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Abstract
Background.  Previous studies have shown that MR imaging features can be used to predict survival and molecular 
profile of glioblastoma. However, no study of a similar type has been performed on lower-grade gliomas (LGGs).
Methods.  Presurgical MRIs of 165 patients with diffuse low- and intermediate-grade gliomas (histological grades II 
and III) were scored according to the Visually Accessible Rembrandt Images (VASARI) annotations. Radiomic mod-
els using automated texture analysis and VASARI features were built to predict isocitrate dehydrogenase 1 (IDH1) 
mutation, 1p/19q codeletion status, histological grade, and tumor progression.
Results.  Interrater analysis showed significant agreement in all imaging features scored (k  =  0.703–1.000). On 
multivariate Cox regression analysis, no enhancement and a smooth non-enhancing margin were associated with 
longer progression-free survival (PFS), while a smooth non-enhancing margin was associated with longer over-
all survival (OS) after taking into account age, grade, tumor location, histology, extent of resection, and IDH1 
1p/19q subtype. Using logistic regression and bootstrap testing evaluations, texture models were found to pos-
sess higher prediction potential for IDH1 mutation, 1p/19q codeletion status, histological grade, and progression of 
LGGs than VASARI features, with areas under the receiver-operating characteristic curves of 0.86 ± 0.01, 0.96 ± 0.01, 
0.86 ± 0.01, and 0.80 ± 0.01, respectively.
Conclusion.  No enhancement and a smooth non-enhancing margin on MRI were predictive of longer PFS, while a 
smooth non-enhancing margin was a significant predictor of longer OS in LGGs. Textural analyses of MR imaging 
data predicted IDH1 mutation, 1p/19q codeletion, histological grade, and tumor progression with high accuracy.
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Diffuse lower-grade gliomas (LGGs) are infiltrative neo-
plasms that generally include diffuse low- and inter-
mediate-grade gliomas (World Health Organization 
[WHO] grade II or III).1 The outcomes of these tumors are  
variable—some recur after treatment within months and 
even progress to glioblastoma (WHO grade IV gliomas), 
while others remain indolent for years.2 Traditionally, the 
natural progression of LGGs is thought to be dependent on 
their histological class (astrocytomas vs oligoastrocytomas 
vs oligodendrogliomas). However, a recent study from The 
Cancer Genome Atlas (TCGA) Research Network classified 
LGGs into 3 categories based on isocitrate dehydrogenase 
(IDH) mutation and 1p/19q codeletion status: gliomas with 
an IDH mutation and 1p/19q codeletion, gliomas with an 
IDH mutation but no 1p/19q codeletion, and gliomas with 
wild-type IDH.1 This new classification scheme has been 
shown to capture the biologic characteristics of LGGs with 
greater fidelity than does histological class.1

MRI has served as an important noninvasive method 
for diagnosing gliomas and monitoring their treatment 
response. Previous radiogenomic analyses of glioblastoma 
have shown that the proportion of contrast enhancement 
(CE) and longest axis length of tumor on MR were signifi-
cantly associated with poor survival.3 In a recent study of 
120 patients with primary grades III (n = 35)  and IV (n = 
85) gliomas, Zhang et al. built a model using nonredundant 
preoperative MRIs and clinical data with a random forest 
algorithm that achieved accuracies of 86% in the training 
cohort and 89% in the validation cohort in predicting IDH 
genotype.4 However, no similar study has been performed 
to determine the association of MR imaging features with 
survival and molecular markers in LGGs.

