Table 2.
Comparison of CPD algorithm scalability based on sliding window size n. * = estimate based on algorithm.
Category | Method | Parametric/Non Parametric | Computational Cost |
---|---|---|---|
Probability Density Ratio | CUSUM | Parametric | O(n2)* |
AR | Parametric | O(n3)* | |
KLIEP | Non Parametric | KLIEP< CUSUM ; KLIEP < AR | |
uLSIF | Non Parametric | uLSIF < KLIEP | |
RuLSIF | Non Parametric | RuLSIF < uLSIF | |
SPLL | Semi Parametric | O(n2)* | |
Subspace Models | SI | Parametric | SI > KLIEP |
SST | Parametric | SST > KLIEP | |
Probabilistic Method | Bayesian | Parametric | O(n) |
GP | Non Parametric | O(n2) | |
Kernel Based Methods | KcpA | Non Parametric | O(n3) |
Clustering | SWAB | O(Ln) | |
MDL | |||
Shapelet | |||
Model Fitting | |||
Graph Based Methods | Non Parametric | ||
Multi-Class Classifier | Nearest Neighbor | Non Parametric | = Cost (Training + CP detection) |
HMM | Parametric | ||
GMM | Parametric | ||
Binary Class Classifier | SVM | Parametric | |
Naive Bayes | Parametric | ||
Logistic Regression | Parametric |