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Abstract

Complex regional pain syndrome type 1 (CRPS-I) is a disabling and frequently chronic con-

dition. It involves the extremities and is a frequent consequence of distal tibia and radius

fractures. The inflamed appearance of the affected CRPS-I limb suggests that local produc-

tion of inflammatory mediators may be implicated in the ensuing etiology. A rodent tibia frac-

ture model, characterized by inflammation, chronic unilateral hindlimb warmth, edema,

protein extravasation, allodynia and hyperalgesia resembles the clinical features of patients

with acute CRPS-I. N-palmitoylethanolamine (PEA), a member of the family of naturally-

occurring N-acylethanolamines, is well-known for its ability to modulate inflammatory pro-

cesses and regulate pain sensitivity. However, the large particle size and lipidic nature of

PEA may limit its bioavailability and solubility when given orally. Micronized formulations are

frequently used to enhance the dissolution rate of drug and reduce its variability of absorp-

tion when orally administered. The aim of this study was to assess the effects of a formula-

tion of micronized and ultramicronized PEA (PEA-MPS), given orally in a mouse model of

CRPS-I. CD-1 male mice were subjected to distal tibia fracture and divided into two groups:

control and treated with PEA-MPS (PEA micronized 300 mg/kg and ultramicronized 600

mg/kg). Sensibility to pain was monitored in all mice throughout the course of the experi-

ment. Twenty-eight days after tibia fracture induction animals were sacrificed and biochemi-

cal parameters evaluated. The PEA-MPS-treated group showed an improved healing

process, fracture recovery and fibrosis score. PEA-MPS administration decreased mast cell

density, nerve growth factor, matrix metalloproteinase 9 and cytokine expression. This treat-

ment also reduced (poly-ADP)ribose polymerase activation, peroxynitrite formation and

apoptosis. Our results suggest that PEA-MPS may be a new therapeutic strategy in the

treatment of CRPS-I.
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Introduction

Algodystrophy, or Complex Regional Pain Syndrome type I (CRPS-I), is a painful syndrome

characterized by vasomotor and sensory disturbances, edema and functional impairment. The

first report of Algodystrophy was made by the German surgeon Paul Sundeck more than 110

years ago. He described the case of a patient suffering from “acute inflammatory bone atrophy”

with the accepted clinical signs of inflammation (functio laesa, dolor, tumor, rubor, and calor)

in association with a “patchy” osteoporosis [1]. Even today, a full understanding of the patho-

physiological mechanisms underlying CRPS-I remains elusive. The most convincing patho-

genic hypothesis is a local process of neuroinflammation, perhaps associated with clinical

symptoms occurring in the first stage of the disease (eritrosis, edema, sweating and increased

local temperature) followed later by microvascular damage and microcirculation impairment

observed in most patients (“dystrophic” or “cold” phase) with reduced edema, decreased local

temperature and presence of subcianosis [2].

Neuroinflammation plays an important role in the pathogenesis of both peripheral and

central chronic pain [3, 4]. Resolution of inflammation is controlled by the elaboration of

soluble products [5].Among these numerous lipidic signaling molecules whose role is to

restore tissue homeostasis by suppressing the inflammatory process and by regulating pain

sensitivity through moderating the flow of nociceptive signs to the central nervous system

[6]. The N-acylethanolamines comprise one such family of molecules, whose main members

are N-arachidonoylethanolamine (anandamide) and its congeners N-oleoylethanolamine,

