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Abstract

Preeclampsia is a leading cause of perinatal maternal–foetal mortality and morbidity. The

aim of this study is to identify the key microRNAs and genes in preeclampsia and uncover

their potential functions. We downloaded the miRNA expression profile of GSE84260 and

the gene expression profile of GSE73374 from the Gene Expression Omnibus database.

Differentially expressed miRNAs and genes were identified and compared to miRNA-target

information from MiRWalk 2.0, and a total of 65 differentially expressed miRNAs (DEMIs),

including 32 up-regulated miRNAs and 33 down-regulated miRNAs, and 91 differentially

expressed genes (DEGs), including 83 up-regulated genes and 8 down-regulated genes,

were identified. The pathway enrichment analyses of the DEMIs showed that the up-regu-

lated DEMIs were enriched in the Hippo signalling pathway and MAPK signalling pathway,

and the down-regulated DEMIs were enriched in HTLV-I infection and miRNAs in cancers.

The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG)

enrichment analyses of the DEGs were performed using Multifaceted Analysis Tool for

Human Transcriptome. The up-regulated DEGs were enriched in biological processes

(BPs), including the response to cAMP, response to hydrogen peroxide and cell-cell adhe-

sion mediated by integrin; no enrichment of down-regulated DEGs was identified. KEGG

analysis showed that the up-regulated DEGs were enriched in the Hippo signalling pathway

and pathways in cancer. A PPI network of the DEGs was constructed by using Cytoscape

software, and FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and

ZFP36 were identified as the hub genes. The current study illustrates a characteristic micro-

RNA profile and gene profile in preeclampsia, which may contribute to the interpretation of

the progression of preeclampsia and provide novel biomarkers and therapeutic targets for

preeclampsia.

Introduction

Preeclampsia (PE) is a prevalent disease characterized by hypertension and proteinuria, and it

affects approximately 5%-8% of pregnancies worldwide[1]. Accumulating evidence has dem-

onstrated that multiple genes and cellular pathways contribute to the occurrence and develop-

ment of PE [2].
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MicroRNAs (miRNAs) are small non-coding RNAs of approximately 19–23 nucleotides

that can bind to the 3’ untranslated region of target mRNAs resulting in the degradation and

translation inhibition of the mRNA, thereby regulating gene expression at the post-transcrip-

tional level. Reportedly, up-regulated miR-210 in the placenta has been associated with the

pathogenesis of PE[3], and miR-1233 might be a potential biomarker of early PE[4].

High-throughput platforms such as microarrays are increasingly valued for the analysis of

miRNA and gene expression in PE. Many miRNA expression profile and gene expression pro-

file studies on PE have been performed using microarray technology; for example, Zhu et al[5]

identified 11 overexpressed microRNAs and 23 under-expressed microRNAs in PE compared

to that in normal controls. Zhang et al[6] found that miR-515 family members were related to

PE through the inhibition of key genes in human trophoblast differentiation. The previous

studies on miRNA expression profiles in PE all had their limitations. First, all of the reported

studies focused one or several of the differentially expressed miRNAs; none of them focused

on the relationship between all of the differentially expressed miRNAs with PE. Second, miR-

base (http://microrna.sanger.ac.uk), PicTar (http://pictar.mdc-berlin.de), TargetScan (http://

www.targetscan.org) and MiRTarget2 (http://mirdb.org) were usually used to identify the tar-

get genes of the miRNAs, but the calculation principles and methods of each database are

quite different, leading to a high false-positive rate. Therefore, we combined the miRNA ex-

pression profile GSE84260 with the gene expression profile GSE73374 to uncover the key miR-

NAs and genes that contribute to the pathology of PE and, thus, provide novel insights into

potential biomarkers for PE prognosis and therapeutic strategies.

