
Sample Size Calculations for Time-Averaged Difference of 
Longitudinal Binary Outcomes

Ying Lou,
Department of Statistical Science, Southern Methodist University, Dallas, TX

Jing Cao,
Department of Statistical Science, Southern Methodist University, Dallas, TX

Song Zhang, and
Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX

Chul Ahn
Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX

Abstract

In clinical trials with repeated measurements, the responses from each subject are measured 

multiple times during the study period. Two approaches have been widely used to assess the 

treatment effect, one that compares the rate of change between two groups and the other that tests 

the time-averaged difference (TAD). While sample size calculations based on comparing the rate 

of change between two groups have been reported by many investigators, the literature has paid 

relatively little attention to the sample size estimation for time-averaged difference (TAD) in the 

presence of heterogeneous correlation structure and missing data in repeated measurement studies. 

In this study we investigate sample size calculation for the comparison of time-averaged responses 

between treatment groups in clinical trials with longitudinally observed binary outcomes. The 

GEE approach is used to derive a closed-form sample size formula, which is flexible enough to 

account for arbitrary missing patterns and correlation structures. In particular, we demonstrate that 

the proposed sample size can accommodate a mixture of missing patterns, which is frequently 

encountered by practitioners in clinical trials. To our knowledge, this is the first study that 

considers the mixture of missing patterns in sample size calculation. Our simulation shows that the 

nominal power and type I error are well preserved over a wide range of design parameters. Sample 

size calculation is illustrated through an example.
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1 Introduction

Diggle et al. (2002) provided sample size formulas to assess the treatment effect in repeated 

measurement studies assuming no missing data and the compound symmetry (CS) 

correlation structure among outcomes from the same subject. One sample size formula is 

based on comparing the rate of change between two groups and the other is based on 

comparing the time-averaged responses between two groups. The rate-of-change approach 

has been widely used to investigate if the rates of changes in outcomes are significantly 

different over the study period between two treatment groups. The time-averaged difference 

(TAD) is particularly meaningful in cases where the treatment effect has rapid onset and 

repeated measurements continue across an extended period after a maximum effect is 

achieved. In these situations, the TAD across time between two treatment groups may 

provide a more powerful evaluation of treatment efficacy than the within-subject trends or 

change scores (Overall & Doyle 1994). The TAD approach is also often used when outcome 

varies with time. The precision of experiment is increased by taking multiple measurements 

from each study subject. The TAD approach is used by incorporating the correlation among 

measurements from the same subject to determine if there is an overall difference in the 

proportion of responders between two treatment groups over the study period. In this study, 

we will investigate the sample size requirement for clinical trials with repeatedly measured 

binary outcomes, where the treatment effect is assessed based on TAD between two groups.

By obtaining multiple outcome measurements from the same subjects, researchers hope to 

reduce intra-patient variability and thus increase study power. The challenge in designing a 

clinical trial with repeated measurements, however, is that the impact of within-subject 

correlation and missing data needs to be taken into account appropriately. Lui (1991) derived 

a sample size formula for repeated binary outcomes with the Markov dependency given 

subject-specific probabilities without incorporating missing data. Lipsitz & Fitzmaurice 

(1994) used the weighted least squares approach to estimate sample size for the detection of 

a clinically important treatment effect in repeated measurement studies with a binary 

response. The generalized estimating equation (GEE) method (Zeger & Liang 1986) has 

been widely used to make inference based on repeated measurements. Under the MCAR 

(missing completely at random) assumption, it provides consistent estimators for regression 

parameters and their variance-covariance matrix even when the correlation structure is mis-

specified. Liu & Liang (1997) presented a general method to estimate sample size for 

correlated observations using GEE. Treating repeated binary outcomes as a special case, 

they provided a closed-form sample size formula for the test of time-averaged difference, but 

their method did not account for missing data either. Patel & Rowe (1999) presented sample 

size formulas for binary and count outcomes using GEE without consideration of missing 

data. Jung & Ahn (2005) provided a closed-form sample size formula for comparing the 

rates of change in repeated binary measurements with a logit link function. This formula is 

flexible to account for missing data and various correlation structures.

In this paper, we investigate sample size calculation for detecting TAD between two groups 

based on longitudinally measured binary outcomes. Care must be taken in derivation 

because of the correlation introduced when several measurements are taken from the same 

individual. The correlation structures may take on several forms depending on the nature of 
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the experiment and the subjects involved. This procedure allows us to calculate sample sizes 

and power under arbitrary correlation structures, including compound symmetry and AR(1), 

etc.

