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Summary

The objective of this analysis was to explore temporal and spatial variation in teen birth rates 

TBRs across counties in the USA, from 2003 to 2012, by using hierarchical Bayesian models. 

Prior examination of spatiotemporal variation in TBRs has been limited by the reliance on large-

scale geographies such as states, because of the potential instability in TBRs at smaller 

geographical scales such as counties. We implemented hierarchical Bayesian models with space–

time interaction terms and spatially structured and unstructured random effects to produce 

smoothed county level TBR estimates, allowing for examination of spatiotemporal patterns and 

trends in TBRs at a smaller geographic scale across the USA. The results may help to highlight 

US counties where TBRs are higher or lower and to inform efforts to reduce birth rates to 

adolescents in the USA further.
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1. Introduction

Teen birth rates (TBRs) have declined over the past several years across nearly every state in 

the USA (Hamilton and Ventura, 2012). In 2013, there were 26.5 births for every 1000 

adolescent females (15–19 years of age), representing a decline of 57% from TBRs in 1991 

(Martin et al., 2015). The 1991 TBR, 61.8 births per 1000 women aged 15–19 years, marks 

both a recent high and the start of the nearly continuous downward trend.

TBRs vary by state, with higher values seen across the south and south-western regions of 

the country and lower TBRs observed in the north-east (Ventura et al., 2014). Moreover, the 

declines in TBRs evidenced over the past several years have varied by state, with steeper 

declines in the Southeast, Mountain, Pacific and upper Midwest areas of the USA (Ventura 

et al., 2014). However, county level variation in TBRs and corresponding trends over time 

have not been explored. County level analyses have largely not been undertaken because of 

the potential instability of the direct estimates at this level, which is a greater problem for 

counties that are sparsely populated. Direct estimates for TBRs are typically suppressed in 

counties with fewer than 20 births because of concerns about the stability and reliability of 

the estimates. To address these problems, we employed hierarchical Bayesian models with 

space–time interaction terms as well as spatially structured and unstructured random effects 

to produce stable county level estimates of TBRs from 2003 to 2012.

Past studies have looked at the risk factors affecting teen pregnancies (Chang et al., 1998; 

Dennison, 2004; Kirby, 2005; National Latino Research Center, 2005a,b; Kearney and 

Levine, 2012; Kuang and Williams, 2013; National Campaign to Prevent Teen and 

Unplanned Pregnancy, 2013) and reported that poverty, lower levels of education, 

unemployment and smoking, drug and alcohol abuse issues are associated with elevated 

TBRs. Generally, reduced socio-economic opportunity has been associated with higher 

TBRs (Kost et al., 2010; Kearney and Levine, 2011, 2012; Kost and Henshaw, 2012; 

Penman-Aguilar et al., 2013; Population Reference Bureau, 2012; Shoff and Yang, 2012). 

However, most prior studies have focused on TBRs at the national level or state level. It is 

important to note that these factors also vary within states and over time.

The objective of this analysis was to explore temporal and spatial variation in TBRs across 

3138 counties in the USA, from 2003 to 2012. Bayesian hierarchical space–time interaction 

models (Besag et al., 1991; Besag and Kooperberg, 1995; Knorr-Held and Besag, 1998; 

Lagazio et al., 2001) were used to predict TBRs at the county level. These county level TBR 

estimates were mapped to examine geographic and temporal variation in TBRs across the 

USA. Results may help to highlight US counties where TBRs are significantly higher or 

lower than a selected target.

The plan of this paper is as follows. Section 2 contains information on data and methods. In 

Section 3, we discuss methods for evaluating model fit, comparisons of the models proposed 

and residual analysis. Sections 4 and 5 discuss results and findings. Finally, in Section 6, we 

discuss conclusions and future research directions.

The programs that were used to analyse the data can be obtained from http://

wileyonlinelibrary.com/journal/rss-datasets
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2. Methods

2.1. Description of data and sources

Data on the number of live births for women aged 15–19 years were extracted from the 

national vital statistics birth data files for the years 2003–2012 (e.g. National Center for 

Health Statistics (2012)). These data were then aggregated to the county level to provide a 

teen birth count for each county per year. The denominators to calculate TBRs were 

obtained from intercensal and post-censal population estimates of the number of females 

aged 15–19 years residing within each county over the same time period. These population 

denominators were extracted from the files containing intercensal and post-censal bridged 

race population estimates provided by the National Center for Health Statistics. For each 

year, the July population estimates were used with the exception of the year of the decennial 

census, 2010, for which the April estimates were used. Using these two sources of data, 

annual TBRs were calculated at the county level.

During the decade of interest, county borders in Alaska changed such that new counties 

were formed and others were merged. These changes were reflected in the population files 

but not in the natality files. For this reason, two counties in Alaska had to be collapsed so 

that the birth and population counts were comparable. Additionally, Kalawao County, which 

is a remote island county in Hawaii, recorded no births and the census estimates indicated a 

denominator of 0 (i.e. zero females between the ages of 15 and 19 years residing in the 

county from 2003 to 2012). Hence, Kalawao County was removed from the analysis and the 

final analysis was conducted on 3138 counties in the USA.