Materials and methods

Microarray data

The miRNA expression profile GSE84260 and the gene expression profile GSE73374 were

obtained from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The GSE84260 dataset

based on GPL15018 (Agilent Human miRNA V16.0 Microarray) contained 32 samples,

including 16 PE placenta samples and 16 normal placenta samples. The GSE73374 dataset

based on GPL16686 (Affymetrix Human Gene 2.0 ST Array) contained 36 samples, including

19 PE placenta samples and 17 normal placenta samples.

Identification of differentially expressed miRNAs and genes and the

DEMI-DEG regulatory network

Firstly, after the raw data from the miRNA profile and gene profile underwent background

correction, quartile normalization and probe summarization with the limma R package

[7–8], we used a classical t test to identify the miRNAs that were differentially expressed

between the two groups with cutoff values |log2 FC|� 1 and p values < 0.05 and to iden-

tify the genes that were differentially expressed with the cutoff values |log2FC|� 0.5 and

p values < 0.05. Secondly, the MiRWalk 2.0 database, which provides the largest available

collection of miRNA-target interactions [9], was used to identify target genes of the differen-

tially expressed miRNAs identified from the GSE84260 dataset. Thirdly, we downloaded the

miRNA-mRNA information from the MiRWalk 2.0-validated miRNA-gene interaction

information retrieval system, in which all of the genes had been identified as target genes of

the miRNAs. The intersection of the target genes from the miRNA-mRNA information and

the identified differentially expressed genes from the GSE73374 dataset was selected as the

final set of differentially expressed genes (DEGs). Lastly, by comparing the DEGs with the

miRNA-mRNA information, we were able to identify the miRNAs that target the DEGs, and
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those miRNAs were selected as the final differentially expressed miRNAs (DEMIs). By map-

ping the DEMIs and DEGs using Cytoscape (version: 3.2.0)[10], we obtained the DEMI--

DEG regulatory network.

Functional enrichment analyses of the DEMIs and DEGs

Pathway enrichment analyses of the DEMIs were performed by utilizing the in-plug cluster-

Profiler from the limma R package. The Gene ontology (GO), a method for annotating genes

[11], and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, which presenting the

systematic analysis of gene functions[12] enrichment analyses were performed utilizing the

MATHT (http://www.biocloudservice.com) to identify potential biological processes and

pathways in which the DEGs are involved. P<0.05 was considered statistically significant.

Integration of the protein-protein interaction (PPI) network

DEGs were mapped to the Search Tool for the Retrieval of Interacting Genes (STRING ver-

sion: 10.0)[13], an online tool utilized to evaluate the PPI information. Interactions with a

combined score > 0.4 were selected as significant. The integrated regulatory networks were

constructed using the Cytoscape software.

Results

Identification of DEMIs and DEGs and the DEMI-DEG regulatory

network

A total of 65 differently expressed microRNAs (DEMIs), 32 up-regulated miRNAs and 33

down-regulated miRNAs, and 91 differently expressed genes (DEGs), 83 up-regulated genes

and 8 down-regulated genes, were finally identified. Data for the 65 DEMIs are provided in S1

Table. In the DEMI-DEG regulatory network, there were 156 nodes and 184 interactions (Fig

1). The interaction degrees for the DEMI-DEG regulatory network represent the number of

the interactions between the DEMIs and DEGs. Those DEMIs and DEGs with high interaction

degrees were identified as hub nodes in the DEMI-DEG regulatory network. The top 10

DEMIs and DEGs with high degrees from the DEMI-DEG regulatory network are shown in

Table 1 and Table 2.

Pathway enrichment analyses of the DEMIs

KEGG pathway analyses indicated that the up-regulated DEMIs were enriched in 150 path-

ways such as the Hippo signalling pathway and MAPK signalling pathway. The down-regu-

lated DEMIs were enriched in 73 pathways such as HTLV-I infection and miRNAs in cancers

(Fig 2).