To make the assessment of MR imaging features in glio-
mas more accurate and reproducible, a comprehensive 
feature set known as the Visually Accessible Rembrandt 
Images (VASARI) was developed in 2008. The VASARI 
annotations include 30 distinct imaging features with cor-
responding criteria clustered by categories related to lesion 
location, morphology of the lesion substance, morphology 
of the lesion margin, alterations in the vicinity of the lesion, 
and remote alterations (https://wiki.nci.nih.gov/display/
CIP/VASARI).5 Previous studies have shown that measure-
ments of these features by VASARI were highly reproduc-
ible, clinically meaningful, and biologically relevant in 
glioblastoma.3,6

Radiomics extracts and mines a large number of 
medical imaging features.7 These approaches based on 
machine learning have been increasingly used to quantify 
tumor phenotypic characteristics and to predict clinical 
outcomes.7 In 2014, Aerts et al.8 demonstrated that imag-
ing features quantifying tumor image intensity, shape, 
and texture extracted from computed tomography data of 
1019 patients with lung or head-and-neck cancer not only 
had prognostic power in the independent datasets of lung 
and head-and-neck cancer patients, but also had asso-
ciations with gene-expression patterns. In 2015, Vallières 
et al.9 built a radiomics model from joint 2-fluoro-2-deoxy-
d-glucose PET and MRI texture features using bootstrap-
ping evaluations that predicted lung metastases in soft 
tissue sarcomas of the extremities with high sensitivity 
and specificity.

The purpose of our study was to perform a comprehen-
sive analysis of MR imaging features of LGGs by using the 
VASARI feature set, as they relate to patient survival and 
molecular markers. In addition, we explored the possibil-
ity of using textural features extracted from MR imaging to 
make binary predictions of wild-type IDH versus IDH1 muta-
tion; IDH1 mutation with 1p/19q codeletion versus IDH1 
mutation without 1p/19q codeletion; grade II versus grade 
III LGGs; and progression versus nonprogression of LGGs.

Materials and Methods

Study Data

We identified 165 patients with diffuse low- and interme-
diate-grade gliomas (histological grades II and III) from 
TCGA who have overlapping presurgical MRI data from 
The Cancer Imaging Archive (TCIA),10,11 an imaging shar-
ing resource that houses images corresponding to TCGA 
patients. A  flowchart of the number of patients included 
for each analysis, along with the number of and reason 
why patients were excluded from each analysis, is shown 
in Fig. 1. As the patients had been previously de-identified 
by TCGA/TCIA, and their relevant information was avail-
able for public download, no institutional review board 
or Health Insurance Portability and Accountability Act 
approval was required for our study.

Importance of the study
Previous studies have shown that MRI features scored 
according to VASARI annotations can be used to pre-
dict survival and molecular profile of glioblastoma. 
However, no study of similar type has been performed 
on LGGs. On multivariate analysis, we showed that no 
enhancement on MRI was associated with longer PFS, 
while a smooth non-enhancing margin was associated 
with longer PFS and OS compared with an irregular 
non-enhancing margin. Our results demonstrated that 
imaging features scored using a standardized vocabu-
lary had prognostic value in addition to traditionally 

recognized clinical and molecular markers in LGGs. In 
addition, multivariable texture models extracted from 
baseline MRI scans have the potential to accurately 
classify LGGs in terms of IDH1 mutation, 1p/19q code-
letion, histological grade, and tumor progression. With 
proven accuracy, textural analysis will complement 
invasive tissue sampling, guiding patient manage-
ment at an earlier stage of disease and in follow-up. 
Textural analysis may even serve as the standard in 
cases where invasive procedure is not available or 
appropriate.

https://wiki.nci.nih.gov/display/CIP/VASARI
https://wiki.nci.nih.gov/display/CIP/VASARI
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Imaging Review: VASARI Scores and 
Computation of Textures

For each patient, 2 neuroradiologists (H.T. and W.L.) with 
7 and 20 years of experience, respectively, independently 
reviewed axial T1-weighted MR images before (T1W) and 
after gadolinium-based CE material administration (T1CE) 
as well as axial T2-weighted (T2W) and axial T2-weighted 
fluid attenuated inversion recovery (FLAIR) (T2F) images 
of the 165 LGG patients. The readers were blinded to the 
clinical data. Clear Canvas workstation, which allows 
visualization as well as annotation and markup of Digital 
Imaging and Communications in Medicine (DICOM) 
images, was used for imaging review. Each tumor was 
independently scored by the readers using the 30 imag-
ing features defined according to the VASARI scoring 
system as previously described. The reader is referred to 
the Supplementary material for a complete description of 
the VASARI feature set. The interreader agreement for the 
imaging features was assessed using the kappa consist-
ency test. Kappa values >0.81, in the range of 0.61–0.80, 
and <0.60 were considered to reflect excellent, good, and 
poor agreement, respectively. Final disagreement was 
resolved in a panel format including 2 additional coau-
thors (H.X.B.  and L.Y.). For texture analysis, 3D regions 
of interest (ROIs) for each MR imaging set of each patient 
were manually drawn slice-by-slice in the axial plane for 
each of the available sequences (T1W, T2W, T1CE, T2F) by 

