental health studies for two reasons: 1) it was not designed to account 

for activity-specific information such as duration and exact location, and 2) GPS units in 

environmental health studies are prone to signal loss and wide location uncertainties. 

Therefore, using traditional segmentation-based GPS data processing methods in location-

duration, activity-based studies presents several methodological challenges.

First, it is necessary to improve the accuracy of location-based activity inference. Rule-based 

inference cannot fully capture the non-linear nature of the relationship between point 

characteristics and activity patterns. For example, there are no strict cut-off values for 

identifying walking activities because they may differ among people. Using a speed 

criterion, a stay point with a large deviation from the actual location could easily be 

misclassified as a traveling or walking point due to the overestimation of speed (Cimon and 

Wisdom 2004, Wan and Lin 2013). This misclassification could permeate subsequent 

segmentation process. Therefore, identifying location-based activities requires spatial 

inference beyond deterministic or rule-based inference, which cannot capture the complex 

nature of the point-activity relationship. In their methodological development of GPS 

measures, Kim et al. (2012) combined use of a diary and GPS to determine indoor and 

outdoor activities. It is suggested that an individual’s activity patterns should be validated 

before tailoring individual’s cut-off values. Such a machine-learning process for an 

‘individual tune-up’ may not be necessary for transportation mode detection, because a 

stationary point would suggest a bus stop or parking lot stay. Given the degraded location 

accuracy and other uncertainties associated with smartphones, rule-based or linear-nature 

decision rules may not be appropriate.

Second, although traditional segmentation-based GPS data processing often identifies home 

and work locations, it is essentially non-location-specific data processing. Each point of 
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interest is used for segmentation but not for location-based activity inference. For activity-

based GPS data processing, each activity is accompanied by its spatial stamps that may have 

different implications for clinical and public health interventions. For instance, in a GPS 

trajectory that includes an individual traveling to and playing in a park, life-space 

researchers are generally interested in how far away the park activity is from the home 

location (Schenk et al. 2011), which is an important indicator of cognitive and physical 

capacities (Tinetti et al. 1990, Barnes et al. 2007). For the same GPS trajectory, traditional 

segmentation-based GPS data processing may be interested in only three segments: walking, 

driving, and being stationary, without the need to distinguish activities in two different 

locations. In short, GPS data processing in a duration-location study may be based on the 

same GPS data as in a traditional transportation study, but the purposes of data processing in 

the two studies differ.

Finally, as implied in the second challenge, environmental health studies and transportation 

studies have different processing priorities for GPS data. In transportation mode detection, 

for example, once a segment is determined through both ends of change points, points within 

a segment become trivial. In activity or exposure classification, however, both segments and 

containing points within a segment are considered important. In fact, few researchers have 

considered the homogeneity of neighboring points within a segment, which could help 

overcome uncertainties from single points. For example, a ‘jumping’ point within a staying 

activity could be misclassified into driving or walking, but the influence of other staying 

points around the jumping point could help correct this problem.

It is clear that the non-linear nature of the relationship between smartphone-collected GPS 

data and an activity of interest requires new, nondeterministic methods. Location 

information should be accompanied with higher level information about activity. In this 

paper, we primarily address the nonlinear nature of the relationship between smartphone-

collected GPS data and activities of interest. In particular, we employ a fuzzy logic method 

along with a point aggregation strategy to determine spatial patterns of individual activities.

Fuzzy Logic Methods

Fuzzy logic is a type of reasoning theory that deals with approximate or ambiguous values 

rather than crispy data. Compared to traditional logic that results in Boolean sets, fuzzy logic 

methods result in partially true values ranging from 0 (i.e., completely false) to 1 (i.e., 

completely true). This characteristic makes it possible to deal with vague, inaccurate 

variables and to capture non-linear relationships, which work well in processing unreliable 

GPS points collected by smartphones.

In general, a fuzzy logic method can be implemented in three steps (shown in Figure 1): 

input fuzzification, fuzzy inference, and output calculation. The input fuzzification process 

transforms crispy input values into linguistic terms using a membership function (MF) that 

projects an input value into a membership degree between 0 and 1. Suppose X = {x1, x2, 

……, xm} represents a vector of input variables, and xi (i=1,…m) denotes the ith variable. 

