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Abstract

This paper presents a novel segmentation approach featuring shape constraints of multiple 

structures. A framework is developed combining statistical shape modeling with a maximum a 

posteriori segmentation problem. The shape is characterized by signed distance maps and its 

modes of variations are generated through principle component analysis. To solve the maximum a 

posteriori segmentation problem a robust Expectation Maximization implementation is used. The 

Expectation Maximization segmenter generates a label map, calculates image intensity 

inhomogeneities, and considers shape constraints for each structure of interest. Our approach 

enables high quality segmentations of structures with weak image boundaries which is 

demonstrated by automatically segmenting 32 brain MRIs into right and left thalami.

1 Introduction

For many age or disease related brain studies large quantities of Magnetic Reasoning Images 

(MRI) have to be accurately segmented into anatomical regions. Achieving high quality 

brain MRI segmentation is quite challenging for automatic methods so researchers often 

have to rely on labor intensive, manual delineation. The task is challenging because some 

structures have very similar intensity characteristics, such as substructures in the cortical 

gray matter, while others have only weakly visible boundaries (e.g. thalamus). Recent 

methods using enhanced anatomical knowledge have greatly improved the quality of 

automatically generated results.

2ea has a 1 at position a and 0 otherwise
3Bayes’ rule: Σ (i,aj) p( (1,a1),⋯, (n,am)|ℐ,ℬ′) · x(a) = p( x(a) = 1|ℐ,ℬ′)
4Based on previous independence assumption

5 . if we assume each voxel is 

part of only one shape then |ℋ (x)| = 1 and 

6  where δ is the Dirac’s delta function and the Eigenvector 
matrix Ua was defined in Section 2.1
7where δ0 is the null function with δ0(0) = 1, δ0(x) = 0 for x ≠ 0, and δ0(X) := (δ0(X(1)),⋯ δ0(X(n)))T for a vector X
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We briefly summarize methods that incorporate shape constraints into the segmentation 

process. A promising approach [1–3] is based on level set functions. It characterizes shape 

based signed distance maps in combination with the Principle Component Analysis (PCA) 

[4]. Generally, PCA finds the largest modes of variation among the signed distance maps. 

Besides level sets, deformable model methods have used many different shape 

representations, such as spherical harmonics [5], point based models [4], skeleton or medial 

representations [6], and finite element models [7].

The novel approach presented in this paper is most closely related to work by Tsai and 

Leventon [1, 2]. While PCA based segmentation methods are very robust they are also 

constraint in the degrees of freedom of the shape variations allowed. We therefore couple the 

PCA based shape modeling with a maximum a posteriori estimation problem which will be 

solved through an Expectation Maximization (EM) implementation developed by Pohl et al. 

[8]. This allows the system to accommodate shapes that differ some what from those 

modeled by the PCA. Additionally, the method can segment multiple objects and estimate 

intensity inhomogeneities in the image.

2 Method

This section discusses the integration of shape constraints into an EM segmentation 

algorithm. First, the shape variations across subjects are captured through PCA [9]. 

Afterwards, the shape constraints are added to the parameter space of an EM-based 

segmentation algorithm [8].

2.1 Shape Representation

Various shape representations have been explored in medical imaging. For our work, we 

chose signed distance maps due to their robustness. The structure’s shape variations are 

captured by PCA. To apply PCA to the training data we first align all training sets using the 

affine registration method developed by Warfield [10]. Then, each data set i is transferred 

into structure specific signed distance maps , where a represents the structure of interest 

(see also Figure 1). In these distance maps positive values are assigned to voxels within the 

boundary of the object, while negative values indicate voxels outside the object. By taking 

the average over all these distance maps  we define the mean distance map 

 and the mean corrected signed distance maps . The input for 

PCA is the vector  defined by the mean corrected signed distance 

maps of the N structures of interests. Therefore, PCA is applied to all structures at once. 

This analysis defines the shape constraints of the entire image which is represented by the 

eigenvector or modes of variation matrix U, eigenvalue matrix Λ, and 

(see also Figure 2). To reduce the computational complexity for the EM implementation, U 

and Λ will only be defined by the first K eigenvectors and eigenvalues, where K represents 

99 % of the eigenvalues’ energy.