In Section 2, we briefly review the GEE method for binary repeated measurements. In 

Section 3 we present a closed-form sample size formula for the evaluation of TAD that is 

flexible enough to accommodate arbitrary missing patterns and correlation structures. We 

evaluate the sample size formula through numerical simulation under various settings in 

Section 4. Finally, we apply our sample size formula to a real data example for illustration in 

Section 5. The final section is devoted to discussion.

2 Generalized Estimating Equation Estimator

Let Yij be the binary response obtained at time tij (j = 1, · · ·, m) from subject i (i = 1, · · ·, n). 

We use ri = 1/0 to indicate that subject i belongs to the treatment/control group, and r̄ = E(ri) 

is the proportion of subjects randomly assigned to the treatment group. To evaluate TAD 

between two groups, we model Yij with the following logistic model: Yij ~ Bernoulli(pij) 

and

(1)

Here β1 models the time-averaged response on the log-odds scale for the control group, and 

β2 is the log odds ratio between treatment and control, representing the treatment effect. Our 

primary interest is to test the null hypothesis H0 : β2 = 0. To facilitate later derivation, we 

reparameterize Equation (1) as

(2)

where b1 ≡ β1 + β2r̄, and b2 ≡ β2. Hence, testing b2 = 0 is equivalent to testing β2 = 0. From 

Equation (2) we have

(3)

where b = (b1, b2)′ and Zij = (1, ri – r̄)′.

According to Liang & Zeger (1986), a GEE estimator b̂ is obtained by solving Un(b) = 0, 

where
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(4)

The equation is solved using the Newton-Raphson algorithm: at the lth iteration,

(5)

where

(6)

Here qij = 1 – pij. Liang & Zeger (1986) showed that √n(b̂ – b) approximately follows an 

N(0, V) distribution as n → ∞, and V can be consistently estimated by 

, with

(7)

Here , and  for a vector c. To make inference about TAD between 

two groups, we reject the null hypothesis , where  is the 

(2, 2)th element of Vn and z1–α/2 is the 100(1 – α/2)th percentile of the standard normal 

distribution.

3 A Closed Form Sample size Formula

At the experimental design stage, researchers need to determine how many subjects are 

needed such that the trial can detect a treatment effect (TAD) of β20 with a power 1 – γ at a 

significance level of α. Let A and Σ denote the limits of An and Σn, respectively. As n → ∞, 

Vn converges to V = A−1ΣA−1. Let  be the (2, 2)th element of V. The required sample size 

is

(8)
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In the above derivation we have assumed no missing data. i.e., all subjects have complete 

measurements at (t1, · · ·, tm). Missing data in clinical trials is a challenge frequently 

encountered by researchers, where subjects fail to provide measurements at scheduled time 

points for various reasons, such as equipment malfunction, schedule conflict, input error, 

and dropout from study, etc. In the following, we show that a closed-form sample size 

formula can be derived under the MCAR (missing completely at random) assumption. To 

accommodate the possible presence of missing data, we use Δij = 1/0 to indicate whether 

outcome Yij is observed/missing. First we have general formulae of An(b̂) and Σn(b̂) that 

accommodate missing data:

To facilitate discussion, we introduce a few more notations. We define p1 = eβ1/(1+eβ1) and 

p2 = eβ1+β2/(1 + eβ1+β2) to be the true response rates in the control and treatment groups, 

respectively. Similarly we define q1 = 1 – p1 and q2 = 1 – p2. We use ρjj′ = corr(Yij, Yij′) to 

denote within-subject correlation, with ρjj = 1. Finally, we define δj = E(Δij) to be the 

proportion of subjects with observations at tj, and δjj′ = E(ΔijΔij′) be the proportion of 

subjects with observations at tj and  simultaneously (j ≠ j′). Note that δjj = δj.

Theorem 1

In the presence of missing data, as n → ∞, , and the 
(2,2)th element of V has a closed form

(9)

where τ = (1 – r̄)p1q1 + r̄p2q2 and .

Proof—For proof, see Appendix A.

Here τ is effectively the pooled variance from the control and treatment groups. The general 

sample size formula which accounts for missing data can be obtained by plugging Equation 

(9) into Equation (8). Note that in Equation (9) missing data is taken into account through 

the specification of δj and δjj′, and within-subject correlation is taken into account through 

the specification of ρjj′. It is flexible enough to accommodate arbitrary types of missing 

pattern and correlation. The other factors that affect sample size requirement include the true 

TAD between two groups represented by β20, the randomization ratio represented by r̄, and 

the baseline response rate represented by β10. For a continuous outcome, sample size 
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requirement is usually independent of the control mean. For a binary outcome, however, 

variance and mean (response rate) are associated, Var(Y) = p(1 – p), thus the baseline 

response rate should be included as a designing factor in sample size calculation.