An MF maps each xi into the probabilities of belonging to different linguistic terms or fuzzy 

sets . For example, if the first input variable, x1, represents the 
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speed of a GPS point, then the corresponding descriptive terms, 

, might be fast, slow, and zero. In this case, p is 3 and the MF 

derives the probabilities of this speed being each of the three terms. Based on these 

probabilities, the fuzzy inference engine uses a set of if-then rules to specify the non-linear 

relationship between input fuzzy sets and output fuzzy sets. In this example, if the outcome 

of interest is the probability of driving, then a rule might be “if the speed is fast then the 

probability of driving is high”. And the output fuzzy set (or output linguistic variables) 

 might be very low, low, medium, high, and very high. In this 

case, q equals 5. The inference results of all rules are then processed to derive crispy output 

values. Note that this is an example based on a single input variable (i.e., speed). In case of 

multiple input variables, similar procedures could be implemented for each variable and 

their joint influence on the output linguistic variables would be assessed during the output 

calculation.

Depending on how the crispy output values are calculated, fuzzy logic methods can be 

categorized into two major types: Mamdani type (Mamdani and Assillian 1975) and Sugeno 

type (Takagi and Sugeno 1985). The former uses a defuzzification process from the output 

fuzzy set to generate the crispy output values according to different aggregation techniques. 

The latter uses a weighted average of the output fuzzy set to represent the output values. 

Sugeno-based fuzzy method is considered better than Mamdani’s method because it is more 

flexible to realize and more computationally efficient (Jassbi et al. 2006, Piolet 2006, Shleeg 

and Ellabib 2013).

2. Methodological Development of Fuzzy Classification

To derive detailed information about human activities from GPS data, we developed a three-

step fuzzy logic classification scheme. The first step is to select key input variables that 

could effectively distinguish different activity patterns. The second step is to apply the fuzzy 

theory to estimate the probability of human activity status. The final step is to derive activity 

patterns through point aggregation and smoothing. The first two steps directly benefit from 

the fuzzy logic theory, and the final step overcomes potential limitations of fuzzy methods 

such as misclassification.

2.1 GPS-measured Activities

Considering the characteristics of GPS points, this study categorizes an individual’s activity 

statuses into three groups: staying, walking, and other transportation. Staying activities are 

those when an individual stays around a location (e.g., shopping, dinning out); walking 

activities refer to outdoor walking; and other transportation refers to motorized or non-

motorized transportation (e.g., car driving, bus riding, and cycling) other than walking. We 

emphasize outdoor for the walking status because when an individual walks inside a 

building, their GPS points may exhibit a clustering pattern around the building location due 

to satellite signal shielding. In this case, the location deviation of GPS points makes it 

difficult to distinguish whether the individual was walking or not. The three statuses cover 

almost all types of everyday activities, which makes them suitable for representing 

continuous activities of individuals. In addition, these statuses provide the foundation for 
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deriving more detailed activity statuses. For example, other transportation may be further 

classified into cycling, driving, or bus riding based on GPS-derived acceleration or other 

types of sensor data (Gonzales et al. 2008; Oliver et al. 2010). Based on the activity statuses, 

researchers could derive more detailed activity information such as duration, frequency, 

type, variability, purpose, etc.

2.2 Selecting input variables

After exploratory analyses of common point characteristics, we selected point speed and 

point angle as the input variables. Speed is the most commonly used criterion in GPS point 

classification, as different activity patterns tend to have different speed markers. In general, 

the speed of a GPS point can be calculated by dividing the cardinal distance between it and 

its previous point by the difference between their time stamps. However, GPS signal losses 

from factors such as shielding and battery exhaustion could heavily influence this simple 

calculation (Wan and Lin 2013). To amend this effect, it is necessary to adopt some location-

distance criteria in speed calculation. Wan and Lin (2013) reported that a long distance or 

time gap between a point and the previous point often suggests an anomaly spike, and 

therefore, should be treated. Following their practice, the speed of the point is set to either 

zero or that of the previous point.