County level covariates including various socio-economic indicators (e.g. per capita income, 

percentage of the county in poverty and the unemployment rate) and demographic variables 

(e.g. racial composition, proportion of foreign-born residents and level of education) were 

obtained from the area resource file (Health Resources and Services Administration, 2012). 

These variables were included in a principal component analysis that is described later in 

Section 4.1. In addition to these covariates, the number of family planning and Title X 

clinics by county, based on data provided by the Guttmacher Institute (2010), were initially 

included in the models but subsequently removed because of the lack of statistical 

association with TBRs at the county level.

The broad scale trends in TBRs were examined by census regions (Midwest, Northeast, 

South, and West), census divisions (East North Central, East South, Mid-Atlantic, Mountain, 

New England, Pacific, South Atlantic, West North Central and West South Central) and 

urban–rural designations as classified by the National Center for Health Statistics (https://

www.census.gov/geo/reference/gtc_census_divreg.html) (Ingram, 2012). Census divisions 

are groupings of states and the District of Columbia that are subdivisions of the four census 

regions. The urban–rural classification scheme identifies large central counties with 1 

million or more residents that contain an entire population of the largest principal city or are 

completely contained within the largest principal city, or contain at least 250 000 residents 

of a principal city of the metropolitan statistical area. Counties in metropolitan statistical 

areas of 1 million or more residents that do not meet criteria for being large central (e.g. 

suburbs) qualify as large fringe. Medium metro are counties with a population between 250 
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000 and 999 999 and small metro counties have a population less than 250 000. 

Micropolitan counties are those consisting of an urban cluster of 10 000 to fewer than 50 

000 residents. Counties outside core-based statistical areas are classified as non-core or 

rural.

For a list of the variables that were used in the final analysis refer to Table 1.

2.2. Models

We fit a hierarchical Bayesian model by using methods similar to those established by Xia 

(1997), Wall (2004) and Lawson (2013) (chapter 12) for epidemiological studies and disease 

mapping. Let yit be the counts of teen births in county i and year t, and nit the counts of teen 

population in county i and year t. Then, yit ~ binomial(nit, pit ), i = 1, . . . , m counties and t = 

1, . . . , T years, where pit is the probability of teen births in county i at time t.

The general space–time model structure for modelling pit that was laid down by Böhning et 
al. (2000), Lagazio et al. (2001), Lawson (2013) (chapter 12), Knorr-Held and Besag (1998) 

and Rao and Yu (1994) is

where Ai is the spatial group, Bt is the temporal group and Cit is the space–time interaction 

group.

Several models were implemented following this general space–time modelling framework. 

The two best competing models are presented here, representing two special cases of the 

general space–time model. One case follows the approach of Besag et al. (1991) and 

employs spatially structured random effects to account for spatial auto-correlation in TBRs; 

this model is referred to as the convolution model. The alternative approach also employs 

random effects following the approach of Carlin and Louis (2009), but these terms are not 

spatially structured in nature. These two alternative model specifications are described 

below.

2.2.1. Besag–York–Mollié model—The raw county level TBRs exhibited strong spatial 

auto-correlation as indicated by a Moran’s I -test for spatial auto-correlation. Some of the 

spatial auto-correlation can be modelled by including spatially patterned covariates, but 

residual spatial auto-correlation often remains due to unmeasured confounders, aggregation 

effects or neighbouring effects (Lawson (2013) (chapter 5) and Lee (2013)). Thus, a priori, 
we expected that models accounting for such autocorrelation might be necessary. A common 

approach to tackle spatial auto-correlation is to introduce spatially structured random effects 

into the model. These random effects are specified by conditional auto-regressive priors via 

the adjacency matrix of the counties (Besag et al., 1991). Hence, we implemented the 

convolution model (Besag et al., 1991) to account for this potential spatial auto-correlation 

in TBRs (Besag et al., 1991). The convolution model is
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The convolution model includes

a. a logit link function log{pit /(1 − pit )},

b. α0, an intercept,

c. a time trend term a1i * yeart,

d. Xi′γ, where Xi is the ith row of the covariates matrix and γ is a vector of 

regression parameters,

e. spatial random effects ui by county to model strong spatial auto-correlation, i = 

1, . . . , m counties,

f. non-spatial random effects vi by county to model residual spatial auto-

correlations that were not dealt with by our spatial random effects, ui, i = 1, . . . , 

m counties, and

g. a space–time interaction term ψit , a random effect where ψit is a function of its 

past values, ψi,t−1, plus an error term.