In clinical trials, researchers usually encounter two types of missing patterns: One called 

independent missing (IM), where a patient can have missing values independently over (t1, · 

· ·, tm), thus δjj′ = δjδj′ for j ≠ j′. Note that δjj = δj; The other called monotone missing 

(MM), where a patient missing the measurement at tj will miss all subsequent 

measurements, thus δjj′ = δj′ for j ≤ j′. Intuitively, we might consider MM a more serious 

type of missing problem because missing values tend to be concentrated in a group of 

subjects who drop out of the study permanently. From Equation (9) we can mathematically 

confirm this intuition because given the same set of marginal observing probabilities (δ1, · · 

·, δm), the joint probability under IM (δjj′ = δjδj′) is always smaller than that under MM 

( , j < j′). The larger variance  under MM leads to a larger sample size 

requirement.

It is also likely that missing values occur following a mixed pattern, denoted as MIX. For 

example, some patients might drop out of study while others might miss a few appointments 

randomly over the study period. Equation (9) is flexible enough to accommodate this 

mixture type of missing patterns. Let  and  be the 

marginal observant probabilities under the IM and MM patterns, respectively. It is likely that 

patients under different missing patterns have different marginal probabilities. We also use 

 and  to denote the corresponding joint probabilities under each pattern, as 

described above. Suppose in a clinical trial the proportions of patients who would potentially 

follow the IM and MM patterns are w and (1 – w), respectively. Then a more general sample 

size formula to accommodate a mixture of missing patterns can be obtained by replacing δj 

and δjj′ in Equation (9) with  and 

. Here the superscript (MIX) indicates that the marginal 

and joint probabilities are calculated under the mixture of missing patterns.

4 Simulation Studies

We conduct simulations to evaluate the performance of the proposed sample size formula 

under various design configurations. We set m = 6. Without loss of generality, we assume 

that responses are assessed at equidistant time points, where tj = (j – 1), j = 1, . . . , 6. We 

consider two within-subject correlation structures: One is compound symmetric (CS) which 

assumes equal correlation regardless of temporal distance between measurements, ρjj′ = ρ (j 
≠ j′); The other is the AR(1) structure, where correlation decreases as the distance between 

measurements increases, ρjj′ = ρ|tj–tj′|. It is obvious from Equation (9) that sample size 

requirement increases with the value of ρ under either CS or AR(1). We consider ρ = 0.3 and 

0.5 in simulation. We also explore three missing patterns: IM, MM, and MIX. We assume 

equal marginal probabilities for IM and MM, denoted by δ = (δ1, · · ·, δm)′, with four 

scenarios:
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Under δ1 all patients provide complete observations. Under δ2 the probability of patients 

providing a measurement decrease by 5% at each subsequent time point. Under δ3 the 

observing probability decreases mildly at the beginning of the experiment and decreases 

sharply at the end of the experiment. The fourth scenario δ4 present a missing pattern which 

is opposite of scenario δ3. It has a bigger portion of observation missed at the beginning of 

the experiment than that at the end of the experiment. We further set w = 0.5 for the MIX 

pattern. The nominal levels of type I error and power are set at α = 0.05, and 1 – γ = 0.8, 

respectively. We set r1 = 0.5 which implies a balanced design. We also consider two levels of 

control response rate p1 = 0.5 and 0.2 (equivalently, β1 = 0 and −1.39). We set the true 

treatment effect at β2 = 0.5.

For every combination of the aforementioned design factors (correlation structure, 

correlation parameter ρ, missing pattern, marginal probability δ, control response rate p1), 

the simulation study is carried out as follows:

1. Calculate sample size (n) based on the proposed sample size formula;

2. For iteration l = 1, · · ·, L (L = 5000),

(a) Simulate a null data set (under β2 = 0) and an alternative data set 

(under β2 = 0.5), each with n subjects. Every subject has a binary 

vector of measurements, Yi = (Yi1, · · ·, Yim)′, with mean determined 

by (β1, β2) and within-subject correlation ρjj′ determined by ρ and the 

corresponding correlation structure. Generation of correlated binary 

vectors is based on the algorithm of Emrich & Piedmonte (1991).

(b) Generate missing values according to marginal probability δ and the 

specified missing pattern.