N-stearoylethanolamine and N-palmitoylethanolamine (PEA) [7]. Animal studies demonstrat-

ing the capability of PEA to modulate pain and inflammation propose that this endogenous

fatty acid amide is part of a complex homeostatic system driving the basal threshold of both

pain and inflammation. PEA anti-inflammatory activity has been amply shown in numerous

animal models of inflammation, such as adjuvant-induced arthritis, ischemia reperfusion

injury, idiopatic pulmonary fibrosis, carrageenan-induced paw edema and tuberculin hyper-

sensitivity [8, 9]. PEA, as an endogenous compound, has a double therapeutic effect (that is,

anti-nociceptive and anti-inflammatory) without adverse effects at pharmacologically relevant

doses [10, 11]. Recent report highlights a new PEA potential mechanism of action mediated by

the induction of the CB2 up-regulation [12]. The large particle size and lipidic nature of PEA

limit its solubility and bioavailability. Reports in the literature also highlighted the capability of

other PEA formulations in the possible treatment of abnormal pain induced by several experi-

mental models [13–17]. The micronization technique can be used to achieve microparticles

<10 μm) [18, 19], with increased surface area and rate of dissolution [20], together with a

reduced variability of absorption [21]. In this study, we investigated the effect of oral adminis-

tration of a formulation of micronized and ultramicronized PEA (PEA-MPS) in a model of

CRPS-I.

Materials and methods

Animals

Male adult CD1 mice (25–30 g, Harlan, Italy) were placed in a controlled location and pro-

vided with standard rodent water and chow ad libitum. Mice were accommodated in stainless

steel cages in a room kept at 22 ± 1˚C with a 12-h dark/light cycles. The animals were familiar-

ized to their setting for one week. The study was approved by the University of Messina Review

Board for the care of animals. All animal experiments complied with regulations in USA,

Europe and Italy. All the experiments followed the ARRIVE guidelines.

New formulation of micronized and ultramicronized N-palmitoylethanolamine and complex regional pain syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0178553 June 8, 2017 2 / 21

employable in the treatment of inflammatory

diseases. This invention is wholly unrelated to the

present study. Moreover, Prof. Cuzzocrea is also,

with Epitech Group, a co-inventor on the following

patents: EP 2 821 083; MI2014 A001495;

102015000067344 that are however unrelated to

the study. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

The remaining authors report no conflict of

interest.

https://doi.org/10.1371/journal.pone.0178553


Fracture surgery

On day 0, mice were sedated with isoflurane, the right hindlimb enveloped in stockinet (2.5

cm wide) and the distal tibia fractured using a pair of pliers (Visegrip, Petersen Manufactur-

ing) modified with a 3-point jaw. The hindlimb was then covered in casting tape (Delta-Lite,

Johnson & Johnson) to allow the hip, ankle and knee to flex. The cast stretched from the meta-

tarsals to a spica shaped around the abdomen. The cast over the paw only reached to the plan-

tar surface; a space was left over the dorsum of the paw and ankle to avoid constriction when

edema developed post-fracture. The cast was covered in galvanized wire mesh to avoid chew-

ing by the animal. Mice were given buprenorphine (0.03 mg/kg, subcutaneous) and saline

immediately after surgery. At 28 days the mice were anesthetized with isoflurane and the cast

eliminated [22].

Experimental groups

Mice were randomly divided into the following groups (n = 10 for each group):

• Sham + vehicle group: vehicle solution (carboxymethylcellulose 1.5% wt/vol in saline) was

administered orally for 28 days.

• Sham + PEA-MPS group: mice were treated orally daily with PEA-MPS (300 mg/kg PEAm

and 600 mg/kg PEA-um1) for 28 days.

• Fracture + vehicle group: vehicle solution (carboxymethylcellulose 1.5% wt/vol in saline) was

administered orally daily 1 h after surgery for 28 days.

• Fracture + PEA-MPS group: mice were treated orally daily with PEA-MPS (300 mg/kg

PEAm and 600 mg/Kg PEA-um1) 1 h after surgery for 28 days.

The dose of PEA-MPS was chosen based on previous experiments [23].

In this study, we have demonstrated the beneficial effects of PEA in reducing edema forma-

tion and thermal hyperalgesia in carrageenan-induced inflammation in the rat paw. These

results show the differential effects exerted on the degree of inflammation by micronized PEA-

m and ultramicronized PEA-um, vs nonmicronized PeaPure.