Parameters under (e) are modelled via normal conditional auto-regressive priors (Besag et 
al., 1991). Parameters under (f) are modelled via normal conditional priors. Parameters 

under (g) are modelled via type II random-walk interactions (Knorr-Held and Rasser, 2000), 

which are included to account for any residual spatiotemporal dependence or variation that 

is not captured by the spatial or temporal main effects. The values for a given county in a 

given year depend on the values that were observed for that county in the previous year plus 

a residual (Knorr-Held and Rasser (2000) and Lawson (2013) (chapter 12)).

2.2.2. Basic model—To discern whether spatially structured random effects offer major 

improvements in model fit, a basic model without spatially structured random effects was 

also examined. The basic model is

The basic model includes (Carlin and Louis (2009) (chapter 2))

a. a logit link function log{pit /(1 − pit )},

b. β1i, the intercept,

c. the time trend term β2i* yeart.

d. Xi′γ, where Xi is the ith row of the covariates matrix and γ is a vector of 

regression parameters, and

e. ψit, a random effect where ψit is a function of its past values, ψi,t−1, plus an error 

term.
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Parameters under (d) and (e) are modelled as in the convolution model that was described 

above. Specifically, ψit is modelled via a type II random-walk interaction (Knorr-Held and 

Rasser, 2000). Additionally, the random intercept (b) can be thought of as the combination 

of two terms from the convolution model, α0 + vi. Thus, the basic model differs from the 

convolution model in that the basic model does not include the spatially structured random-

effect term that appears in the convolution model.

Several other models were implemented in WinBUGS, including simpler versions of the two 

models that were described above. Because of poor convergence or fit of these other models, 

we present results for only the two best performing models (see Section 4.2).

2.2.3. Prior distribution assumptions—Since the conditional auto-regressive normal 

prior is assigned for the spatial random effects ui in the Besag–York–Mollié (BYM) model, 

with sum-to-zero constraints on the spatial random-effect term (Lunn et al., 2013), a flat 

prior is assumed on the intercept α0. For the basic model, the county-specific intercepts β1i 

and time trend terms β2i are modelled to arise from a multivariate normal prior distribution 

with mean μ and a precision matrix ϒ which is assigned a Wishart (R,2) prior distribution, 

where R is set to be a diagonal matrix (Carlin and Louis, 2009) (chapter 2)). Specifically,

a. βi = (β1i, β2i)′ and

b. βi ~ IIDN(μ, ϒ).

The hyperprior of μ is chosen to be very vague by choosing the precision matrix to be very 

small. The hyperprior of ϒ is also made vague by setting the degrees of freedom equal to 2, 

the lowest for which the Wishart prior is proper, and using an approximate value for the 

precision matrix (Carlin and Louis, 2009).

Sensitivity analyses were conducted with different prior values on the precisions with a 

choice of parameters leading to priors with most of the probability mass around the expected 

values of the variance parameters (Griffin and Brown, 2010; Furrer and Sain, 2010). The 

choice of inverse gamma priors IG(0.01, 0.01) (Gelman, 2006) resulted in the lowest 

deviance information criterion (DIC) in model comparisons (the DIC is described in detail in 

Section 3.4), though the posterior estimates were unaffected by the choice of the priors. The 

time trend term a1i in the basic model, the non-spatial random effects vi in the BYM model 

and the fixed effects γi in both the BYM and the basic model are assumed to be independent 

zero-mean Gaussian distributions with inverse gamma priors IG(0.01, 0.01) on the 

precisions for all the components. The precisions on the spatial random effects ui in the 

BYM model and the random effect ψit in both the BYM and the basic model are also 

assigned inverse gamma priors IG(0.01, 0.01). More detailed information on the statistical 

formulation of models and priors can be seen in Appendix A.

2.3. Markov chain Monte Carlo sampling

Analyses were implemented via Markov chain Monte Carlo (MCMC) simulations using the 

WinBUGS freeware (Lawson, 2013; Ntzoufras, 2009; Spiegelhalter et al., 2003) in the 

software R (Ntzoufras, 2009) via the library R2WinBUGS. We used the Brooks–Gelman–

Rubin diagnostic tool, density, auto-correlation and history plots to confirm convergence, 
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keeping every 40th value after a burn-in period of 50 000 for 100 000 iterations. We based 

inference on an additional 100 000 iterations after convergence. In the converged sample we 

compared the models by using the DIC (Spiegelhalter et al., 2002), Bayesian p-values and 

Gelfand and Ghosh (1998) statistics. Maps were produced by using R and the geographical 

information system ArcGIS (Environmental Systems Research Institute, 2011).

2.4. Exceedance probabilities

The posterior probabilities pit that were derived from the best model were used to detect 

areas with elevated TBRs (Lawson, 2013). The exceedance probability is defined as the 

probability that the posterior probability pit exceeds some threshold c. If the posterior 

sampled values are , where n is the number of samples, the exceedance 

probability can be calculated as

(1)

where I(a) is an indicator function.