an expert radiologist. A  total of 42 texture features were 
then extracted using 3D analysis from the T1W, T2W, T1CE, 
and T2F scans: 3 histogram-based textures, 8 texture fea-
tures from the Gray-Level Co-occurrence Matrix (GLCM), 
13 texture features from the Gray-Level Run-Length Matrix 
(GLRLM), 13 texture features from the Gray-Level Size 
Zone Matrix (GLSZM), and 5 texture features from the 
Neighborhood Gray-Tone Difference Matrix (NGTDM). 
The reader is referred to the Supplementary material for a 
complete description of all texture features, acronyms, and 
references.

Association of VASARI Imaging Features with 
Survival

Progression-free survival (PFS) was defined as the time 
that passes from the day on which a patient is enrolled 
and the date on which tumor progresses. Overall survival 
(OS) was defined as the time between initial diagnosis 
and death or last follow-up. We examined the association 
between each VASARI imaging feature with PFS and OS 
using the Kaplan–Meier survival curves and log-rank analy-
ses. Features that were significant on the univariate analy-
sis (P < .05) were entered into multivariate survival analysis 
based on the Cox proportional hazards ratio model, after 
incorporating clinical and pathological variables, includ-
ing age, gender, extent of resection, histological type, 

Fig. 1  Flowchart of patients included and excluded for each analysis.
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histological grade, pretreatment Karnofsky performance 
scale (KPS), and IDH1 1p/19q codeletion status.

Prediction of IDH1 Mutation, 1p/19q Codeletion 
Status, Histological Grade, and LGG Progression 
with Textural Imaging Features

For this part of the work, the patient imaging data and 
outcome availability for each modeled outcome were as 
follows: (i) IDH1 mutation: 63 mutations, 21 wild type; (ii) 
1p/19q codeletion status: 17 codeletion, 50 non-codele-
tion; (iii) histological grade: 35 grade II gliomas, 49 grade 
III gliomas; and (iv) LGG progression: 28 progressions, 
47 nonprogressions. Binary clinical outcomes were mod-
eled by predicting the class with the lowest number of 
instances.

Forty-two texture features were computed as described 
by Vallières et al.9 using the 40 possible combinations of 
the following extraction parameters: (i) 3D isotropic scales 
of 0.5 mm, 1 mm, 2 mm, 3 mm, and 4 mm; (ii) “uniform” 
and “equal-probability” quantization; (iii) number of gray-
levels of 8, 16, 32, and 64. The 4 initial feature sets that 
were tested comprised one T1-based and one T2-based 
MR imaging sequence (each containing 2 × 42 × 40 = 3360 
scan-texture-parameters): (i) T1W-T2W, (ii) T1W-T2F, (iii) 
T1CE-T2W, and (iv) T1CE-T2F.

Multivariate models were constructed for each initial fea-
ture set and modeled outcome using imbalanced-adjusted 
logistic regression, an adaptation of the method based on 
Schiller et al9 following the general methodology developed 
by Vallières et  al.12 All initial feature sets first underwent 
feature set reduction using 100 bootstrap training samples 
to yield reduced feature sets of 25 different scan-texture 
features. Then, feature selection was performed by maxi-
mizing the area under the receiver-operating characteristic 
curve (AUC)632+ metric in 100 bootstrap training and test-
ing samples to obtain texture models combining 1 to 10 
variables (model order).13 For each outcome, the feature 
set and model order providing the combination of texture 
variables with the best parsimonious properties (ie, the sim-
plest model with the best predictive properties) were cho-
sen. The model was built using the feature set that provided 
the highest prediction curve while using the lowest model 
order before the AUC632+ metric started reaching a plateau 
or decreasing. Finally, the prediction performance of the 4 
chosen texture models was estimated using average AUCs, 
sensitivities, and specificities obtained in 100 bootstrap test-
ing samples.