The shapes in a specific brain image will be captured by the expansion coefficients of the 

eigenvector representation which we call shape parameters  = ( 1, ⋯, K).  relates to 
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the distance maps by  = 𝒟̄ + U· . We will refer to the shape parameter generated 

distance map of a specific structure a as ,a = 𝒟̄
a + Ua · , where Ua are just the entries in 

U that refer to structure a.

The probability distribution over the shape parameters p( ) is now defined by the Gaussian 

distribution

where K is the dimension of eigenvalue matrix Λ.

2.2 Estimating Intensity Inhomogeneities and Shape

The algorithm proposed in this chapter is based on an EM-based segmentation algorithm by 

Pohl et al. [8] which uses probability atlases to define the spatial distribution of structures. 

Expanding this approach, we will not only approximate the maximum a posteriori estimate 

(MAP) of the image intensity inhomogeneities ℬ but also the MAP estimate of the shape 

parameters . In this framework the MAP estimates of the parameter space, i.e. ℬ and , 

depend on the partition of the image in anatomical regions  (the hidden data), the log 

intensities of the input image ℐ (the observed data), and previous estimations of the 

inhomogeneities ℬ′ as well as the shape parameter ′. Therefore, our approach tries to 

solve the following problem:

(1)

where E |ℐ,ℬ′, ′(log p(ℬ, | ,ℐ)) := Σ  p(  |ℐ,ℬ′, ′) · log p(ℬ, | ,ℐ) and we assume 

independence of  in p(ℐ| , ,ℬ). If we further assume independence between ℬ and , 

and ℬ and  than the maximization problem can be simplified to :1

(2)

(3)

1  and p(ℬ| ) = p(ℬ).
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To solve these two equations the EM algorithm iterates between the Expectation Step (E-

Step) and the Maximization Step (M-Step). The E-Step first updates ℬ′ and ′ with ℬ″ and 

″. Then it calculates the expected value of the two functions based on ℬ′ and ′. The M-

Step approximates separately the MAP estimates ℬ″ and ″ based on the results of the E-

Step. For a general overview of EM we refer the reader to [11].

In the remainder of this section we will first discuss the two MAP estimation problems 

separately and then integrate these two MAP estimation problems into the EM framework.

Estimating the Intensity Inhomogeneities—To find the MAP estimate of ℬ we 

assume statistical independence of the voxel location x for ℬ and ℐ. Therefore, Equation (2) 

simplifies to:

(4)

The conditional intensity distribution is modeled by a Gaussian distribution:

where n is the number of input channels, and (μa, σa) define the intensity distribution of 

structure a.‘ ’ refers to footnote x for further explanation. Let’s define

and the weights x(a) := E |ℐ,ℬ′, ′( x(a)) so that Equation (4) turns into

As Wells shows [12] the above problem can be approximated by a low pass filter H applied 

to the weighted residual R̄: ℬ ≈ HR̄. Now, we will explicitly define the weights x(a) := 

E |ℐ,ℬ′, ′( x(a)):

(5)
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We will model p( x(a) = 1| ) as a measure of agreement among the shape  an the label 

map . This is achieved by transforming the distance maps  produced by  into binary 

maps through ℋ :

where ℋ  (x,a) is the Heaviside function for structure a. p( | ) penalizes any 

disagreement between x and ℋ (x) = (ℋ (x,1),⋯,ℋ (x,N)T:

where d is a correlation metric between x and ℋ (x). Here d(v1, v2): = (v1 − v2)T (v1 − 

v2), which means d is zero when v1 and v2 agree, and 1 or greater when they disagree. f 
( x) represents a prior probability on x defined by a probability atlas [8]. We therefore 

can ignore f in the normalizing function Z with m being the number of voxels in the image

If  defines the local conditional 

probability than

Estimating the Shape Parameters —As mentioned in Section 2.1 statistical 

independence among the coefficients of  = ( 1, ⋯, N)T is assumed. Therefore, Equation 

(3) is solved for each component of :

(6)

where 
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is zero unless x(a) ≠ ℋ (a) for a structure a and voxel x is located at the border of the 

shape of a. Thus, if Ω is the set of voxels at the boundaries of ℋ  Equation (6) simplifies 

to :

From the above equation the updated shape parameter i is defined by the weighted sum of 

its eigenvector values located at borders and scaled by the ith eigenvalue. In other words, the 

eigenvector values Ui(x) defines the ‘direction of change’ for parameter i and the 

 control the ‘speed of change’.