The raw county level TBRs ranged from 0 to 133 per 1000 in 2012, with a mean of 36 per 

1000 (median, 34 per 1000; interquartile range, 21–48 per 1000). By contrast, in 2003, the 

raw county level TBRs ranged from 0 to 147 per 1000 with a mean of 44 per 1000 (median, 

42 per 1000; interquartile range, 28–58 per 1000). The threshold for the exceedance 

probability c was therefore chosen to reflect a TBR of 36 per 1000, which coincides with the 

mean raw TBR across all included counties for the year 2012. These exceedance 

probabilities were mapped, grouping counties into those with high likelihood of exceeding 

the threshold and counties with low likelihood of exceeding the threshold.

3. Model check and selection

3.1. Model check: Bayesian p-value

The structural assumptions of the fitted model can be ascertained by the use of posterior 

predictive model checks (Ntzoufras, 2009; Gelman et al., 1995). The evaluation of the 

posterior distribution of the Bayesian model is done by comparing the observed data yobs 

with the posterior predictive distribution or replicates yrep. We generated replicate data sets 

yrep for each posterior draw of the model parameters and then calculated a test quantity 

T(yit, θ) (where θ is the vector of unknown parameters) representing an omnibus goodness-

of-fit measure, defined as

(2)
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(Gelman et al. (1995) (page 172)), where the summation is over all sampled observations. 

Bayesian p-values associated with the test quantity were computed; values close to 0 or 1 

(Gelman et al., 1995) suggest that the model might not be a good fit.

3.2. Model check: comparison with direct estimates of state teen birth rates

The posterior probabilities that are produced by each model for each county and year were 

summed by state and weighted by county population size as a proportion of state population 

size to create state model-based estimates of the TBR for each year. These model-based 

estimates were compared with the direct estimates of the TBR for each state and year to 

ascertain whether one of the models performed better or worse than another in terms of 

matching the state direct estimates.

3.3. Model selection: Gelfand and Ghosh statistic

Models were also evaluated by using the Gelfand and Ghosh statistic, which compares 

observed data yobs with the replicates yrep. This approach minimizes the posterior predictive 

loss over all possible predictions of future observations yrep (Ando, 2010; Gelfand and 

Ghosh, 1998). The replicated data set is used to compute the posterior predictive mean and 

variance for each observation. A goodness-of-fit measure G, which is the error sum of 

squares of the difference between the data and its posterior predictive mean, is computed. It 

is calculated as

(3)

(where θ is the vector of unknown parameters). We calculate P, which is the sum over all 

observations of the posterior predictive variances. It is defined as

(4)

With the increasing complexity in models, G will decrease but P will begin to increase 

(Gelfand and Ghosh, 1998). The statistic D is calculated as G + P, which is a combination of 

goodness of fit and variability (Barker et al., 2013). Models with smaller D-values are 

selected.

3.4. Deviance information criterion for model comparison

Models can be compared by using a criterion utilizing a trade-off between the fit of the data 

and the corresponding complexity of the model. The DIC was proposed by Spiegelhalter et 
al. (2002) and is widely used in Bayesian modelling for comparing hierarchical models 

(Lawson, 2013; Ntzoufras, 2009; Spiegelhalter et al., 2002, 2003). A model fit can be 

summarized with deviance. We define deviance as
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(5)

where yit are the data, θ is the vector of unknown parameters of the model and L(yit |θ) is 

the likelihood function. But deviance does not take into account the complexity of the 

model. A way to estimate the complexity is by measuring the effective number of 

parameters in a model (Spiegelhalter et al., 2002), pD, defined as

(6)

where D̄ = Eθ|y (D) is the posterior mean deviance and D(θ̄) = D{Eθ|y (D)} is the deviance 

evaluated at the posterior mean of the parameters. The DIC is then defined as

(7)

Models with smaller DIC are preferred.

3.5. Residual analysis

We employed further model checks by analysing the residuals from each model. Residuals 

were defined as the difference between the model-based and direct estimates of the TBR for 

each county and year. The distribution of the residuals was inspected for deviations from 

normality. Residuals were also examined in relation to county size and year to determine 

whether there were potential non-linear patterns in TBRs that were not accounted for by the 

model.

4. Results

4.1. Principal component analysis

Including covariates can enhance small area predictions. On the basis of the past research on 

risk factors affecting teen pregnancies at the state and national level (Chang et al., 1998; 

Dennison, 2004; Kearney and Levine, 2011, 2012; Kuang and Williams, 2013; Penman-

Aguilar et al., 2013; Population Reference Bureau, 2012) 91 county level covariates were 

initially considered as potential predictors and, of these, 18 had an absolute Spearman rank 

correlation greater than 0.4 with the TBRs for the majority of the years. County level 

covariates included various socio-economic indicators (e.g. per capita income, percentage of 

the county in poverty and the unemployment rate) and demographic variables (e.g. racial 

composition, proportion of foreign-born residents and education level), measured at different 

time points, and were obtained from area resource files (Health Resources and Services 

Administration, 2012). The aggregated covariates were also examined in addition to the 

individual year covariates. Collinearity within this reduced set of predictors was suspected 

and thus, to reduce and transform data in the presence of multicollinearity, a principal 
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component analysis was conducted. A probabilistic version of principal component analysis 

(Tipping and Bishop, 1999) was also investigated. Both of the approaches provided nearly 

identical results. Hence, the orthogonal component scores derived from the simpler principal 

component analysis were included.