Prediction of IDH1 Mutation, 1p/19q Codeletion 
Status, Histological Grade, and LGG Progression 
with VASARI Features

In order to directly compare the prognostic potential of 
VASARI features and texture features, we built VASARI 
multivariable models to predict IDH1 mutation, 1p/19q 
codeletion status, histological grade, and LGG progres-
sion. From the full set of VASARI features, the feature 
selection, model choice, and prediction estimation meth-
ods were the same as described in the section above for 
texture analysis.

Comparison of the Predictive Potential of Models 
Using Clinical Variables, VASARI Features, and 
Texture Features with Random Forest Analysis

Logistic or Cox regression analysis is best suited for mod-
eling continuous variables only (eg, texture and VASARI 
features). These types of analyses provide a fast way to 
mine the best features for that category of inputs. On the 
other hand, random forests are more complex classifiers 
and are designed to implement any type of inputs, either 
categorical, as is often the case for clinical information, or 
continuous for radiomics data. In order to directly compare 
their predictive potential, clinical variables (categorical 
data), VASARI features, and texture features (continuous 
data) were thus included in a random forest analysis to 
predict IDH1 mutation, 1p/19q codeletion status, histo-
logical grade, and LGG progression. The clinical variables 
included age, KPS, histological type, grade (removed for 
histological grade outcome), laterality, location, gender, 
radiotherapy (yes vs no; removed for all outcomes except 
LGG progression), chemotherapy (yes vs no; removed for 
all outcomes except LGG progression), and IDH1 1p/19q 
subtype (removed for IDH1, 1p/19q outcomes). The VASARI 
and texture features included in the random forest analy-
sis were the variables forming the best multivariable mod-
els as determined using the methods described in the 2 
previous sections above. Random forest classifiers were 
trained (inherently using bootstrapping) on the whole 
cohort using 500 trees. Prediction performance was esti-
mated using out-of-bag observations. Prediction balance 
between sensitivity and specificity was achieved by find-
ing the optimal cost (ie, emphasis) on the classification of 
positive instances, and by maximizing 0.5*AUC + 0.5*(1 − 
|Sensitivity − Specificity|) on out-of-bag estimates. Random 
forest analysis was performed using clinical variables only; 
VASARI features only; texture features only; a combination 
of VASARI and texture features; and a combination of clini-
cal variables, VASARI, and texture features.

Results

Interreader Agreement

Interrater analysis showed significant agreement in all 
VASARI imaging features scored. Interreader agreements 
for all the imaging features were good to excellent (kappa 
value = 0.703–1.000) (Supplementary Table 1).

Correlation between VASARI Imaging Features 
and Progression-Free Survival

Kaplan–Meier analysis showed that 7 VASARI features 
were significantly associated with PFS (P < .1): enhance-
ment quality, proportion of enhancing tumor, proportion 
of non-enhancing tumor, definition of the non-enhancing 
margin, diffusion, satellites, and lesion size. On multivari-
ate Cox regression analysis, enhancement quality, defi-
nition of the non-enhancing margin, the presurgical KPS 
score, and IDH1 1p/19q subtype were significantly asso-
ciated with PFS after taking into account gender, tumor 
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location, and histology (Table  1). Specifically, tumors 
with no enhancement had longer PFS than tumors with 
either mild or marked enhancement (P = .048 by log-rank 
test; Supplementary Fig. 1A). Tumors with a smooth mar-
gin were associated with improved PFS compared with 
those with an irregular margin (P  =  .02 by log-rank test; 
Supplementary Fig. 1B).