However, using speed alone is not sufficient for differentiating human activity status (Zheng 

et al. 2008). Point angle, which can be defined from a vantage point in reference to its 

previous and succeeding points, provides another important variable for activity 

classification. Therefore, we introduced a point angle indicator to distinguish activity 

patterns from GPS points. It is noted that point angles tend to be large when a subject is 

moving (e.g., walking, other transportation), and small when a subject is staying. This 

characteristic is shown in Figure 2: (a) defines an angle θi for a point Pi, (b) signals a 

moving trajectory when the contiguous angles are large, and (c) suggests a staying pattern. It 

is clear that angle points are effective in distinguishing staying and moving points.

GPS-measured speed and direction have been proved effective in measuring human activity 

patterns (Zheng et al. 2008). Our assessment suggested that the two criteria above are 

sufficient to distinguish activity patterns of staying, walking, and other transportation. Speed 

provides a general activity profile, while angle complements it by accounting for errors due 

to location inaccuracy. These two variables are therefore selected as the input for the fuzzy 

classification. The input vector is denoted as X = {x1, x2}, where x1 is point speed and x2 is 

point angle.

2.3 Implementing fuzzy classification

Based on input values of point speed and point angle, we can generate preliminary 

probabilities of a point belonging to either staying, walking, or other transportation. The 

fuzzy set associated with point speed is denoted as , which includes 

three linguistic variables: zero, slow, and fast. The fuzzy set associated with point angle is 

denoted as , which includes two linguistic variables: narrow and wide. 

Point speed and point angle are fuzzified using membership functions shown in Figure 3, 

where the Y-axis scales membership probabilities. We used Z-, trapezoidal-, and S-shaped 
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membership functions to represent the speed of zero, slow, and fast, respectively. As the 

speed moves from zero to fast (Figure 3a), the probabilities of belonging to each 

membership state also changes. The angle characteristics of narrow and wide are denoted 

using Z-shaped and S-shaped membership functions, respectively. Likewise, as the angle 

changes from below 90 degrees to above 90 degrees (Figure 3b), the probabilities of 

belonging to moving and staying also change. Since the speed of zero, slow, and fast was 

primarily designed to distinguish staying, walking, and other transportation, the ranges for 

the three speeds were determined for this purpose. For example, the speed of 2.78 m/s has 

been widely acknowledged as the threshold for differentiating transportation and non-

transportation statuses (Schüssler and Axhausen 2009). Therefore, the breaking value 

between slow speed (which primarily corresponds to walking) and fast speed (which 

primarily corresponds to other transportation) was set to be around 2.78 m/s. In addition, 

1.25m/s, which has been suggested as the speed that most young adults could manage 

(Knoblauch et al. 1996), was set to represent the lower bound of slow speed. We adopted 

this value because the evaluation data in this study were collected by younger adults (i.e., 

<65). For point angle, we set the breaking value between narrow and wide to be 90 degrees 

because few turns (e.g., at a road intersection) during other transportation or walking 

activities have an angle smaller than this value.

Since our purpose is to determine whether a point belongs to walking, staying, or other 

transportation, we adopted three inference systems, each corresponding to one outcome 

status. For each outcome, the output fuzzy set is denoted as , which 

includes three linguistic variables: zero, low, and high. Table 1 reveals our conceptual 

assumptions for the fuzzy rules. As shown in the table, zero speed with narrow angle would 

suggest high probability of staying; fast speed with wide angle would suggest high 

probability of other transportation; and slow speed with wide angle would suggest high 

probability of walking. Other rules were determined based on empirical experiences and 

common sense. For example, a zero speed with wide angle may indicate either a brief stop 

during a walking activity or an indoor staying activity. Therefore, the probability of staying 

and walking was both set to be medium; a fast speed with narrow angle may be due to the 

great deviation error of an indoor GPS point or the turnings during a driving activity. The 

probability for the two statuses was both set to be medium. When implementing the rules in 

our method, the probability value for the three fuzzy outcomes (i.e., zero, low, high) was set 

to be 0, 50%, and 100%, respectively. The result output step adopted the Sugeno-type model 

due to its two major advantages mentioned in the last section.

2.4 Point segmentation and aggregation

After fuzzy inference has estimated the probabilities of staying, walking, or other 

transportation for each point, it is necessary to aggregate points into segments so that 

activity-specific information can be derived. However, due to misclassifications and data 

noise, the initial probabilities of points could not be used directly for segmentation. 