The principal component analysis, using a varimax rotation, indicated that three components 

were sufficient as they accounted for 88% of the total variation. The variables loading on 

each of the three components are described in Table 1; the three components largely 

reflected county level income and poverty, education and percentage non-Hispanic white. 

The three principal components exhibited substantial geographic variation; these patterns 

can be seen in the figures. The first factor, corresponding to high levels of poverty and low 

income (Fig. 1), was highest in the South, Appalachia, New Mexico and parts of the North 

West and Alaska. The second factor, which is related to higher levels of education (Fig. 2), 

was highest in the North East and North Central USA, and lowest in the South and west part 

of Texas. The third factor, percentage white (Fig. 3), was highest in the northern half of the 

USA, suggesting that the South, the East Coast, South West, Alaska and Hawaii have larger 

racial or ethnic minority populations.

4.2. Estimates

Several models were implemented in WinBUGS. The best competing convolution and basic 

models are described in this analysis. These models were selected on the basis of the DIC, 

Gelfand and Ghosh statistic and the Bayesian p-values (Table 2). Additionally, convergence 

was monitored via auto-correlation plots, density plots and history or trace plots. Gelman–

Rubin diagnostic plots were also monitored for convergence. Although models without 

covariates were explored, when the orthogonal component scores were not included, the 

variance parameters had lumpy history plots or trace plots and high degrees of auto-

correlation. After adding the orthogonal component scores, the residual variance 

distributions were cleaner and the density plots were more normally distributed and had 

substantially less auto-correlation, suggesting that the inclusion of the orthogonal component 

scores facilitated model convergence for the random effects, perhaps by accounting for some 

of the spatial dependence. The Gelman–Rubin diagnostic tool also indicated convergence. 

Thus, despite not contributing to a major reduction in the DIC, the inclusion of the three 

orthogonal component scores aided model convergence. Moreover, the MCMC output in 

Table 3 shows that all the three scores are significantly associated with TBRs (the 95% 

Bayesian credible intervals exclude 0). The three principal component scores, exceedance 

probabilities by county and year, and the posterior estimates of the TBRs by county and year 

were mapped.

4.3. Comparison of models

The basic and the BYM models performed similarly in terms of the comparison of model-

based and direct estimates of state TBRs. Both models produced state level TBR estimates 

that were within 1% of the direct estimates for all states except for North Dakota, for which 

the difference between the model-based and direct estimates was less than 2% (Fig. 4). 

These differences were larger for states with smaller populations (e.g. North and South 

Dakota and Wyoming) and smaller for states with larger populations (e.g. Texas, New York, 
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California and Florida) (Fig. 5). At the county level, the residuals did not exhibit any 

apparent non-linear patterns or major deviations from normality (Fig. 6). Similarly to the 

comparisons of model-based and direct estimates at the state level, residuals at the county 

level were generally larger for counties with smaller populations. Both models exhibited 

similar patterns in the analysis of the residuals; when the residuals from each model were 

plotted against each other (shown here for the year 2012), they fell along a line of equality 

(Fig. 7).

4.4. Model results

The BYM and basic models performed similarly in terms of convergence and residual 

analysis. In comparisons of model fit, the BYM model provided a better fit with lower DIC 

and Gelfand and Ghosh statistics (see Table 2). The DIC difference of 10 is considered 

significant (Spiegelhalter et al., 2002). Hence the convolution model was chosen and is 

presented below, though it was comparatively computationally intensive. The Bayesian p-

values indicated good fit for both the BYM and the basic models.

The maps (Figs 8 and 9) show the considerable spatiotemporal variation in county level 

TBRs from 2003 through to 2012. TBRs ranged from 5.99 to 124.00 in 2003 and 3.56 to 

125.70 in 2012, with rates declining in the majority of counties (2489) between those years, 

increasing in only 648 counties, and essentially unchanged in the remaining county. Among 

the counties with declining rates, births to teens decreased by 12.52% on average from 2002 

to 2012, with declines as great as 79.31% seen. For 413 counties, the TBRs declined from in 

excess of the exceedance threshold (36 births per 1000) in 2003 to either lower than or not 

significantly different from the threshold in 2012. In general, birth rates were higher in the 

southern and south-western regions of the USA (Ventura et al., 2014). However, within those 

regions and states of high TBR, rates by county show considerable variability among 

themselves, with rates for several counties across west Texas, along the Mississippi River, as 

well as parts of Georgia and Alaska, exceeding 80 births per 1000 women aged 15–19 years. 

Fig. 10 shows the difference in the predicted TBRs (per thousand) for years 2003–2012.