Correlation between VASARI Imaging Features 
and Overall Survival

Kaplan–Meier analysis showed that 10 VASARI features 
were significantly associated with OS: eloquent brain 
involved, proportion of enhancing tumor, proportion of 
non-enhancing tumor, cysts, multifocal or multicentric, 
definition of the non-enhancing margin, proportion of 
edema, diffusion, enhancing tumor crosses midline, and 
satellites. On multivariate Cox regression analysis, defini-
tion of the non-enhancing margin, age, tumor grade, and 
IDH1 1p/19q subtype were significantly associated with 
OS after taking into account gender, tumor location, and 
histology (Table  2). Specifically, tumors with a smooth 
margin had longer OS than those with an irregular margin 
(P = .002 by log-rank test; Supplementary Fig. 1C).

Prediction of IDH1 Mutation, 1p/19q Codeletion 
Status, Histological Grade, and LGG Progression 
with Textural Imaging Features

Following feature set reduction and feature selection 
using imbalanced-adjusted logistic regression and boot-
strap resampling, texture models with orders 1 to 10 that 
maximized the AUC632+ metric were computed for each of 
the 4 feature sets to model the 4 outcomes (Fig.  2A–D). 
By inspecting the curves in Fig. 1, we determined that the 
combinations of 3 textures from the T1CE-T2W set, 3 tex-
tures from the T1CE-T2W set, 4 textures from the T1CE-T2W 
set, and 4 textures from the T1W-T2W set provided the best 
predictive properties for IDH1 mutation, 1p/19q codele-
tion status, histological grade, and LGG progression out-
comes, respectively. For the IDH1 mutation outcome, the 
optimal set of features included global-skewness (T2W), 

GLRLM run-length variance (T2W), and GLRLM short run 
low Gray-level emphasis (T2W), which reached an AUC of 
0.86 ± 0.01, a sensitivity of 0.75 ± 0.03, and a specificity of 
0.78 ± 0.02. For 1p/19q codeletion status, the optimal set 
of features included GLRLM low Gray-level run emphasis 
(LGRE) (T1CE), GLSZM short zone low Gray-level empha-
sis (SZHGE) (T2W), and GLRLM long run high Gray-level 
emphasis (T2W), which reached an AUC of 0.96 ± 0.01, a 
sensitivity of 0.90 ± 0.02, and a specificity of 0.89 ± 0.02. For 
the histological grade outcome, the optimal set of features 
included GLCM-homogeneity (T1CE), GLSZM short-zone 
emphasis (SZE) (T2W), GLSZM-SZE (T1CE), and global-
kurtosis (T1CE), which reached an AUC of 0.86  ±  0.01, a 
sensitivity of 0.74 ± 0.02, and a specificity of 0.79 ± 0.02. 
For the LGG progression outcome, the optimal set of fea-
tures included GLRLM long run low Gray-level emphasis 
(T1W), GLRLM-LGRE (T2W), GLSZM-SZHGE (T1W),and 
GLSZM zone size variance (T2W), which reached an AUC 
of 0.80 ± 0.01, a sensitivity of 0.76 ± 0.03, and a specific-
ity of 0.72 ± 0.03. The direction of correlation between each 
significant texture feature included in the final model and 
outcome is shown in Supplementary Table 2.

To demonstrate the classification capability of the opti-
mal models shown in Supplementary Table 2, final logis-
tic regression coefficients were computed for all models 
using 100 bootstrap training samples. The posterior prob-
ability of observing a given outcome as a function of the 
logistic regression response of the models was calculated 
along with the associated 95% CIs of the model responses 
in the bootstrap samples (Fig. 3).

Prediction of IDH1 Mutation, 1p/19q Codeletion 
Status, Histological Grade, and LGG Progression 
with VASARI Features

For the IDH1 mutation outcome, the optimal set of features 
included proportion necrosis and lesion size, which reached 
an AUC of 0.73 ± 0.02, a sensitivity of 0.69 + 0.03, and a spec-
ificity of 0.69 ± 0.02. For the 1p/19q codeletion outcome, the 
optimal set of features included multifocal or multicentric, 
edema proportion, tumor location, and enhancing propor-
tion, which reached an AUC of 0.78 ± 0.01, a sensitivity of 
0.72 ± 0.03, and a specificity of 0.67 ± 0.03. For the histological 