Therefore, we introduced a point smoothing and aggregation process, which uses the status 

of neighboring points to 1) overcome individual point uncertainty and 2) to derive 

meaningful information about an individual’s activities.
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First, the probabilities generated by the fuzzy classification were smoothed using a Gaussian 

kernel. Specifically, we select the two previous points and the two subsequent points within 

120 seconds of the current point. If there are fewer than 2 points within the period, only 

those within the period are selected for smoothing. We adopted two neighbors and 120 

seconds because neighboring points that are too far away (either in sequence or in time 

range) have much higher likelihood to be with a different activity status than the central 

point. The smoothed probability is calculated as

(1)

where SPi is the smoothed probability of the current point for the ith status (i=1,2,3), Pij is 

the original probability of the ith status for the jth neighbor, and Wj represents the Gaussian 

weight for the jth neighbor. The Gaussian weights for the five points were set to be W = [0.1, 

0.3, 1, 0.3, 0.1]. We used an evaluation strategy (Wan et al. 2012) to compare this group of 

weights with other groups that have different decay effects (e.g., [0.2, 0.3, 1, 0.3, 0.2]), and 

the results indicate that this group yields better classification quality (results not shown 

here). The preliminary status (e.g., staying, walking, or other transportation) of a point is 

determined as the one with the highest smoothed probability.

The second step is to aggregate individual GPS points into segments. Based on the smoothed 

probabilities, aggregating points into segments is mostly straightforward. However, some 

noise still remains. For example, during an ‘other transportation’ (e.g., driving) activity, an 

individual may occasionally stop in traffic; GPS points observed when a driver or walker 

turns around may exhibit as staying points. These points may divide the other transportation 

activity or the walking activity into several shorter ones. While the “stop breaks” may be 

useful for transportation studies, they are generally not of value for environmental health 

topics such as air pollution exposure assessment. We use a seed-growing strategy to remove 

these lingering uncertainties. Specifically, seed segments are first identified based on the 

preliminary status and a minimum point number threshold (NT). For example, if a group of 

consecutive points (n>NT) have the same status (e.g., other transportation), then this group 

of points is identified as a seed segment with the same status of the points. We set NT to four 

because the likelihood that four consecutive points are mistakenly classified as the same 

status is very low. A larger NT (i.e., NT>4) poses a higher requirement for the continuity of 

segments and may miss potential activities. Note that due to the aforementioned 

uncertainties, consecutive seed segments are not necessarily connected, because some points 

between them do not belong to either segment (shown in Figure 4).

To determine if an in-between point belongs to the previous or the subsequent segment, we 

designed a set of rules to aggregate these points:

1. If the previous and subsequent seed segments have the same attribute, then all 

points between them are assigned the same attribute.

2. If the two seed segments have different statuses, then the accumulated 

probabilities of the two statuses among all connecting points are calculated, and 
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the status with the larger accumulated probability is selected for all the 

connecting points.

In addition to the seed segment identification and segment aggregation described above, we 

also introduced a distance criterion to distinguish segments: any point with a distance longer 

than 200 meters from its previous point is set to start a new segment, regardless of the 

similarity of point attributes. This criterion was set to adjust for the influence of GPS signal 

loss, as a long distance gap may represent the beginning of another activity, regardless 

whether these two activities have the same attribute. We use 200 meters because it represents 

the longest diagonal length of buildings in this study. Building shielding is the most frequent 

reason for GPS signal loss.

3. Methodology Evaluation

3.1 Data

To evaluate the proposed method, we enrolled two mid-aged, male subjects to collect 

continuous GPS data for two weeks during the period from December 2012 to March 2013. 

Specifically, one subject carried a Samsung Galaxy Note I phone and the other carried a 

Motorola Droid phone; both were running on the Android OS. An app was set to 

automatically collect GPS points at a 5-second interval in the background of the OS. The 

subjects were asked to power on the phone when they got out of bed in the morning, carry 

the phone with them as much as possible, and charge the battery before they went to bed at 

night. During the two-week observation period, both subjects were also asked to use a paper 

journal to record real-time information about their everyday activities, such as start time, end 

time, location, trip purpose, approximated speed (for outdoor walking), and shielding 

conditions (e.g., open, near tree, near wall, highly shielded). After each week’s data 

collection, the subject was asked to correct mistakenly recorded information (e.g., time, 

location) and make up for activities that the subjects forgot to record but were reflected by 

the GPS data by overlaying GPS points (with timestamp information) on GIS layers (e.g., 

streets, building parcels) (Wan and Lin 2013). In addition, two weeks of GPS data were 

selected from a previous study (Wan and Lin 2013) in which a mid-aged, male subject 

carried a Nokia N900 smartphone for four months from January 2012 to April 2012. 