TBRs were highest across the entire study period in the South, and lowest in the Northeast. 

In 2003, there were bands of particularly higher TBRs (greater than 80 births per 1000 

teens) across west Texas and other states in the South along the Mississippi River (e.g. 

Mississippi, Tennessee and Arkansas), as well as pockets in Alaska, Florida, Georgia, South 

Carolina, New Mexico and Oklahoma (see Fig. 8). The lowest TBRs in 2003 were in New 

England (e.g. New Hampshire, Vermont, Massachusetts, Rhode Island and New York), 

Minnesota, Wisconsin, Illinois and Iowa. In 2012, the geographic patterns were largely 

similar in terms of areas with the highest and lowest TBRs, but there were fewer counties 

with TBRs in excess of 80 births per 1000 adolescent females (see Fig. 9). Areas of elevated 

TBRs remained in parts of Alaska, west Texas, Oklahoma, along the Mississippi River and 

Georgia.

In 2012, most of the counties across the southern states had very high probabilities (p > 

0.95) of exceeding the threshold of 36 per 1000 (Fig. 11). In contrast, most of the counties in 

New England and the states around the Great Lakes had very low probabilities of exceeding 

this threshold (p < 0.05). In 2003 (Fig. 12), 49.1% of counties exceeded the threshold with 
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very high probabilities (p > 0.95), whereas in 2012 (see Fig. 11) this number declined to 

37.2%. In 2003, 27% had TBRs below the exceedance threshold (p < 0.05), whereas in 2012 

this number increased to 36%.

Looking at the declines in TBRs by census region, the South had the highest TBRs over the 

study period and the Northeast had the lowest. In 2003, the West had slightly higher TBRs 

than the Midwest (both in the middle between the South and Northeast) but TBRs converged 

for these two regions over the study period such that they were the same in 2012 (Fig. 13). 

Looking at the declines by urban–rural category, the lowest TBRs were observed for the 

large fringe counties and the highest for the non-core or rural counties throughout the study 

period (Fig. 14). The largest declines appeared for large central cities, from 2006 to 2012 

(Fig. 15).

5. Discussion

Consistent with prior research, we found higher TBRs across counties in the southern USA 

and lower TBRs in New England counties during the study period, 2003–2012. Whereas 

TBRs declined across all regions of the country from 2003 to 2012, TBRs remained in 

excess of 80 births per 1000 adolescent females in several counties across west Texas and 

along the Mississippi River, as well as parts of Georgia and Alaska. In 2012, 50.1% of 

counties had TBRs in excess of 36 births per 1000 adolescent females (p > 0.95): our chosen 

exceedance threshold. Studies by Kearney and Levine (2011, 2012), National Campaign to 

Prevent Teen and Unplanned Pregnancy (2013) and Ventura et al. (2014) show similar 

geographic patterns and changes in state level TBRs, with birth rates higher in the southern 

and south-western regions of the USA and declining for all states over several recent 

decades. Prior studies such as Kuang and Williams (2013) and Chang et al. (1998) have 

identified risk factors that are associated with teen pregnancy such as lower income, 

unemployment, parents with low levels of education and smoking, drug and alcohol abuse 

issues. Our analysis also found that socio-economic and demographic characteristics were 

associated with TBRs at the county level, and that the inclusion of these factors in the 

models accounted for some of the spatial auto-correlation that is observed in TBRs. The 

geographic variation in teen births was consistent with what has been published by the 

Division of Vital Statistics at the National Center for Health Statistics at the state level 

(Hamilton and Ventura, 2012; Mathews et al., 2010; Ventura et al., 2014). Also lending 

credibility to the model estimates is the finding that the state level direct estimates of TBRs 

corresponded very closely to the model-based estimates of state TBRs. Generally, the 

model-based estimates were within 1% of the direct state estimates.

The posterior MCMC output from WinBUGS for the parameter estimates from the basic 

model is shown in Table 3, which shows that all the three orthogonal components were 

significantly associated with TBRs. The correlation of TBRs for the year 2012 with the three 

factors are also shown in Fig. 16. The γ-coefficients correspond to the three orthogonal 

component scores from the principal component analysis. Although the orthogonal 

component scores did not substantially improve the model fit in terms of the DIC, they did 

facilitate model convergence, improved the posterior distributions of the variance parameters 

in terms of smoothed density plots, lowered auto-correlation and were found to be 
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significantly associated with TBRs. The uncertainty around the component scores, however, 

was not explicitly accounted for in the model. Incorporating this uncertainty may have an 

influence on the posterior predictions, parameter estimates and 95% Bayesian credible 

intervals; further methodological work on how best to propagate this uncertainty from the 

principal component analysis throughout the hierarchical Bayesian models and the 

corresponding effect on results would be instructive. Higher TBRs in 2003 (see Fig. 8) and 

in 2012 (see Fig. 9) occur in areas where poverty is high and income is low (see Fig. 1 

(darker areas)), areas with low education (see Fig. 3 (lighter areas)) and a lower percentage 

of the population being white (see Fig. 2 (lighter areas)).