2.3 The Shape Constraint EM Algorithm

The EM Algorithm is now defined by the E-Step who generates the structure posterior 

probabilities , called weights, based on the constraints imposed by shape, intensity, image 

inhomogeneities, and location (see Equation (5))

The M-Step calculates the image inhomogeneities ℬ and shape parameters  based on the 

newly updated weights . ℬ = H·R̄ is approximated by a simple low pass filter H and the 

weighted residuum  (see also [12]).

The shape parameters  = ( 1, ⋯, N)T are updated in the M-Step by:

The EM algorithm iterates between E- and M-Step until the cost function Q((ℬ, ),(ℬ′, ′)) 

of Equation (1) converges to a local maximum, which is guaranteed by the EM framework if 

the iteration sequence has an upper bound [11].

3 Validation

We validate our approach by segmenting 32 test cases into white matter, grey matter, cortical 

spinal fluid, and the left and right thalamus. The study uses segmentations from one expert 

which are restricted to the right and left thalamus, which this study regards as gold standard. 

To introduce no bias into the segmentation approach we only generated shape atlases for 

those two structures (see also Section 2.1). The shape atlases are produced for each test case 

by applying PCA to the remaining 31 cases. From the analysis we use the first five modes of 

variations, which corresponds to 99% of the eigenvalues’ energy. Furthermore, we manually 
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calibrate the EM segmentations by comparing one automatic segmentation result to an 

expert’s segmentation. Especially for structures like the thalamus, where borders are not 

clearly visible, large variations of the experts’ opinion about structure’s boundary exist. 

Therefore, this manual calibration is essential so that automatically generated results meet 

the experts’ expectations.

To measure the robustness of the method (EM-Shape) we compare the automatic with the 

expert segmentations using the volume overlap measure Dice [13]. We then compare the 

experts segmentations to the results of two different EM implementations. The first 

algorithm (EM-Rigid) uses rigid alignment of atlas information and no shape constraints. 

The second implementation (EM-NonRigid) also does not incorporate shape constraints but 

uses non-rigid registration for the initial alignment and models neighborhood relationships 

through Markov Random Field approximation [8].

Generally, EM-Shape outperformed the other two method (see also Table 1). It had the 

highest mean average value of agreement, the lowest variance, the highest minimum Dice 

measure over all cases, and the highest maximum dice measure. Of the three methods, EM-

Shape relies the least on the initial registration of the atlas to the patient. The new shape 

constraints allow a better adjustment of the EM parameters to the specific brain images 

during the segmentation process. It can capture subtle difference in the shape as the 

hypothalamus which is underrepresented in both EM-Rigid and EM-NonRigid (see 3D 

images in Figure 3).

The EM-NonRigid heavily relies on the initial non-rigid registration. Even though it 

produced excellent results for the superior temporal gyrus [14], it performed worse on the 

thalamus, because the initial alignment process cannot detect the thalamus’ weakly visible 

boundaries. It produces very smooth segmentations due to the Mean Field approximation 

which models neighborhood dependencies within an image. On the downside, it also 

smoothed over subtle differences within small gyri and the thalamus, which are better 

captured by EM-Shape and EM-Rigid.

4 Discussion

A novel shape constraint segmentation approach has been presented. Embedded in an EM 

segmentation framework, the algorithm deals with multiple brain structures as well as 

estimates the intensity inhomogeneities. It generates high quality segmentations of structures 

with weakly visible boundaries. The approach is not restricted to the modes of variations 

presented in the shape model but models patient specific abnormalities. Furthermore, we 

have documented its robustness by segmenting 30 different cases and comparing them to 

other EM-like methods as well as manual segmentations.

In the future we would like to include more complex conditional probabilities that better 

model the dependencies between label maps and the shape of the object. We also would like 

to couple pose and labeling of the objects because their solution depend on each other.

Pohl et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This investigation was supported by a research grant from the Whitaker Foundation, by NIH grants (R21 MH67054, 
R01 LM007861, P41 RR13218, P01 CA67165) and by NSF ERC 8810-27499. We would like to thank Katherine 
Long, Florent Segonne, Lilla Zollei, Polina Golland, Samson Timoner, and Monica Vantoch for their valuable 
contributions to this paper.