Although using a different OS (i.e., Maemo), the Nokia phone was set to collect GPS data 

using the same protocol as the current study. All GPS data in the three datasets underwent a 

cleaning procedure (Wan and Lin 2013) to remove obviously incorrect points. The data 

collection and analysis have been approved by the IRB of the University of Nebraska 

Medical Center.

3.2 Evaluation procedures

In the absence of empirical evaluation criteria, we proposed 4 indicators to assess the 

performance of the proposed method: under detection rate, over detection rate, duration 

deviation, and location deviation. We first define a baseline activity as one that was recorded 

in the diary or derived from the GIS-based recall. When a detected activity does not match 

any baseline activity in terms of starting time, ending time, location, and activity type, it is 

considered a case of over detection; when a baseline activity was not detected from the GPS 

Wan and Lin Page 9

Trans GIS. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



points by the method, it is a case of under detection. Based on these assumptions, the over 

detection rate (ODR) is calculated as the ratio between the number of over detection cases 

and the number of identified activities, and the under detection rate (UDR) is calculated as 

the ratio between the number of under detection cases and the number of baseline activities. 

Note that ODR and UDR are not seamlessly complementary (i.e., ODR+UDR<1) because 

they have different denominators.

Duration deviation refers to the sum of deviations of the starting time and the ending time 

between the baseline and the detected activities (if detected). Location deviation refers to the 

deviation from detected staying activities to the real locations of these activities.

We evaluated location deviation because it is an important factor for inferring trip purposes 

and environmental exposures (Elgethun et al. 2003, Wheeler et al. 2010, Wu et al. 2011, 

Almanza et al. 2012). We focus on staying activities when a particular location can be easily 

calculated and evaluated. A recursive kernel density method (Wan and Lin 2013) was used 

because it generates more accurate locations for cluster-shaped activities. This method first 

divides the cover area into 9 even cells, calculates the kernel density of each cell, and then 

selects the cell with the highest density, which is the candidate for the next round. The cell 

division repeats until the cell size is smaller than a threshold value (for example, 5 meters) 

and the location of the activity is determined as the centroid of the last cell with the highest 

density.

Our evaluation was based the original GPS data set. In addition, we resampled the original 

GPS data sets into larger intervals and examined the change of classification quality among 

different intervals. We did this for two reasons. First, GPS logging interval is an important 

consideration for smartphone data collection, because a very short interval speeds up phone 

battery depletion and causes substantial loss of data (Krenn et al. 2011, Oliver et al. 2010, 

Vazquez-Prokopec et al. 2009). It is therefore critical to determine an observational interval 

that is wide enough to provide comparable levels of activity information while consuming 

less power. Second, shorter intervals do not necessarily lead to better classification results, 

because speeds and point angles calculations tend to be unreliable at short intervals (Cimon 

and Wisdom 2004, Wan and Lin 2013). Therefore, it is necessary to incorporate the 

influence of observation interval when evaluating the classification method. To do this, we 

resampled the original 5-second data to larger intervals (up to 100-second) with the 

increment of 5 seconds. The proposed method was implemented on both the original data 

and the resampled data. We then compared the four indicators across observation intervals. 

To describe the overall classification quality for a specific observational interval, we also 

integrated the four single indicators into a Classification Quality Index (CQI) (Wan and Lin 

2013). Specifically, this index assigns a weight to each of the four indicators and 

summarizes the weighted indicators to denote the overall classification quality. Since over 

detection and under detection are the major sources of classification error, the weight for 

ODR and UDR was set to be double (i.e., 0.333) of that for duration deviation and location 

deviation (i.e., 0.167).
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3.3 Results

Table 2 shows the overall characteristics of the collected data by phone models. The 

Samsung and Motorola models collected 9,544 and 29,992 points, respectively. The 

Samsung phone collected fewer points because the subject who carried this phone was more 

likely to stay indoors, which leads to frequent signal loss. For the same reason, this subject’s 

phone also collected many fewer reference activities.