The limitations of this analysis are as follows. Although several models were implemented 

and evaluated, ranging in complexity, it is possible that alternative models incorporating 

different covariates or using different specifications would have improved model fit or 

prediction. The MCMC simulations were extremely computationally intensive, requiring an 

average of 6 weeks to run on a 150-Gbyte machine, which is a major limiting factor in 

exploring alternative models. Additionally, the exceedance probabilities are sensitive to the 

threshold that is selected, and alternative thresholds might be of interest. The threshold that 

we selected is somewhat arbitrary, but our objective was to demonstrate how this method 

could be used to examine county level variation in meeting specified public health 

objectives. Finally, there may be variation in TBRs at the subcounty level, but this variation 

cannot currently be explored by using data from the national vital statistics system.

The strengths of this analysis include the combination of a detailed geographic focus (at the 

county level), over a substantive period of time, accounting for selected factors that affect 

teen births, including level of education, income, poverty and race distribution. To date, most 

of the work on estimating TBRs and assessing geographic variation has been done at the 

state level (Hamilton et al., 2016; Ventura et al., 2014). County level analyses have largely 

not been undertaken because of the potential instability of the direct estimates at this level, 

which are a greater problem for counties that are sparsely populated. This study is the first to 

address county level variation in TBRs over time by using the BYM model to obtain 

smoothed, reliable estimates. The BYM model accounted for spatial and temporal 

dependence along with space–time interaction terms in generating county level estimates. 

The BYM model was enhanced by the inclusion of the three principal component scores—

income and poverty, education and race or ethnicity—which were significantly associated 

with TBRs at the county level. In substantive terms, these findings can provide important 

insight into the trends and changing patterns of teen childbearing in the USA which are not 

afforded by an examination of national or state rates and not possible with an examination of 

the direct county level birth rates. Areas were identified in this paper where the estimated 

TBR was shown to be significantly higher than that of surrounding areas over time. 

Moreover, these areas were found not only within a state but across borders between states. 

Results from this study may aid policy makers and researchers in targeting teen pregnancy 

prevention programmes to areas in greatest need. This paper contributes to the existing 

literature by applying an existing methodology, the BYM model, to shed light on small-scale 

geographic variation in birth rates. This method could be applied to a variety of outcomes of 

public health or demographic significance for small geographic areas taking into account the 

spatial auto-correlation and time and space effects.
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6. Conclusions and future research

The Bayesian space–time interaction models that were employed here allow the estimation 

of county level TBRs and an examination of how geographic patterns have changed over 

time. Results of this analysis suggest that 37% of counties evidenced TBRs in excess of 36 

births per 1000 adolescent females in 2012 (p > 0.95). In contrast, TBRs declined for 80% of 

counties over the study period, with 36% of counties achieving TBRs lower than the 

exceedance threshold of 36 births per 1000 adolescents (p < 0.05). This approach may be 

valuable to monitor spatiotemporal trends in TBRs and related public health issues, as well 

as to evaluate whether counties have met or exceeded the national average or other targets.

Results may inform future research seeking to understand spatiotemporal patterns in teen 

births better and to target efforts to reduce TBRs in areas where they remain high. Given 

differences in TBRs across racial or ethnic subpopulations and specific age ranges such as 

15–17 and 18–19 years, further examination of spatiotemporal patterns for these specific 

subgroups may be of interest. Work is under way to examine hot and cold spots in TBRs as 

well as spatial outliers (Khan et al., 2015), methods which can provide additional insight 

about geographic patterns and how they may have changed over time. Future work will 

include additional data years 2013 and 2014. Future studies on how best to propagate the 

uncertainty in covariates throughout the models and how findings may or may not be robust 

to alternative model specifications, as well as how results from these models compare with 

other less computationally intensive methods, may be valuable in informing future work. 

Together, this line of research can help to highlight areas of the country where teen births 

remain elevated or areas that have shown evidence of success in reducing teen births.
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Appendix A: Prior assumptions: spatial model

a. α0 is assigned an improper flat prior

(8)

b. The prior for a1 is

(9)

where

(10)

c.

(11)

where

(12)

and

(13)

The prior for type II random-walk interaction is defined above and can be 

regarded as a form of residual (Lawson (2013) (chapter 12) and Knorr-Held and 

Rasser (2000)).

d.