(c)
Calculate ,  using Equations (5),(6), and (7), denoted as  and 

 for the null data set and  and  for the alternative data 

set. Here the superscripts (l, 0/1) indicate that the estimators are 

obtained based on the lth null/alternative data set.

3.
Estimate the empirical type I error by 

and the empirical power by .

In Tables 1 and 2 we present the sample sizes (together with the empirical powers, empirical 

type I errors) calculated under p1 = 0.5 and p1 = 0.2, respectively. Note that the results under 

complete data (δ1) are redundant for the MM and MIX missing patterns and thus omitted. 

We have several observations: 1) Other design parameters being the same, sample size 
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requirement increases with the correlation parameter ρ, which is obvious from Equation (9); 

2) The MM pattern causes a greater information loss than IM, which leads to a larger sample 

size requirement. Furthermore, the sample size under MIX is always between those under 

IM and MM; 3) Although δ2 – δ4 have equal dropout rate at the end of study, their sample 

size requirements are different due to the different distributions of missing values during 

follow up: 4) Tables 1 and 2 show that the empirical powers and type I errors are preserved 

close to their nominal levels over a wide range of sample sizes (143 to 460). 5) Tables 1 and 

2 demonstrate that the level of control response rate (p1) can have a great impact on sample 

size requirement. However, from Equation (9) we can see that the relationship between p1 

and  (or sample size n) is not straightforward.

In real clinical trials, the outcome measurements are rarely obtained at the exact scheduled 

time. To evaluate the robustness of the proposed sample size method, we consider a more 

realistic scenario where responses are measured at random time points. Specifically, the 

sample size is calculated assuming that t1 = 0, t6 = 5, and tj is uniformly distributed in (tj – 

1/2, tj + 1/2) for j = 2, · · ·, 5. The calculated sample sizes are the same as those in Tables 1 

and 2. We observe that the empirical powers and type I errors are generally close to their 

nominal levels (Tables not shown here), suggesting that the proposed sample size performs 

well even when the fixed-time assumption is violated in reality.

5 Example

We apply the proposed sample size method to the example in PASS sample size software 

manual (Hintze 2013). In order to determine the efficacy of a prophylactic treatment for the 

common cold, subjects will be randomly assigned to a treatment group or a placebo group 

with an equal probability, and followed monthly from September to April to investigate if 

there is an overall difference in the proportion of subjects who get sick between two 

treatment groups. A baseline of 60% disease rate for the common cold is used based on 

previous studies. Investigators would like to detect a treatment to placebo odds ratio of 0.5, 

which corresponds to a treatment group disease rate is 42.9%. Correspondingly, we have β1 

= 0.405, and β2 = −0.691.

We would like to calculate the sample size for the study above with type I error α = 0.05 and 

power 1 – γ = 0.8 under a balanced design (r̄ = 0.5). We set the measurement times at tj = j – 

1 (j = 1, · · · 7). We assume an AR(1) within-subject correlation structure with ρ = 0.5. The 

observation probability is (δ1, δ2, δ3, δ4, δ5, δ6, δ7) = (1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7). The 

sample sizes required under the IM, MM, and MIX (assuming a balanced mixture of IM and 

MM) patterns are 102, 108, and 105, respectively. On the other hand, when the within-

subject correlation structure is CS, the other design parameters being the same, the required 

sample sizes under the IM, MM, and MIX patterns are 162, 172, and 167, respectively.

6 Discussion

In this study, we present a closed-form sample size formula for the test of TAD between two 

intervention groups in clinical trials with repeated binary outcomes. This sample size 

formula is flexible enough to account for arbitrary missing patterns and within-subject 
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correlation structures. In particular, we demonstrate that the proposed sample size can 

accommodate a mixture of missing patterns, which is frequently encountered by 

practitioners in real trials. To our knowledge, this is the first study that considers the mixture 

of missing patterns in sample size calculation. Our simulation shows that the nominal power 

and type I error are preserved over a wide range of sample sizes.

One limitation of the proposed sample size formula is that it is derived under the MCAR 

assumption. Under the MAR (missing at random) or MNAR (missing not at random) 

assumptions, however, an additional model is usually required to account for the missing 

mechanism. Because missing mechanisms are often different across clinical trials, it is 

almost impossible to provide a general sample size formula, let alone one with a closed 

form.