Table 3 lists the classification results in terms of the four single indicators as well as the 

CQI. As shown in Table 3, data based on the original observational interval yields the 

highest number of detected activities (n=638), with a 15.7% ODR and a 4% UDR. After 

adjusting for ODR and UDR, the number is still higher than for the reference activities 

because a number of reference activities were divided into multiple segments leading to 

over-detected activities. The matching rate was 96% at the 5-second interval. The rate 

remained high (94%) at the 15-second interval and declined steadily thereafter, leading to an 

increased chance of missed activities. Although the number of over-detected activities may 

have been different, the over detection rate remained relatively stable with the increase of the 

interval. This result is to be expected because increased observation intervals with some loss 

of information should not generate additional activities. The change patterns of ODR and 

UDR are shown in Figure 5.

The next two columns of Table 3 list location and duration deviations. Note that the location 

deviation was assessed for staying activities only. It is a relative accuracy indicator because 

it was in reference to the shortest observation interval (i.e., 5 seconds). It seems that location 

deviations increased steadily as the observation intervals increase, while duration deviations 

oscillated around 4.5 minutes. At the 15-second interval, the location deviation was about 13 

meters while the duration deviation was less than 3.5 minutes, and both were reasonably 

small. A similar pattern could also be observed for CQI (shown in Figure 6). According to 

the definition, a larger CQI represents better classification quality, and vice versa. As shown 

in Figure 6, the interval of 15 seconds yields the best CQI. After 15 seconds, the CQI 

exhibits a decreasing trend as the observation interval increases.

4. Discussion and Conclusion

The increasing popularity of the smartphone has made it a promising tool for measuring 

human activities in environmental health studies. However, uncertainties about location 

measurement prevent the effective use of smartphone GPS data. The current study proposes 

a series of methods to overcome uncertainties from smartphone collected GPS data. 

Specifically, a fuzzy classification method was developed to account for unstable locations 

and the non-linear relationship between GPS characteristics and desired output variables. A 

segmentation method was then proposed to adjust for equipment-irrelevant data noises such 

as data loss and trivial fragments (e.g., traffic stops). Our idea of integrating fuzzy logic and 

segmentation provides new perspectives to location uncertainty studies.

In general, fuzzy logic classification requires empirical criteria or cut-off parameter 

estimates. In this study, the cut-off values for point speed and point angle in membership 

functions are based on previous studies and empirical experiences, but they may not fit all 
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movement profiles of all population. For example, the threshold speed of 1.25m/s used to 

distinguish low and zero speed was measured for adults younger than 65. For studies that 

involve older adults, the value could be slightly lower because older adults generally walk 

slower than younger adults (Knoblauch 1996). Also, walking speed varies by trip purpose 

(e.g., recreational, active transport), even for the same person (Millward et al. 2013), which 

makes it harder to define gold-standard threshold values. Although the fuzzy classification 

may be influenced by these uncertainties, the subsequent probability smoothing and segment 

aggregation methods could overcame the sensitivity to cut-off parameters. This means that, 

although the change in parameter values may cause some fluctuations in the raw 

probabilities in fuzzy inference, the influence of such fluctuation can be minimized during 

probability smoothing. Furthermore, the segment aggregation can further correct 

misclassified points by grouping neighboring points.

Similar to results of previous studies (Cimon and Wisdom 2004, Wan and Lin 2013), our 

results suggest that the original 5-second intervals and the resampled 10-second intervals 

yielded lower CQI than longer intervals up to 30 seconds. The degraded classification 

quality for the shorter intervals may be due to the input variable calculation since speeds and 

angles tend to be more unstable at shorter intervals. These findings also indicate the 

importance of assessing the influence of GPS recording frequency on activity classification, 

since an inappropriately selected interval may yield unsatisfactory results.