(14)

where

(15)

e. The intrinsic conditionally auto-regressive prior for ui|u−i is

(16)
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and is termed correlated heterogeneity (variability), where

(17)

δi is the neighbourhood of the ith region, nδi is the number of neighbours, 

 and ωij equals 1 for counties i and j that are deemed neighbours and 

otherwise 0. We used the K -nearest-neighbours approach to define the spatial 

relationships between counties. The eight closest neighbours to the target county 

were assigned weights ωij = 1; all other counties are assigned weights ωij = 0. τu 

is the variance:

(18)

f. The prior for vi is

(19)

and is termed uncorrelated heterogeneity (variability), where τv is the variance 

and τv is assigned the prior

(20)

Prior assumptions: for the non-spatial model

(21)

(22)

The hyperprior for μ is assumed to be distributed as

(23)

The inverse of ϒ is assigned a Wishart prior with R as a diagonal matrix and 

degrees of freedom 2:
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(24)
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Fig. 1. 
Principal component analysis: construct 1—high poverty and low income (higher TBRs 

occur in areas where poverty is high and income is low (darker areas))
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Fig. 2. 
Principal component analysis: construct 2—educational level (higher TBRs occur in low 

education areas (lighter areas))
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Fig. 3. 
Principal component analysis: construct 3—race or ethnicity, percentage white (higher TBRs 

occur in areas where the percentage of the population is predominantly non-white (lighter 

areas))
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Fig. 4. 
Differences between state model-based (from the convolution model) and direct estimates: 

, states with population sizes less than 500000; , states with larger populations
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Fig. 5. 
Differences between state model-based (from the convolution model) and direct estimates by 

state population size: , states with population sizes less than 500000; , states with larger 

populations
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Fig. 6. 
Residuals from the convolution model by year: the few outlying points reflect counties with 

very small population denominators, typically n < 20
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Fig. 7. 
Convolution model and basic model residuals for the year 2012 exhibit similar patterns as 

they fall on the line of equality
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Fig. 8. 
Predicted TBRs (per thousand) from the convolution model for year 2003
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Fig. 9. 
Predicted TBRs (per thousand) from the convolution model for year 2012
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Fig. 10. 
Difference in predicted TBRs (per thousand) from the convolution model for years 2003–

2012
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Fig. 11. 
Exceedance probabilities from the convolution model for year 2012 illustrate where the 

TBRs exceed 36 per 1000 with high or low probabilities
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Fig. 12. 
Exceedance probabilities from the convolution model for year 2003 illustrate where the 

TBRs exceed 36 per 1000 with high or low probabilities
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Fig. 13. 
Trends in the predicted TBRs (per thousand) from the convolution model over time by 

census region: , Midwest; , Northeast; , South; , West
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Fig. 14. 
Trends in predicted TBRs (per thousand) from the convolution model over time by urban–

rural classification: , large central; , large fringe; , medium metro; , small metro; •, 

micropolitan; , non-core
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Fig. 15. 
Trends in predicted TBRs (per thousand) from the convolution model over time by division: 

, East North Central; , East South; , Mid-Atlantic; , Mountain; •, New England; , 

Pacific; , South Atlantic; , West North Central; , West South Central
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Fig. 16. 
Scatter plot of TBRs with the three orthogonal component scores and the scatter plot for the 

three orthogonal component scores with each other: (a) R = 0.496; (b) R = −0.631; (c) R = 

−0.313
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Table 1

Variables included in the principal component analysis

Variable Principal component analysis component

1 2 3

% white population 2010 −30 2 89†

% non-Hispanic white population 2010 −25 11 92†

Median household income 2011 −78† 43† −17

% persons in poverty 2011 89† −28 −26

% persons in poverty 2010 89† −29 −26

% persons in poverty 2009 91† −27 −22

% persons in poverty 2008 91† −30 −22

% persons in poverty 2007 90† −29 −24

% persons in poverty 2006 89† −30 −25

% persons in poverty 2005 89† −29 −26

% persons in poverty 2000 84† −35 −27

% persons age 0–17 years in poverty 2011 84† −37 −20

% persons below poverty level 2006–2010 87† −27 −25

% families below poverty level 2006–2010 81† −35 −29

% persons age ≥ 25 years with less than High School Diploma 2006–2010 42† −82† −30

% persons age ≥ 25 years with High School Diploma or more 2006–2010 −42† 82† 30

% persons age ≥ 25 years with ≥ 4 years college 2006–2010 −32 81† −23

Unemployment rate, ≥ 16 years, 2005 52† −29 −21

†
Significant positive (or negative) contribution to the component score.
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Table 2

Model selection and fit based on the Gelfand and Ghosh statistic, Bayesian p-value and DIC

Model G P D p-value DIC

Convolution 6271059417 6076027.018 6277135444 0.5717 210493

Basic 6274389428 6135753.038 6280525182 0.5632 210553
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Table 3

Parameter estimates for the convolution model: orthogonal scores coefficients γ and standard deviation sd of 

ψ

Node Mean sd Monte Carlo error 2.5 percentile Median 97.5 percentile

γ1 0.2008 0.006403 2.58×10−4 0.1881 0.2009 0.2131

γ2 −0.2815 0.006194 2.84×10−4 −0.2931 −0.2816 −0.269

γ3 −0.1809 0.006711 4.13×10−4 −0.1936 −0.181 −0.1677

sd(ψ) 0.00706 1.98×10−4 8.27×10−6 0.006681 0.007059 0.007457
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