In this paper we have derived the sample size based on the assumption of a constant 

treatment effect (β2). In reality, it is likely the treatment effect varies over time. Such a 

scenario can be accommodated by an extension of Equation (1), where β2 is replaced by 
β2j. Then the vector of β2 = (β21, · · ·, β2m)′ represents the variation of treatment effect 

over time tj (j = 1, · · ·, m). For sample size calculation with respect to the test of TAD, it can 

be shown that this change in the assumption of treatment effect only impacts the 

denominator of Equation (8), where β20 is replaced by an averaged value: 

. Here β2j0 is the true treatment effect at tj. The 

numerator of Equation (8) remains unchanged. Because we denote the treatment effect by β2 

= (β21, · · ·, β2m)′, this approach is flexible enough to accommodate arbitrary trends in 

treatment effect.

The sample size presented in this paper is a natural extension from Zhang & Ahn (2012), 

which investigated sample size calculation for the test of TAD in clinical trials with 

repeatedly measured continuous outcomes. Detailed discussion about the impact of 

correlation and missing data on sample size can be found in Zhang & Ahn (2010). Recently 

there has been some new development in the field of sample size determination for clinical 

trials with longitudinal measurements. For example, Lu et al. (2009) proposed sample size 

determination for constrained longitudinal data analysis, where the baseline mean responses 

are constrained to be the same across treatment groups due to randomization. Lu (2012) 

investigated sample size calculations with multiplicity adjustment for longitudinal clinical 

trials with missing data. Both methods were developed in the context of continuos outcomes. 

Investigating the extension of such methods to clinical trials with binary outcomes will be 

one of our future research topics.
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7 Appendix

Appendix A. Proof of Theorem 1

We separate An(b̂) and Σn(b̂) into two parts (control and treatment),

(10)

and

(11)

Applying the central limit theorem to Equations (10) and (11), they converge to

(12)

and
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(13)

respectively, when n → ∞.

After some algebra, it can be shown that the (2, 2)th element of V = A−1ΣA−1 is

where τ = (1 – r̄)p1q1 + r̄p2q2 and .
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Table 1

Sample Size (Empirical Power, Empirical Type I error) under fixed measurement time with p1 = 0.5

δ CS AR(1)

ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5

IM

δ 1 216(0.794,0.053) 303(0.792,0.045) 143(0.794,0.049) 203(0.799,0.052)

δ 2 229(0.802,0.050) 315(0.792,0.044) 156(0.795,0.052) 216(0.797,0.054)

δ 3 225(0.794,0.051) 311(0.795,0.042) 153(0.798,0.056) 213(0.802,0.052)

δ 4 232(0.807,0.055) 319(0.800,0.053) 159(0.793,0.056) 218(0.797,0.050)

MM

δ 2 237(0.800,0.052) 330(0.796,0.056) 161(0.786,0.048) 226(0.805,0.051)

δ 3 229(0.803,0.049) 318(0.796,0.054) 156(0.797,0.050) 219(0.803,0.046)

δ 4 246(0.787,0.053) 342(0.795,0.051) 167(0.795,0.049) 234(0.802,0.054)

MIX

δ 2 233(0.799,0.045) 322(0.798,0.045) 159(0.794,0.042) 221(0.796,0.043)

δ 3 227(0.797,0.053) 315(0.801,0.049) 154(0.792,0.042) 216(0.787,0.044)

δ 4 239(0.788,0.044) 330(0.795,0.042) 163(0.793,0.042) 226(0.796,0.041)
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Table 2

Sample Size (Empirical Power, Empirical Type I error) under fixed measurement time with p1 = 0.2

δ CS AR(1)

ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5

IM

δ 1 291(0.792,0.050) 407(0.801,0.051) 193(0.791,0.055) 273(0.799,0.056)

δ 2 307(0.797,0.052) 423(0.797,0.050) 210(0.799,0.049) 290(0.806,0.049)

δ 3 303(0.799,0.056) 419(0.803,0.054) 206(0.800,0.049) 287(0.796,0.056)

δ 4 313(0.803,0.049) 429(0.802,0.057) 214(0.794,0.058) 293(0.801,0.052)

MM

δ 2 319(0.789,0.054) 443(0.801,0.052) 217(0.806,0.052) 304(0.797,0.052)

δ 3 308(0.793,0.048) 428(0.797,0.057) 210(0.788,0.052) 294(0.786,0.054)

δ 4 331(0.790,0.056) 460(0.788,0.053) 225(0.793,0.053) 315(0.795,0.060)

MIX

δ 2 313(0.782,0.046) 433(0.800,0.057) 213(0.788,0.050) 297(0.795,0.049)

δ 3 305(0.801,0.048) 423(0.796,0.046) 208(0.794,0.040) 290(0.791,0.047)

δ 4 322(0.795,0.044) 444(0.799,0.051) 219(0.795,0.044) 304(0.809,0.046)
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