We have done the calculation to know the dose of PEA-MPS that should be assumed by

human. According to the formula applied for the conversion from animal to human, the dose

of PEA-MPS that should be taken would be about 170,26 mg/Kg (56,75 mg/Kg PEAm and

113,51 mg/Kg PEA-um1), reasonably low [24]. Human Equivalent Dose PEA-MPS (mg/kg) =

(300x[7/37]) + (600x[7/37]) = 170,26 mg/Kg.

The minimum number of animals for each group was calculated using the statistical test a

priori power analyzes of the G-power software. This statistical test provides an efficient

method for determining the sample size necessary to perform the experiment before the exper-

iment the same is actually conducted.

Behavioral measurements

Three tests were employed to calculate pain behavior: mechanical nociception measured by

the withdrawal response to von Frey filament application, thermal nociception measured by

the withdrawal response to thermal stimulus (hot plate test), and subjective pain assessed

using a pain rating scale [25].

Mechanical nociception. To measure mechanical allodynia in the rats an up–down von

Frey testing paradigm was used. Mice were located beneath a clear plastic cylinder (20 cm in

diameter) on an elevated mesh floor and acclimatated for 15 min. Withdrawal responses to
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mechanical stimulation were assessed using calibrated von Frey filaments placed from under-

neath the chamber through openings in the mesh floor against approximately the middle of

the hind paw plantar skin at the fractured side. The fibers were presented according to the up–

down method of Dixon to generate six responses in the immediate vicinity of the 50% thresh-

old. The filament was pressed until it slightly curved and then it was left in that position for 6 s.

Each filament was applied once, beginning with 0.008 g and continuing until a withdrawal

response was considered positive. After a pause of 5–10 min, each filament was again used

once, beginning with 0.008 g until a withdrawal response was achieved. This was replicated a

third time 5–10 min later. The withdrawal threshold was considered the lowest force produc-

ing a response from the three tests [26].

Thermal nociception. Thermal nociception was assessed by a modified hot plate test [27].

Thermal nociception (thermal latency) was reflected by the time that a mouse would leave its

hind paw on a hot plate at 52˚C. The paw was shifted from the plate by the investigator after a

maximal time of 12 s to avoid thermal hyperalgesia and injury. This test was replicated three

times.

Subjective pain scale. A subjective pain rating scale (0–5) was utilized to quantify the

pain. Zero is normal, 1 is crimping of the toes, 2 is evasion of the paw, 3 is limited weight bear-

ing, 4 is non–weight bearing, and 5 is evasion of any contact with the hind limb.

Radiographic analysis

Lateral radiographs of the tibiae from mice were taken using a X-ray apparatus (FX Pro Bru-

cher, Italy). Mineralized callus realization and bony association at the fracture site were evalu-

ated. Callus total volume (TV) assessed the volume of recently formed tissues and low-density

bone volume (BVl) assessed the volume of recently formed mineralized tissue in callus. BV1

and TV were both calculated by a decrease of the volume in fractured tibia with the volume of

the contralateral bone.

Histological analysis

On day 28 after fracture, mice were sacrificed by anaesthetic overdose. Tibiae were collected

and post-fixed in 10% formalin and decalcified in EDTA for 24 h. The specimens were then

embedded in paraffin, 5 μm sections prepared, stained with hematoxylin/eosin, and analysed

by histomorphometry [28–30]. Contrast and illumination were established by examining the

most intensely labelled pixels and applying backgrounds that allowed clear image of structural

details while keeping the highest pixel intensities close to 200. The same backgrounds were

used for all images acquired from the other samples that had been managed in parallel. Digital

images were collected and figure montages arranged using Adobe Photoshop CS6 (Adobe Sys-

tems; Milan Italy).