Table 1  Correlation between VASARI imaging features and PFS on 
multivariate Cox analysis

Variable Hazard Ratio P-value

Enhancement quality 1.485 (1.051, 2.099) .025

Definition of the non- 
enhancing margin

2.056 (1.168, 3.518) .012

KPS 0.969 (0.942, 0.996) .023

IDH1 1p/19q subtype 3.035 (1.937, 4.756) <.001

Note: Data are hazard ratio estimates, with 95% CIs in parentheses, 
for variables included in the Cox regression model involving imaging 
features plus clinical variables, for the analysis of the association 
between the imaging features and PFS after adjusted for standard 
clinical variables.

Table 2  Correlation between VASARI imaging features and OS on 
multivariate Cox analysis

Variable Hazard Ratio P-value

Definition of the non-
enhancing margin

1.088 (1.047, 1.131) .017

Age 1.088 (1.047, 1.131) <.001

WHO grade 5.298 (2.027, 13.849) .001

IDH1 1p/19q subtype 2.655 (1.489, 4.732) .001

Note: Data are hazard ratio estimates, with 95% CIs in parentheses, 
for variables included in the Cox regression model involving imaging 
features plus clinical variables, for the analysis of the association 
between the imaging features and OS after adjusted for standard clini-
cal variables.
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grade outcome, the optimal set of features included enhanc-
ing proportion, definition of the non-enhancing margin, and 
diffusion, which reached an AUC of 0.78 ± 0.01, a sensitivity 
of 0.72 ± 0.03, and a specificity of 0.67 ± 0.03. For the LGG 
progression outcome, the optimal set of features included 
tumor location, enhancement quality, necrosis proportion, 
T1/FLAIR ratio, and thickness of enhancing margin, which 
reached an AUC of 0.58 ± 0.02, a sensitivity of 0.54 ± 0.04, 
and a specificity of 0.58  ±  0.03. The results are shown in 
Fig. 4. The direction of correlation between each significant 
VASARI feature included in the final model and outcome is 
shown in Supplementary Table 3.

Comparison of the Predictive Potential of Models 
Using Clinical Variables, VASARI Features, and 
Texture Features with Random Forest Analysis

Random forest analysis was used to directly compare the 
predictive potential of clinical, VASARI, and texture fea-
tures (Supplementary Table  4). For IDH1 mutation, 1p/19q 

codeletion, and LGG progression, we found that the best cat-
egory of predictor was texture features, with AUCs of 0.79, 
0.88, and 0.70, respectively. For histological grade, the best 
category of predictor was VASARI features, with an AUC of 
0.73. However, the combination of clinical, VASARI, and tex-
ture variables showed that clinical variables can successfully 
complement imaging features for the prediction of IDH1 
mutation and histological grade, with respective AUCs of 
0.86 and 0.78. On the other hand, 1p/19q codeletion was best 
modeled with a combination of texture and VASARI features 
only (AUC = 0.89), and LGG progression was best modeled 
with texture features only (AUC = 0.70). The detailed results 
are shown in Supplementary Tables 5, 6, 7, 8, and 9.

Discussion

We found a significant association between enhancement 
quality (none vs mild vs marked) and PFS. Specifically, no 
enhancement was associated with longer PFS than either 

Fig. 2  Inspection of predictive properties of multivariable texture models constructed from 4 feature sets: (i) T1W-T2W, (ii) T1W-T2F, (iii) T2CE-
T2W, and (iv) T1CE-T2F. Estimation of prediction performance is shown for combinations of 1 to 10 texture features (model orders) in terms of the 
AUC632+ metric for: (A) IDH1 mutation, (B) 1p/19q codeletion status, (C) histological grade, and (D) LGG progression.
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mild or marked enhancement. In addition, a smooth defi-
nition of the non-enhancing margin was associated with 
longer PFS and OS than an irregular non-enhancing mar-
gin. Of note, these imaging features were still strongly asso-
ciated with patients’ survival after incorporating age, KPS, 
extent of resection, tumor grade, and IDH 1p/19q subtype.