Functional enrichment analyses of the DEGs

We uploaded all DEGs to MATHT to identify the GO categories and KEGG pathways of the

DEGs. The functional enrichment analysis results showed that the down-regulated DEGs (8)

were not enriched in any of the categories or pathways. The GO analysis results showed that

the up-regulated DEGs were mainly involved in biological processes (BP) such as the response

to cAMP (Table 3). GO molecular function (MF) analysis indicated that the up-regulated

DEGs were mainly involved in protein binding and growth factor binding (Table 3). In addi-

tion, for the cell component (CC) analysis, the up-regulated DEGs were significantly enriched

in the extracellular exosome and membrane (Table 3). KEGG pathways analyses showed that
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Fig 1. The DEMI-DEG regulatory network. Orange triangles represent up-regulated DEMIs(32); blue arrows represent the down-regulated

DEMIs(33); red cycles represent the up-regulated DEGs(83); green rhombus represent the down-regulated DEGs(8).

https://doi.org/10.1371/journal.pone.0178549.g001
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up-regulated DEGs (83) were significantly enriched in the Hippo signalling pathway and path-

ways in cancer.

PPI network of the DEGs

The PPI network of the DEGs was constructed using String. In the PPI network, there were 41

nodes, including 38 up-regulated DEGs and 3 down-regulated DEGs, and 50 interactions (Fig

3). The hub nodes were FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET

and ZFP36. Among all of the proteins in the PPI network, only CAP2, CSGALNACT1 and

DLG5 were down-regulated.

Discussion

PE is a multisystem disorder specific to pregnancy, and deficiency in our knowledge of the

exact aetiology and pathogenesis of PE restricts the ability to treat this disease. Therefore,

understanding the molecular mechanism involved in PE is extremely important to develop

more effective diagnostic and therapeutic strategies. In the present study, a total of 65 DEMIs

and 91 DEGs were identified. The up-regulated DEMIs were enriched in the Hippo signalling

pathway and MAPK signalling pathway, and the down-regulated DEMIs were enriched in

HTLV-I infection and miRNAs in cancers. FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1,

LDHA, MCL1, MET and ZFP36 were defined as key proteins that might provide new ideas for

further studies on PE.

MiRNAs have been increasingly recognized to have a vital association with disease in-

cluding PE through post-transcriptional regulation of gene expression. In the present study,

miRNA expression profiles showed that miRNAs in placentas were quite different between the

PE and normal group. Eight up-regulated miRNAs, including miR-19a-3p, miR-877-3p, miR-

148a-3p, miR-212-5p, miR-1825, miR-210-3p, miR-940, and miR-134-5p, and two down-reg-

ulated miRNAs, miR-3609 and miR-145-5p, were identified as statistically significant different

miRNAs. MiR-148a and miR-19a have been reported to influence the +3142 C/G polymor-

phism of HLA-G, resulting in the down-regulation of HLA-G in PE[14]. It is widely accepted

that the PE syndrome consists of two successive processes, including poor placentation in

early pregnancy and the following placental oxidative stress[4]. Hypoxia of the placenta is a

crucial factor leading to poor biological functions of trophoblast cells. MiR-210 is a hypoxia-

inducible miRNA[15] and inhibits invasion of trophoblast cells[16]. Down-regulation of miR-

145 has been identified in the placenta of PE women[17]. No studies on the relationship

Table 1. Top 10 hub DEMIs from the DEMI-DEG regulatory network.

miRNA hsa-miR-19a-3p hsa-miR-877-3p hsa-miR-148a-3p hsa-miR-3609 hsa-miR-145-5p

Description upmiRNA upmiRNA upmiRNA downmiRNA downmiRNA

degree 15 13 10 9 8

miRNA hsa-miR-212-5p hsa-miR-1825 hsa-miR-210-3p hsa-miR-940 hsa-miR-134-5p

Description upmiRNA upmiRNA upmiRNA upmiRNA upmiRNA

degree 6 5 5 5 4

https://doi.org/10.1371/journal.pone.0178549.t001

Table 2. Top 10 hub genes from the DEMI-DEG regulatory network.