References

1. Leventon, M., Grimson, W., Faugeras, O. Statistical shape influence in geodesic active contours. 
IEEE Conference on Computer Vision and Pattern Recognition; 2000. p. 1316-1323.

2. Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson W, Willsky A. A shape-based 
approach to the segmentation of medical imagery using level sets. IEEE Transactions in Medical 
Imaging. 2003; 22(2):137– 154.

3. Rousson, M., Paragios, N., Deriche, R. Tech Rep 4984. Institut National de Recherche en 
Informatique et en Automatique; Sophia-Antipolis: 2003. Active shape models from a level set 
perspective. ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4984.pdf

4. Cootes T, Hill A, Taylor C, Haslam J. The use of active shape models for locating structures in 
medical imaging. Imaging and Vision Computing. 1994; 12(6):335–366.

5. Kelemen A, Szekely G, Gerig G. Elastic model-based segmentation of 3-d neuroradiological data 
sets medical imaging. IEEE Transactions in Medical Imaging. 1999; 18:828–839.

6. Pizer SM, Gerig G, Joshi S, Aylward SR. Multiscale medial shape-based analysis of image objects. 
Proceedings of the IEEE, Special Issue on: Emerging Medical Imaging Technology. 2003; 91:670– 
679.

7. Papdemetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS. Estimation of 3-d left ventricular 
deformation form medical images using biomechanical models. IEEE Transactions in Medical 
Imaging. 2002; 21:786– 800.

8. Pohl K, Bouix S, Kikinis R, Grimson W. Anatomical guided segmentation with non-stationary tissue 
class distributions in an expectation-maximization framework. IEEE International Symposium on 
Biomedical Imaging. 2004:81–84.

9. Cootes T, Edwards G, Taylor C. Active appearance model. Europeen Conference on Computer 
Vision (ECCV). 1998; 2:484–498.

10. Warfield S, Rexilius J, Huppi P, Inder T, Miller E, Wells W, Zientara G, Jolesz F, Kikinis R. A 
binary entropy measure to assess nonrigid registration algorithm. Medical Image Computing and 
Computer-Assisted Intervention. Oct.2001 :266–274.

11. McLachlan, GJ., Krishnan, T. The EM Algorithm and Extensions. John Wiley and Sons, Inc; 1997. 

12. Wells W, Grimson W, Kikinis R, Jolesz F. Adaptive segmentation of MRI data. IEEE Transactions 
in Medical Imaging. 1996; 15:429–442.

13. Dice LR. Measure of the amount of ecological association between species. Ecology. 1945; 
26:297–302.

14. Pohl K, Wells W, Guimond A, Kasai K, Shenton M, Kikinis R, Grimson W, Warfield S. 
Incorporating non-rigid registration into expectation maximization algorithm to segment MR 
images. Medical Image Computing and Computer-Assisted Intervention. 2002:564–572.

Pohl et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4984.pdf


Fig. 1. 
Example of a left thalamus and corresponding segmentation, related signed distance map, 

and structure’s mean where the voxel’s brightness corresponds to the value in the distance 

map.
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Fig. 2. 
These are the results of PCA applied to a training set of manually segmented thalami. As 

clearly visible from the images the first mode of variation, i.e. the deformation along the 

eigenvector with the largest eigenvalue, defines the size of the structure.
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Fig. 3. 
Segmentation results from different EM implementation. As clearly visible in the 2D images 

the shape constraint approach (EM-Shape) is closest to the expert’s segmentation indicated 

by the black lines. EM-Shape was also the only method who properly captured the 

hypothalamus (see 3D models), while EM-NonRigid is too smooth and EM-Rigid 

underestimated the structure.
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Table 1

Summary over 32 cases of the Dice comparison between the results of EM implementations and expert 

segmentations. The minimum and maximum list the worst and best Dice measure over all cases. As clearly by 

the numbers the new approach of this paper, EM-Shape, outperformed the other two methods

DICE Measure over 32 cases

Method Mean Variance Minimum Maximum

EM-Rigid 0.755 0.0221 0.449 0.883

EM-NonRigid 0.715 0.0149 0.34 0.883

EM-Shape 0.82 0.0117 0.625 0.909
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