In glioblastoma, previous studies have shown that the 
proportion of CE on MRI was associated with survival.3,14 
However, in LGG, the prognostic significance of CE on sur-
vival remains less well understood, and differing results have 
been reported depending on LGG and mutation status.15–17 
In our study, the proportion of CE was not a significant pre-
dictor of either PFS or OS, but the lack of CE was a positive 
predictor of PFS. There was no significant difference in sur-
vival between patients who had tumors with mild enhance-
ment and those who had tumors with marked enhancement. 
Grade III tumors were more likely to enhance than grade II 
tumors (84% vs 44%, respectively), but a significant propor-
tion of the grade II tumors demonstrated CE as well.

We found that a smooth non-enhancing margin was 
associated with longer PFS and OS compared with an 
irregular non-enhancing margin. This is in contrast to a 

prior study in glioblastoma which found that a smooth 
edge of CE predicted poor prognosis, while a sharp edge 
was a positive factor.6 However, a previous study of 43 
grade III gliomas found no significant association of non-
enhancing margin with survival.18 To our knowledge, our 
study was the first to demonstrate that the definition of 
the non-enhancing margin on MRI can predict survival in a 
combined cohort of grade II and grade III gliomas.

In this study, we constructed a multivariable texture 
model extracted from baseline MRI scans that achieved an 
AUC of 0.86, a sensitivity of 0.75, and a specificity of 0.78 
in predicting IDH1 mutation in LGGs. This logistic regres-
sion model performed better than a model using VASARI 
features via the same methods and comparable to the 
models built with random forest analysis incorporating 
clinical variables, VASARI, and texture features. In com-
parison to previous studies that relied on complete clinical 
data19 or advanced imaging techniques,20 our results dem-
onstrated the ability of machine-learning algorithms to 
achieve accurate prediction of IDH mutation in LGGs with 
very few preoperative MRI texture features alone. These 
results, if validated with other datasets, may affect clinical 

Fig. 3  Probability of observing a given outcome as a function of the response of optimal multivariable texture models developed in this work, for 
all patients of the cohort: (A) IDH1 mutation (nonIDH1), (B) 1p/19q codeletion status (IDHcodel), (C) histological grade (lowGrade), and (D) LGG pro-
gression (progression). It can be seen that the optimal texture models can significantly separate the patients of the 2 classes for each outcome, 
especially in the case of the 1p/19q codeletion status.
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management in the future, since these imaging studies 
were obtained routinely before surgery. They can also be 
useful in a research setting where a large amount of sam-
ples have to be genotyped for IDH mutation.

The codeletion of chromosomal arms 1p and 19q is 
a characteristic and early genetic event in oligodendro-
glial tumors.15 Tumors with 1p/19q codeletion are associ-
ated with a better prognosis and enhanced response to 
therapy.16 Moreover, grades II and III gliomas with 1p/19q 
codeletion are also mutated in IDH1/2.21 In a smaller study 
of 55 patients with oligodendrogliomas, Brown et al.17 used 
S-transform-based texture analysis of preoperative MR 
images to predict 1p/19q codeletion with an AUC of 0.94, 
a sensitivity of 0.93, and a specificity of 0.96, versus a sen-
sitivity of 0.70 and a specificity of 0.63 for genotype predic-
tion by blinded experts. We corroborated these results in a 
larger cohort of patients that included both astrocytomas 
and oligodendrogliomas, and our optimal texture model 
achieved an average bootstrap testing AUC of 0.96, a sen-
sitivity of 0.90, and a specificity of 0.89 in predicting 1p/19q 
codeletion status in LGGs. This logistic regression multivar-
iable model was superior to that built using either VASARI 
features or random forest analysis. Our results afforded a 
method for predicting 1p/19q codeletion that is both nonin-
vasive and uses data from routinely acquired MR images.