Masson trichrome, safranin O/fast green and toluidine blue staining

The degree of fibrosis was evaluated according to the manufacturer’s protocol (Bio-Optica,

Italy, Milan), with tissue sections being stained with Masson trichrome. In order to evaluate

the presence of osteoclasts and osteoblasts, samples were stained with safranin O/fast green,

again according to the manufacturer’s protocol (Bio-Optica, Italy, Milan). Tissue sections

were also stained with toluidine blue to evaluate the number and degranulation of mast cells,

together with histopathological analysis of the callus and cartilage volumes. Sections were

deparaffinised in xylene and dehydrated by a graded series of ethanols, 4 min in each. The sec-

tions were next placed in water for 5 min, transferred to toluidine blue for 4 min and then blot-

ted carefully. Sections were next placed in absolute alcohol for 1 min, then in xylene, followed
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by mounting on a glass slide using Eukitt (Bio-Optica, Italy, Milan). Cartilage was stained blue

with mast cells coloured purple. The mast cell count and cartilage analysis were performed on

each slide using an Axiovision Zeiss (Milan, Italy) microscope.

Immunohistochemical localization of nerve growth factor (NGF), matrix

metalloproteinase (MMP)9, tumor necrosis factor alpha (TNF-α),

interleukin-1beta (IL-1β), nitrotyrosine, poly(ADP-ribose) (PAR), Bax

and Bcl-2

At 28 days post-surgery, tibia fractures were fixed in PBS-buffered formaldehyde 10% (w/v)

and embedded in paraffin. Seven μM sections from each tissue were prepared. After deparaffi-

nization, endogenous peroxidase was quenched with 0.3% (v/v) hydrogen peroxide/60% water

for 30 min. Tissue was permeabilized with 0.1% (w/v) Triton X-100 in PBS for 20 min. Slides

were incubated in 2% normal goat serum in PBS to block non-specific binding. Endogenous

avidin and biotin binding sites were blocked vy sequential incubation with avidin and biotin

(Vector Laboratories, Burlingame, CA) for 15 min. Sections were then incubated overnight

with one of the following primary antibodies: anti-NGF (E-12: sc-365944, 1:460 in PBS, Santa

Cruz Biotechnology), anti-MMP9 (C-20: sc-6840, 1:360 in PBS, Santa Cruz Biotechnology),

anti-TNF-α (H-156: sc-8301, 1:460 in PBS, Santa Cruz Biotechnology), anti-IL-1β (H-153: sc-

7884, 1:460 in PBS, Santa Cruz Biotechnology), anti-nitrotyrosine (1:460 in PBS, Millipore,

06–284), anti-PAR (H-250: sc-7150, 1:560 in PBS, Santa Cruz Biotechnology), anti-Bax(P-19:

sc-526, 1:460 in PBS, Santa Cruz Biotechnology) or anti-Bcl-2 (N-19: sc-492, 1:360 in PBS,

Santa Cruz Biotechnology). Sections were washed with PBS and incubated with secondary

antibody. Specific labeling was visualized with a biotin-conjugated goat anti-rabbit IgG and

avidin–biotin peroxidase complex (Vector Laboratories, Burlingame, CA). Immunohisto-

chemical images were taken using a Zeiss microscope and Axio Vision software. For graphic

display of densitometric analyses, the intensity of positive staining (brown staining) was mea-

sured by computer-assisted color image analysis (Leica QWin V3, UK). The percentage area of

immunoreactivity (determined by the number of positive pixels) was expressed as a percent of

total tissue area (red staining). Contrast and illumination were established by examining the

most intensely labelled pixels and applying backgrounds that allowed clear image of structural

details while keeping the highest pixel intensities close to 200. The same backgrounds were

used for all images acquired from the other samples that had been managed in parallel. Digital

images were collected and figure montages arranged using Adobe Photoshop CS6 (Adobe Sys-

tems; Milan Italy).

Materials

All compounds were purchase from Sigma-Aldrich (Milan, Italy). All chemicals were of the

highest grade available. All stock solutions were prepared in non-pyrogenic saline (0.9% NaCl;

Baxter, Italy). PEA-MPS was kindly provided by Epitech Group SpA (Saccolongo, Italy).

Statistical analysis

All values are represented as mean±standard error of the mean (SEM) with ‘n’ representing

the number of experimental observations per cohort. In experiments involving histology, the

figures shown are representative of at least three experiments performed on different days.