Gene BZW1 CRISPLD2 TXNIP SYT7 TMEM59 SERPINE1 REEP3 PGK1 ITGB1 ZNF83

Description upgene upgene upgene downgene upgene upgene upgene upgene upgene upgene

Degree 7 6 5 5 4 4 4 4 4 3

https://doi.org/10.1371/journal.pone.0178549.t002
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between the other miRNAs, miR-877-3p, miR-212-5p, miR-1825, miR-940, miR-134-5p, and

miR-3609, and PE have been reported. However, they are all related to the occurrence and

development of carcinomas. For example, miR-212 was down-regulated in ovarian cancer,

potentially due to the significant enrichment of EZH2 and H3K27me3 in the promoter region
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Fig 2. Pathway enrichment analyses of DEMIs. The left is up-regulated DEMIs and the right is down-regulated DEMIs. Red: p value is small; Blue: p

value is large; the size of the bubbles means the enrichment, larger bubbles means larger generatio.
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[18]. Decreased miR-940 in hepatocellular carcinoma acted as an adaptor of CXCR2 and sup-

pressed the invasion and migration of HCC cells[19]. Considering that the conversion of the

biological functions of normal cells is fundamental to the pathology of PE and carcinoma, we

infer that miR-877-3p, miR-212-5p, miR-1825, miR-940, miR-134-5p, and miR-3609 might

take part in the progression of PE.

KEGG pathway analysis of the DEMIs revealed that the development of PE was associated

with the Hippo signalling pathway and MAPK signalling pathway. The Hippo signalling path-

way could provide novel anti-cancer drug targets. Components of the Hippo signalling path-

way such as Yes-associated protein 1 (YAP) and transcription regulator protein 1 (TAZ) are

synergistically associated with other signalling pathways such as G protein-coupled receptor,

epidermal growth factor and Wnt pathways, which play a crucial role in cell proliferation, dif-

ferentiation, apoptosis, and development[20]. Recent evidence indicates that the p38 MAPK

signalling pathway is one of the key pathways in vascular endothelial cell dysfunction in PE.

Activated p38 MAPK in the placenta of PE could significantly increase the levels of sEng and

sFlt-l in maternal serum[21]. Gadd45α(DNA damage-inducible 45 alpha) is an oxidative

stress-induced factor with high levels in PE. Gadd45αinhibits trophoblast invasion and regu-

lates anti-angiogenesis factor secretion via the p38 MAPK signalling pathway[22].

GO and KEGG pathway analyses were performed to better understand the interactions of

the DEGs. The GO analyses showed that up-regulated DEGs were intensively involved in the

BP of the response to cAMP, response to hydrogen peroxide and cell-cell adhesion mediated

by integrin. Furthermore, the KEGG pathways of the up-regulated DEGs included the Hippo

signalling pathway and pathways in cancer. The hub genes with top degrees in the PPI network

were FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and ZFP36. FOS

was identified as up-regulated in PE, which was consist with that reported by Song[23]. FOS is

Table 3. Pathway and Gene ontology analysis of the up-regulated DEGs associated with PE (TOP5).

ID Name Count PValue

PATHWAY hsa04514 Cell adhesion molecules (CAMs) 4 3.44E-02

PATHWAY hsa04390 Hippo signaling pathway 4 4.02E-02

PATHWAY hsa05200 Pathways in cancer 6 4.61E-02

PATHWAY hsa05140 Leishmaniasis 3 4.98E-02

PATHWAY hsa05412 Arrhythmogenic right ventricular

cardiomyopathy (ARVC)