The current standard for glioma grading is based on histo-
pathological assessment, which has 2 major limitations. First, 
it is an invasive procedure. Second, it has an inherent sam-
pling error, especially with stereotactic biopsy. Our multivari-
able texture model achieved an AUC of 0.86, a sensitivity of 
0.74, and a specificity of 0.79 in distinguishing grade II from 
grade III gliomas, a performance which compared favora-
bly with previous studies.20–22 However, these prior studies 
relied on carefully selected ROIs drawn by neuroradiologists 
and multiple advanced MR imaging modalities, including 

diffusion-weighted imaging, diffusion-tensor imaging, 
MR spectroscopy, and perfusion-weighted imaging. These 
resources may not be available in non-academic institutions. 
Our algorithm demonstrated the potential of achieving high 
predictive accuracy using only conventional MRI sequences.

One texture feature in our final model that predicted 
histological grade was GLCM-homogeneity on contrast-
enhanced T1-weighted images. We found that high tumor 
“homogeneity” was associated with higher grade. This 
result may be counterintuitive, since previous studies in 
breast cancer23 and soft tissue sarcomas24 have demon-
strated that tumor heterogeneity is associated with higher 
tumor grade and more aggressive pathological features. 
We have 2 possible explanations for our results. First, MR 
CE in grade II tumors is more heterogeneous than CE in 
grade III tumors. This characteristic of CE in grade II glio-
mas was not captured by the corresponding VASARI fea-
ture key, but was demonstrated by Pallud et al.,25 where 
among the 143 cases of grade II tumor with CE, CE was 
characterized as “patchy and faint” in 93 and “nodular-
like” in 50. Second, for those tumors without CE, our pre-
vious observation in soft tissue sarcoma was that high 
texture homogeneity was mostly due to large homogene-
ous necrotic centers.9 This suggests that the tumor has a 
fast growing rate, thus compatible with higher grade.

The ultimate goal of using machine-learning algorithm to 
study glioma is to predict patient outcome. Our multivari-
able texture model constructed using logistic regression 
achieved an AUC of 0.80, a sensitivity of 0.76, and a speci-
ficity of 0.72 in predicting LGG progression. These results 
were superior to those obtained using either VASARI fea-
tures (AUC of 0.58) or random forest analysis (AUC of 
0.69). Few studies have investigated the use of radiomics, 
specifically texture analysis based on baseline MR imag-
ing, to predict outcomes in patients with gliomas, and 
existing studies focused exclusively on glioblastoma.21,26 
Our study was the first in the literature to demonstrate the 
potential of using textural analysis from baseline MR imag-
ing to predict glioma progression.

We acknowledge several limitations to our study. First, 
some patients could not be included due to incomplete-
ness of MR sequence data from TCIA. In addition, the heter-
ogeneity of different imaging parameters used by different 
investigators contributing to TCGA/TCIA data could not 
be controlled. Second, clinical variables, such as PFS and 
extent of resection, are not available for all patients from 
TCGA. Third, this study was partly based on the radiologist-
scored imaging features. Although a good to excellent 
interreader agreement based on kappa consistency test 
has been achieved, the scores can be subject to interreader 
variability and random errors during manual contour trac-
ing. Lastly, collection and assessment of new LGGs is still 
ongoing by our group, and we need more cases to validate 
our initial conclusions made in this paper.

In conclusion, tumor enhancement and an irregular non-
enhancing margin on MR imaging were associated with 
shorter PFS, while a smooth non-enhancing margin was 
a positive predictor of OS. Multivariable texture models 
extracted from baseline MRI scans were able to classify 
LGGs in terms of IDH1 mutation, 1p/19q codeletion, histo-
logical grade, and tumor progression with high sensitivity 
and specificity.

Fig.  4  Inspection of predictive properties of VASARI models 
constructed for 4 different outcomes: (i) IDH1 mutation, (ii) 1p/19q 
codeletion status, (iii) histological grade, and (iv) LGG progression. 
Estimation of prediction performance is shown for combinations 
of 1 to 10 texture features (model orders) in terms of the AUC632+ 
metric.
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Online Resources

The ROI masks used for texture analysis are made avail-
able in DICOM format on the TCIA website: http://www.can-
cerimagingarchive.net/. All MATLAB software code used 
to compute the texture features and multivariable model 
results is freely shared under the GNU General Public 
License at: https://github.com/mvallieres/radiomics.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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