The results were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for mul-

tiple comparisons. All statistical analyses were carried out using GraphPad Prism1 Version
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5.00 statistical software. A p-value less than 0.05 was considered significant. �p<0.05 vs. sham,

˚ p<0.05 vs vehicle.

Results

Effect of PEA-MPS treatment on fracture-induced nociceptive behavior

Mechanical nociception, thermal nociception and subjective pain were significantly modified

by treatment with PEA-MPS as compared to the vehicle-treated group. Mechanical hyperalge-

sia and allodynia were calculated at the hind paw by score values measured from the von Frey

filament test. As shown in Fig 1A, withdrawal response to mechanical stimulus increased in

PEA-MPS treated-mice, indicating a decreased nociception, compared to vehicle-treated mice.

The same pattern was observed in the hot plate test for thermal nociception (Fig 1B), with

response latency in vehicle treated-mice showing an increased nociception that was signifi-

cantly reduced in PEA-MPS-treated mice in compared to sham mice. The subjective pain scale

(Fig 1C) was significantly decreased in PEA-MPS treated-mice compared to vehicle treated-

mice, while sham mice remained unchanged.

Effect of PEA-MPS treatment on fracture healing process

To verify correct fracture execution and to determine the effect of PEA-MPS treatment on

fracture repair, mice were subjected to X-ray analysis. No difference between vehicle-treated

mice (Fig 2B and 2F) and PEA-MPS-treated mice (Fig 2C and 2F) was noted immediately

after the fracture (day 0). At 28 days post-surgery the callus area was significantly larger in

PEA-MPS-treated mice (Fig 2E and 2F) compared to vehicle-treated animals (Fig 2D and 2F).

Effect of PEA-MPS treatment on facture recovery and fibrosis

Twenty-eight days after surgery mice were sacrificed and longitudinal sections of tibia stained

with hematoxylin/eosin. Tissues from PEA-MPS-treated mice (Fig 3B and 3G) showed more

callus formation and new woven bone with respect to vehicle-treated mice (Fig 3C and 3G). At

this time the degree of fibrosis, assessed by Masson trichrome staining, demonstrated a blue

fibrotic area that was larger in the PEA-MPS group (Fig 3F and 3H) compared to the vehicle

group (Fig 3E and 3H).

Effect of PEA-MPS treatment on mast cell density and NGF expression

Toluidine blue staining was used to assess mast cell number. Mast cell number was increased

following distal tibia fracture in vehicle-treated mice (Fig 4B and 4G) compared to sham ani-

mals (Fig 4A and 4G). In contrast, PEA-MPS treatment significantly reduced mast cell number

(Fig 4B and 4G). Immunohistochemical analysis of tissues collected from vehicle-treated mice

showed an increase of NGF staining (Fig 4E and 4H) which was lower in PEA-MPS-treated

mice (Fig 4F and 4H). Sham-treated mice did not show any significant NGF immnostaining

(Fig 4D and 4H).

Effect of PEA-MPS treatment on MMP9 expression and cartilage

formation

Twenty-eight days after surgery MMP9 expression was analysed in tissues collected from

sham, vehicle and PEA-MPS-treated mice. MMP9 expression was up-regulated in PEA-MPS-

treated mice (Fig 5C and 5G), compared to vehicle-treated mice (Fig 5B and 5G). Sham-

treated mice showed a basal expression of MMP9 (Fig 5A and 5G). PEA-MPS-treated mice
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Fig 1. Efficacy of PEA-MPS on fracture-induced nociceptive behaviour. Twenty-eight days after fracture

three tests were used to assess pain behaviour. (A) Withdrawal response to von Frey filaments-induced

mechanical hyperalgesia in the fractured hind paw. PEA-MPS treatment increased the withdrawal response.

