Skip to main content
. Author manuscript; available in PMC: 2018 Mar 1.
Published in final edited form as: Pattern Recognit. 2016 Sep 22;63:468–475. doi: 10.1016/j.patcog.2016.09.027

Table 1.

Overall performance of CNN features at the default probability threshold 0.5. ft indicates fine-tuned model. The ft-CNN model utilizes the fine-tuned CNN architecture as an end-to-end classifier; while all other models use either handcrafted or CNN features to train classifiers. This table lists the means ± standard deviations of our ten-fold ten-cross validation results.

Model AUC(%) accu(%) sensi(%) speci(%)
SVM.PLBP-PLAB-PHOG 80.71±6.15 77.17±6.62 78.55±6.17 75.80±8.39

SVM.CNN-fc6 69.81±5.02 66.01±3.10 65.07±5.52 66.96±6.79
SVM.CNN-fc7 75.05±5.50 69.13±5.16 69.57±8.08 68.70±7.29

SVM.ft-CNN-fc6 79.78±4.60 74.20±4.65 75.36±7.48 73.04±6.55
SVM.ft-CNN-fc7 80.01±4.99 74.64±5.71 76.52±9.11 72.75±6.09
ADA.ft-CNN-fc7 80.30±4.07 77.39±3.89 80.87±6.69 73.91±9.23

ft-CNN 82.31±4.63 78.41±5.01 80.87±7.43 75.94±7.46