Over detection was due largely to random errors of GPS points rather than to processing 

algorithms. In situations of signal shielding, the GPS points could be very unstable and 

sometimes exhibit a curve pattern that could easily be classified as a walking activity (shown 

in Figure 7). Although this problem cannot be resolved by the algorithms alone, other 

smartphone data sources may provide a solution. For example, the phone accelerometer can 

record the three-dimensional acceleration of the phone, from which the physical intensity of 

the subject can be inferred (Doherty 2009, Schenk et al. 2011, Carson et al. 2013). Previous 

studies indicated that acceleration data, measured by smartphones or separated units, have 

great potential in distinguishing different activity patterns (e.g., walking, other 

transportation, and staying), calculating energy consumption, and inferring gait speeds. Such 

information could be used to complement the GPS-derived activities and to correct falsely 

detected activities.

In addition to integrating with accelerometer data, some future works are needed to refine 

this method. First, we need to distinguish more activity patterns within the ‘other 

transportation’ category. Besides walking, public health researchers are also interested in 

active transportation types such as running/jogging, cycling and public transportation. The 

fuzzy logic method, when combined with multiple GPS-derived indicators (e.g., 

acceleration), could help achieve this goal. Those indicators do not have to be limited to a 

single GPS point (for speed and acceleration indicators) or three points (for angle based 

indicators). One could use summary indicators (e.g., mean, median, variance, and 

maximum) within a moving window (e.g., 9 consecutive points) to distinguish activity 

statuses within the ‘other transportation’ category. Second, although the proposed scheme 

achieved 96% accuracy (which is comparable or slightly higher than most studies) in activity 

identification at the 5-second interval, a comparison between this scheme and existing 
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methods based on a common dataset would help us better understand the strength and 

limitation of fuzzy logic in GPS data classification. In addition, the algorithms need to be 

tested on GPS data collected by newer smartphone models which have improved GPS chips 

and multi-mode (e.g., GPS, WiFi) location measurement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General flow of fuzzy logic methods
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Figure 2. 
Definition and characteristics of point angle. (a). Definition of point angle; (b) Point angle of 

walking points; (c). Point angle of staying points. Due to the location error, GPS points of 

indoor and outdoor staying activities exhibit a ‘clustering’ pattern, which leads to narrower 

point angles than those of walking or other transportation.
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Figure 3. 
Membership functions for point speed and point angle

Wan and Lin Page 18

Trans GIS. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Illustrations of seed segments (SS), in which a grey point indicates staying, a green point 

indicates walking, and a red point indicates other transportation. (a). Perfect conditions 

where seed segments (e.g., SS1, SS2, and SS3) are connected with each other. (b) 

Conditions where seed segments (e.g., SS1, SS2) are not connected; the seven points 

between SS1 and SS2 did not form a segment and need to be re-assigned. Note that the 

location information of points was removed so that points are ranked only by their temporal 

sequence.
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Figure 5. 
Change of over detection rate (ODR) and under detection rate (UDR) with the increase of 

GPS observation interval
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Figure 6. 
Change of CQI with the GPS recording interval
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Figure 7. 
An example of an over detection of walking activity: all GPS points in the figure belong to a 

staying activity inside the building. However, due to signal shielding, a group of consecutive 

points exhibit a curve pattern (shown inside the red circle) that was mistakenly classified as 

walking activity by the classification method proposed in this paper.
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Table 1

Fuzzy rules for point membership state estimation

Zero speed Slow speed Fast speed

Narrow angle Staying: high
Walking: low
Other transportation:
low

Staying: high
Walking: low
Other transportation:
low

Staying: medium
Walking: low
Other transportation:
medium

Wide angle Staying: medium
Walking: medium
Other transportation:
low

Staying: low
Walking: high
Other transportation:
low

Staying: low
Walking: low
Other transportation:
high

(Note: each cell shows the descriptive probability for the three outcomes according to input variables of speed and angle)
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Table 2

Characteristics of the collected GPS data by phone model

Phone Model Number of Collected
GPS Points

Number of
Observation Days

Number of Baseline
Activities

Samsung Galaxy Note I 9,544 17 145

Motorola Droid X 29,992 15 192

Nokia N900 49,297 14 111

Trans GIS. Author manuscript; available in PMC 2017 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wan and Lin Page 25

Ta
b

le
 3

Q
ua

lit
y 

of
 d

et
ec

te
d 

ac
tiv

iti
es

 o
f 

al
l p

ho
ne

 m
od

el
s 

am
on

g 
di

ff
er

en
t s

am
pl

in
g 

in
te

rv
al

s

Sa
m

pl
in

g
In

te
rv

al
(s

ec
on

ds
)