(B) Thermal nociception was assessed by a modified hot plate test. PEA-MPS treated-mice showed

increased withdrawal latency compared to vehicle treated-mice. (C) Subjective pain scale evaluating pain in

the fractured hind paw. PEA-MPS treatment decreased pain compared to vehicle treated-mice. A p-value less

than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g001
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Fig 2. Efficacy of PEA-MPS on fracture healing process. Mice with tibia fracture were treated orally with

vehicle (B) or PEA-MPS (C). Twenty-eight days later PEA-MPS treatment accelerated the fracture healing

process (E) compared to vehicle-treated mice (D). PEA-MPS also stimulated callus bridging and increased

bone density (F). A p-value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g002
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Fig 3. Efficacy of PEA-MPS on facture recovery and fibrosis. Twenty-eight days after fracture histological examination

showed more callus formation and new woven bone in PEA-MPS-treated mice (B and G, and Figure b in S1 File) compared to

vehicle-treated animals (C and G, and Figure c in S1 File). Masson trichrome staining demonstrated an increased fibrotic area

in the PEA-MPS group (F and H, and Figure f in S1 File) compared to the vehicle group (E and H, and Figure e in S1 File). A p-

value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g003
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Fig 4. Efficacy of PEA-MPS on mast cell density and NGF expression. Mast cell number was increased in vehicle-treated

mice (B and G, and Figure b in S2 File) compared to the sham group (A and G, and Figure a in S2 File). PEA-MPS treatment

significantly reduced the tibia fracture-induced increase in mast cell number (B and G, and Figure b in S2 File). Tissue from

vehicle-treated mice showed an increased NGF immunostaining (E and H, and Figure e in S2 File) compared to sham-treated

mice (D and H, and Figure d in S2 File) which was reduced by PEA-MPS treatment (F and H, and Figure f in S2 File). A p-

value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g004
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Fig 5. Efficacy of PEA-MPS on MMP9 expression and cartilage formation. MMP9 expression was analyzed

immunohistochemically 28 days after surgery. PEA-MPS-treated mice showed an increased staining (C and G, and Figure c in

S3 File) compared to vehicle-treated mice (B and G), while tissue from sham-treated mice showed basal MMP9 expression (A

and G, and Figure a in S3 File). Toluidine blue staining demonstrated a significantly greater amount of cartilage area in

PEA-MPS-treated mice (F and H, and Figure f in S3 File) compared to the vehicle group (E and G, and Figure e in S3 File). A

p-value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g005
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had a significantly lower amount of cartilage area (Fig 5F and 5H) as assessed by toluidine blue

staining, compared to vehicle-treated mice (Fig 5E and 5G).

Effect of PEA-MPS treatment on osteoclasts on tissue sections

Safranin O/fast green staining was utilized to evaluate the impact of PEA-MPS treatment on

skeletal cell differentiation 28 days after fracture. Vehicle-treated mice displayed greater endo-

chondral ossification (Fig 6B and 6D) compared to sham-treated mice (Fig 6A and 6D).

PEA-MPS reduced the presence of osteoblasts in the fracture lesion (Fig 6C and 6D).

Effect of PEA-MPS treatment on TNF-α and IL-1β expression

At 28 days post-surgery tissues from vehicle-treated mice exhibited a substantial increase in

TNF-α immunostaining (Fig 7B and 7G) and PEA-MPS treatment reduced this staining (Fig

7C and 7G). Moreover, mice subjected to distal tibia facture had increased immunoreactivity

for IL-1β (Fig 7E and 7H) which was reduced by PEA-MPS treatment (Fig 7F and 7H). Sham-

treated mice were immunonegative for both markers (Fig 7A, 7D, 7G and 7H).

Effect of PEA-MPS treatment on nitrotyrosine and PAR formation

The presence of nitrogen derivatives in animals at 28 days post-distal tibia fracture was

assessed immunohistochemically as nitrotyrosine, a specific marker of nitrosative stress. Tis-

sue from vehicle-treated mice exhibited positive nitrotyrosine staining (Fig 8B and 8G), which

was significantly decreased by PEA-MPS treatment (Fig 8C and 8G). To examine poly(ADP-

ribose)polymerase (PARP) activation, PAR development was examined immunohistochemi-

cally. PAR staining was significantly increased in the nuclei of inflammatory cells collected

from vehicle-treated mice (Fig 8E and 8H), and PEA-MPS treatment markedly reduced this

staining (Fig 8F and 8H). Sham-treated mice did not show any positive staining (Fig 8A, 8D,

8G and 8H).