3 4.98E-02

GO_BP GO:0051591 response to cAMP 5 6.06E-05

GO_BP GO:0042542 response to hydrogen peroxide 5 9.12E-05

GO_BP GO:0033631 cell-cell adhesion mediated by integrin 3 1.27E-04

GO_BP GO:0071222 cellular response to lipopolysaccharide 6 1.80E-04

GO_BP GO:0042493 response to drug 8 5.24E-04

GO_CC GO:0070062 extracellular exosome 27 1.33E-04

GO_CC GO:0016020 membrane 23 1.73E-04

GO_CC GO:0005925 focal adhesion 8 1.77E-03

GO_CC GO:0009897 external side of plasma membrane 6 2.60E-03

GO_CC GO:0000139 Golgi membrane 8 1.60E-02

GO_MF GO:0005515 protein binding 55 9.25E-04

GO_MF GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding 8 1.17E-03

GO_MF GO:0000982 transcription factor activity,

RNA polymerase II core promoter proximal region sequence-specific binding

3 4.88E-03

GO_MF GO:0019838 growth factor binding 3 6.70E-03

GO_MF GO:0004386 helicase activity 4 6.89E-03

https://doi.org/10.1371/journal.pone.0178549.t003
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involved in the regulation of angiogenesis by encoding the transcription factor c-fos proto-

oncogene[24]. The second hub gene, STAT1 (signal transducers and activators of transcription

1), is phosphorylated, forming a dimer that activates Janus tyrosine kinases (JAKs) when initi-

ated by IFN-γ[25]. Endothelial activation and excessive inflammation are the characteristics of

PE, which can be induced by the IFN-γ/STAT1 signalling pathway[26]. It has been proposed

that the mouse systolic arterial pressure and plasma levels of sEng were increased compared to

those exposed to doxycycline, a compound that could block the transcription of MMP-14.

sEng and sFlt-1, contributing to the maternal vascular dysfunction, while up-regulated MMP14

released by endothelial cells induced the release of sEng and sFlt-1[27]. Previous studies have

reported that LDHA was up-regulated in PE[28–29]. Activated by hypoxia, the LDH isozyme in

trophoblasts can induce higher lactate production[30], which might inhibit germ cell death

dose-dependently in the human testis[31]. The MKP/DUSPs family acts as negative feedback

regulators of MAPK activity by dephosphorylating phosphorylated tyrosine or serine/threonine

[32]. Christe et al. reported that DUSP9/MKP-4 was essential for placental function [33].
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DUSP5 may mediate the H19 down-regulation-induced suppression of proliferation and apo-

ptosis of JAR cells [34]. The other five hub genes are ITGB1, MCL1, VCAN, MET and ZFP36.

Two previous studies have reported that ITGB1 is related to PE through encoding the beta sub-

unit of integrin. Additionally, up-regulated miR-29b might contribute to PE via its target genes

ITGB1 and MCL1[35–36]. The Mtd/Mcl-1 system plays a crucial role in regulating trophoblast

cell functions in both physiological and pathological conditions; Mcl-1 induces apoptosis and

reduced proliferation, while Mtd likely shows different properties[37]. In preeclampsia, the

Mtd/Mcl-1 system is altered towards the production of killer isoforms, meaning that both Mtd-

L and Mtd-P were increased, and the expression of Mcl-1 was down-regulated in PE[38–39].

Further studies are needed to identify the functions of ITGB1 and MCL1 in PE. No studies on

VCAN in PE have been reported. Met, an anti-angiogenic factor was significantly elevated in

both the second and third trimesters of PE[40], but Zeng found that the plasma sMet concentra-

tion was significantly lower in women with severe PE than in control groups [41]. ZFP36 is a

zinc-finger protein and can regulate the production of growth factors and cytokines by destabi-

lizing mRNAs. Recently, one study found that ZFP36 might be a potential regulator of VEGF to

control reepithelialization and angiogenesis in the skin[42].

In conclusion, we identified several abnormally expressed miRNAs and genes in PE that

may participate in the pathogenesis of PE. Our study provides a comprehensive bioinformatic

analysis of DEMIs and DEGs in PE, helps to understand the underlying molecular mecha-

nisms of PE, and may provide potential biomarkers and therapeutic targets for PE. Further

experiments are required to confirm the expression and potential functions of the identified

miRNAs and genes in PE.
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