N
um

be
r

of id
en

ti
fi

ed
ac

ti
vi

ti
es

N
um

be
r

of re
fe

re
nc

e
ac

ti
vi

ti
es

O
ve

r
de

te
ct

io
n

ra
te

 a

U
nd

er
de

te
ct

io
n

ra
te

 a

M
ea

n
lo

ca
ti

on
de

vi
at

io
n

(i
n 

m
et

er
s)

M
ea

n
du

ra
ti

on
de

vi
at

io
n 

(i
n

m
in

ut
es

)

C
la

ss
if

ic
at

io
n

qu
al

it
y 

in
de

x

5
63

8
44

8
0.

15
7

0.
04

0
0

3.
36

6
0.

78
01

10
69

3
44

8
0.

20
9

0.
09

6
7.

36
1

5.
07

3
0.

46
59

15
47

4
44

8
0.

04
2

0.
05

8
10

.6
4

3.
30

7
0.

92
22

20
48

6
44

8
0.

06
0

0.
06

3
12

.9
7

3.
49

1
0.

87
11

25
46

3
44

8
0.

05
0

0.
07

4
15

.1
3.

58
3

0.
86

30
47

0
44

8
0.

06
6

0.
08

0
15

.6
9

3.
66

5
0.

82
48

35
46

5
44

8
0.

06
9

0.
08

9
19

.6
1

4.
18

0.
76

15

40
46

9
44

8
0.

07
2

0.
09

8
18

.0
2

4.
00

4
0.

76
73

45
44

8
44

8
0.

06
0

0.
10

0
20

.1
2

4.
27

9
0.

75
54

50
41

9
44

8
0.

07
6

0.
14

5
20

.1
9

4.
71

4
0.

67
34

55
38

0
44

8
0.

05
8

0.
17

9
24

.2
1

4.
90

5
0.

63
63

60
35

9
44

8
0.

07
0

0.
20

3
22

.2
8

4.
04

2
0.

67
07

65
30

8
44

8
0.

05
5

0.
25

2
21

.4
5

5.
75

2
0.

54
19

70
29

5
44

8
0.

06
8

0.
28

3
22

.2
5.

92
4

0.
49

07

75
29

4
44

8
0.

10
9

0.
31

3
29

.3
8

5.
61

3
0.

41
65

80
35

3
44

8
0.

09
9

0.
28

3
23

.3
8

3.
92

6
0.

57
29

85
31

6
44

8
0.

10
4

0.
31

9
32

.9
2

5.
65

3
0.

38
73

90
26

7
44

8
0.

11
2

0.
37

9
25

.8
5

3.
50

1
0.

51
27

95
26

0
44

8
0.

09
6

0.
38

4
33

.0
6

4.
80

2
0.

40
24

10
0

24
6

44
8

0.
08

9
0.

40
4

28
.7

3
5.

19
2

0.
38

87

a O
ve

r 
de

te
ct

io
n 

ra
te

: c
al

cu
la

te
d 

by
 d

iv
id

in
g 

th
e 

nu
m

be
r 

of
 o

ve
r 

de
te

ct
io

n 
ca

se
s 

by
 th

e 
nu

m
be

r 
of

 id
en

tif
ie

d 
ac

tiv
iti

es
;

a U
nd

er
 d

et
ec

tio
n 

ra
te

: c
al

cu
la

te
d 

by
 d

iv
id

in
g 

th
e 

nu
m

be
r 

of
 u

nd
er

 d
et

ec
tio

n 
ca

se
s 

by
 th

e 
nu

m
be

r 
of

 b
as

el
in

e 
ac

tiv
iti

es
.

Trans GIS. Author manuscript; available in PMC 2017 June 08.


	Abstract
	1. Introduction
	Methodological challenges and potential solutions to activity-based GPS data processing
	Fuzzy Logic Methods

	2. Methodological Development of Fuzzy Classification
	2.1 GPS-measured Activities
	2.2 Selecting input variables
	2.3 Implementing fuzzy classification
	2.4 Point segmentation and aggregation

	3. Methodology Evaluation
	3.1 Data
	3.2 Evaluation procedures
	3.3 Results

	4. Discussion and Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3