Effects of PEA-MPS treatment on Bax and Bcl-2 expression

In order to test whether PEA-MPS treatment was able to modulate tibia distal fracture-induced

apoptosis, we examined the expression of both the pro-apoptotic Bax and the anti-apoptotic

Bcl-2 proteins. Vehicle-treated mice showed increased Bax staining (Fig 9B and 9G) compared

to sham-treated mice (Fig 9A and 9G). PEA-MPS treatment decreased this staining (Fig 9C

and 9G). In addition, sham-treated mice exhibited positive Bcl-2 staining (Fig 9D and 9H)

compared to vehicle-treated animals (Fig 9E and 9H). Furthermore, PEA-MPS treatment

reverted the inhibitory action of distal tibia fracture on Bcl-2 expression (Fig 9F and 9H).

Discussion

The present study explored the effect of PEA-MPS treatment on CRPS-I in mice. The develop-

ment of animal models displaying clinical signs substantially comparable to human CRPS-I

with the same evolution as frequently seen in the clinic has been an area of active examination.

Distal tibia fracture is the most widely used mouse model of CRPS-I-associated chronic pain

due to its ability to increase local release of cytokines and pro-inflammatory neuropeptides

[31]. Such bone fracture may be the event that triggers and maintains the initial phases of the

pathology, causing allodynia and hyperalgesia [22]. PEA-MPS treatment reduced the mechani-

cal hyperalgesia and thermal nociception. Our results revealed also an action of oral PEA-MPS

in the process of fracture healing. These animals showed a decreased inflammatory response

during the early phase and an increase in the degree of fibrosis, cartilaginous callus formation
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and woven bone remodelling during the late phase. In the primary stage of the inflammatory

process, mast cell accumulation in injured tissues plays a central role [32]. In the skin of the

affected extremity CRPS-I patients show increased tryptase, suggesting an increase in mast cell

accumulation and degranulation [33]. Because mast cells release a number of inflammatory

mediators such as NGF [34] in injured tissues, we hypothesized that mast cell degranulation

is involved in the nociceptive sensitization in this tibia fracture model of CRPS-I. PEA-MPS

oral treatment reduced mast cells and, in parallel, significantly limited NGF expression in the

inflamed tissue.

MMPs have important roles in bone repair and development, and participate in the interac-

tion between skeletal progenitors and inflammatory cells [29, 35]. MMP9 participates also dur-

ing the inflammatory phases of repair [36]. PEA-MPS oral administration significantly up-

regulated MMP9 expression compared to vehicle-treated mice. MMP9 is expressed both by

osteoclasts and bone marrow-derived myeloid cells, which are involved in extracellular matrix

remodelling during bone repair [37]. PEA-MPS treatment clearly accelerated endochondral

Fig 6. Efficacy of PEA-MPS on osteoclasts on tissue sections. Safranin O/fast green staining was used to evaluate skeletal cell

differentiation and callus formation. PEA-MPS treatment accelerated osteogenesis and bone formation in the callus (C and D, and

Figure c in S4 File) compared to the vehicle-treated mice (B and D, and Figure b in S4 File). A p-value less than 0.05 was considered

significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g006

New formulation of micronized and ultramicronized N-palmitoylethanolamine and complex regional pain syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0178553 June 8, 2017 13 / 21

https://doi.org/10.1371/journal.pone.0178553.g006
https://doi.org/10.1371/journal.pone.0178553


Fig 7. Efficacy of PEA-MPS on TNF-α and IL-1β expression. Twenty-eight days after surgery tissue taken from vehicle-

treated mice displayed a substantial increase in TNF-α immunostaining (B and G, and Figure b in S5 File), compared to sham-

treated mice(A and G, and Figure a in S5 File). At this time also IL-1β staining was increased (E and H, and Figure e in S5 File)

with respect to sham-treated mice (D and H, and Figure d in S5 File). PEA-MPS treatment reduced staining for both markers

(C, F and G, H, and Figure c and f in S5 File). A p-value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05

vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g007
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Fig 8. Efficacy of PEA-MPS on nitrotyrosine and PAR formation. Samples from vehicle-treated mice displayed positive

nitrotyrosine staining (B and G, and Figure b in S6 File) and PEA-MPS treatment significantly reduced this effect (C and G, and

Figure c in S6 File). Nuclear PAR staining was notably increased in inflammatory cells of vehicle mice (E and H, and Figure e in

S6 File), which was reduced by PEA-MPS treatment (F and H, and Figure f in S6 File). Sham-treated mice failed to show

positive staining (A, D for nitrotyrosine and G, H for PAR, respectively, Figure a and d in S6 File). A p-value less than 0.05 was

considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g008
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Fig 9. Efficacy of PEA-MPS on Bax and Bcl-2 expression. Twenty-eight days after surgery, tissues from vehicle-treated

mice showed increased staining for Bax (B and G, and Figure b in S7 File) compared to sham mice (A and G, and Figure a in S7

File). PEA-MPS treatment decreased this staining (C and G, and Figure c in S7 File). Sham-treated mice exhibited positive Bcl-

2 staining (D and H, and Figure d in S7 File) compared to vehicle-treated animals (E and H, and Figure e in S7 File). Moreover,

PEA-MPS treatment reverted the inhibitory action of distal tibia fracture on Bcl-2 protein expression (F and H, and Figure f in S7

File). A p-value less than 0.05 was considered significant. *p<0.05 vs. sham, ˚ p<0.05 vs vehicle.

https://doi.org/10.1371/journal.pone.0178553.g009
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ossification, whereas numerous uncalcified chondrocytes–implicated in delayed healing—per-

sisted at the fracture site in untreated mice.

In the first phase of fracture repair, primary haemorrhage within fracture sites progresses

into a hematoma, with infiltrating inflammatory cells (including macrophages) [38]. This in-

filtrate induces the activation of inflammatory cascades through the secretion of numerous

cytokines. Macrophages produce pro-inflammatory cytokines such as TNF-α and IL-1 [39].

PEA-MPS treatment reduced up-regulation of these two cytokines. In the cascade of events

which accompany the later phases of CRPS-I, metabolic alterations due to a disturbed capillary

exchange exacerbate and maintain the clinical features of CRPS-I. In this setting, up-regulation

of oxygen free radicals such as superoxide anion and peroxynitrite support the inflammatory

process [40]. These radicals cause oxidization of sulfhydryl groups, lipid peroxidation and

nitration of tyrosine residues. Lipid peroxidation and nitrotyrosine expression were elevated

in our distal tibia fracture mice, and treatment with PEA-MPS significantly reduced nitrotyro-

sine immunostaining. Peroxynitrite can also activate the DNA repair enzyme PARP, which

synthesizes chains of ADP-ribose in reply to single-strand DNA breaks. NAD+ is required for

this reaction, and hyper-activation of PARP can reduce cellular reserves of NAD+ and lead to

ATP depletion, ultimately resulting in cellular dysfunction and death. In the present study,

PEA-MPS treatment decreased PARP activity. Finally, tissue apoptosis may serve as a marker

for CRPS-I [41, 42]. Our data show that PEA-MPS treatment reduced tibia fracture-induced

Bax expression and increased Bcl-2 expression that was reduced in tibia fracture mice.

Conclusions

Collectively, the findings described here demonstrate that 28 days after tibia fracture induction

PEA-MPS treatment, by attenuating the inflammatory response, allodynia and hyperalgesia,

may be an innovative pharmacological approach for treatment of CRPS-I.
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