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Individuals with hearing impairment have particular difficulty perceptually segregating concurrent

voices and understanding a talker in the presence of a competing voice. In contrast, individuals

with normal hearing perform this task quite well. This listening situation represents a very different

problem for both the human and machine listener, when compared to perceiving speech in other

types of background noise. A machine learning algorithm is introduced here to address this listen-

ing situation. A deep neural network was trained to estimate the ideal ratio mask for a male target

talker in the presence of a female competing talker. The monaural algorithm was found to produce

sentence-intelligibility increases for hearing-impaired (HI) and normal-hearing (NH) listeners at

various signal-to-noise ratios (SNRs). This benefit was largest for the HI listeners and averaged

59%-points at the least-favorable SNR, with a maximum of 87%-points. The mean intelligibility

achieved by the HI listeners using the algorithm was equivalent to that of young NH listeners with-

out processing, under conditions of identical interference. Possible reasons for the limited ability of

HI listeners to perceptually segregate concurrent voices are reviewed as are possible implementa-

tion considerations for algorithms like the current one. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4984271]

[JFL] Pages: 4230–4239

I. INTRODUCTION

Poor speech understanding in background noise is a pri-

mary complaint of hearing-impaired (HI) and cochlear

implant (CI) listeners. Work in recent years has shown that a

machine-learning approach based on deep neural networks

(DNNs) and time-frequency (T-F) masking can produce

large increases in intelligibility for HI listeners. In this prior

work, a DNN was trained to estimate the ideal binary mask

(IBM) or ideal ratio mask (IRM). This is accomplished by

delivering to the network during a training phase features of

speech-plus-noise mixtures and the corresponding IBMs or

IRMs. Once trained, the network estimates the mask using

only a speech-plus-noise mixture as input.

This demonstration was provided by Healy et al. (2013),

who had HI and normal-hearing (NH) listeners hear senten-

ces in steady-state and modulated backgrounds prior to and

following noise removal via a monaural (single-microphone)

DNN-based classification algorithm. Considerable intelligi-

bility increases were found, which were largest for the

modulated background, the least-favorable signal-to-noise

ratios (SNRs), and the HI listeners, particularly those dis-

playing the poorest unprocessed performance in background

noise. The average increases were sufficient to allow the HI

listeners having access to the algorithm to significantly

exceed the performance of young NH listeners (without the

algorithm) under identical noise conditions. Subsequent

work showed that the mask estimated by a simplified DNN

was accurate enough to allow increases in isolated consonant

recognition for both HI and NH listeners, a task that relies

more heavily on the accuracy of bottom-up acoustic speech

cues than does sentence recognition (Healy et al., 2014).

This work also showed that the estimated mask transmitted

speech features (voicing, manner of articulation, and place

of articulation) to listeners without any specific deficiency

and in a fashion similar to that of the IBM, indicating that

the algorithm was estimating the mask with effective or per-

ceptual accuracy. This work was later extended to conditions

in which the DNN was trained using one segment of a noise

and tested on a novel segment of the same noise type. This

condition is more challenging algorithmically than training

and testing on overlapping noise segments, even when the

segments are of relatively long duration (May and Dau,

2014). Increases in sentence intelligibility were again found

for HI listeners in two different non-stationary noises (Healy
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et al., 2015). Moving on to training and testing on entirely

different noise types, Chen et al. (2016) employed large-scale

training, in which the algorithm was trained on sentences

mixed with 10 000 different noises of various types and tested

on noises not included in this training set. Training was also

conducted at a single SNR and testing conducted only at

untrained SNRs. Sentence-intelligibility increases were again

observed, which were largest for those HI listeners who dis-

played the lowest scores on unprocessed speech-in-noise.

These increases were observed despite the substantial chal-

lenge associated with the highly unmatched training and test

conditions and the use of subjects having milder hearing

impairments than those employed in the previous studies.

These studies have employed a variety of different back-

ground noise types, from speech-shaped noise (SSN; Healy

et al., 2013; Healy et al., 2014), to multi-talker babble con-

taining 8–20 talkers of both genders (Healy et al., 2013;

Healy et al., 2014; Healy et al., 2015; Chen et al., 2016), to

recordings made in a busy hospital cafeteria (Healy et al.,
2015; Chen et al., 2016). Thus, the backgrounds have been

both steady-state and spectro-temporally complex, and in the

case of cafeteria noise, have included a variety of different

source types (voices, dishes, etc.). The current study extends

this work to a situation in which a target talker is interfered

with by a single competing talker. This “two-talker” situa-

tion is addressed currently as it represents a very different

problem for both the human and machine listener.

It is known that multi-talker babble becomes acousti-

cally similar to SSN as the number of talkers approaches

infinity, and so large and similar amounts of masking

are produced by these backgrounds. Conversely, babble

becomes more deeply modulated and therefore less interfer-

ing when the number of interfering talkers is small (see

Rosen et al., 2013). Alternatively, babble containing a very

small number of talkers can potentially be more interfering

than babble containing a larger number of talkers due to

informational masking (see Shinn-Cunningham, 2008).

In the two-talker situation, NH listeners are quite good at

separating concurrent voices and attending to a target talker to

understand what is being said. Thus, the interference pro-

duced by a single competing talker is far less than that pro-

duced by 2- to 8-talker babble (e.g., Miller, 1947; Brungart,

2001; Brungart et al., 2006; Rosen et al., 2013; Kidd et al.,
2016). In contrast, HI listeners perform this task more poorly.

For example, when presented with concurrent vowels, HI lis-

teners often report hearing only one vowel (Arehart et al.,
2005). They identify the constituent vowels with less accu-

racy than do NH listeners and tend to benefit less from differ-

ences in fundamental frequency (Arehart et al., 1997; 2005;

Summers and Leek, 1998). Related work shows that HI listen-

ers produce similar recognition performance when target

speech is masked by a single competing talker or by steady-

state noise, whereas NH listeners perform substantially better

in the presence of a single competing talker (e.g., Carhart and

Tillman, 1970; Festen and Plomp, 1990).

One possible reason for this difficulty that HI listeners

have understanding speech in the presence of a competing

talker involves the fact that broadened auditory tuning

smears the speech spectra, making peaks attributable to each

voice less pronounced and the benefit from masker modula-

tions smaller (e.g., ter Keurs et al., 1993). Further, broad tun-

ing causes a larger number of harmonic components to fall

within single auditory filters, reducing the resolvability of

harmonics and saliency of voice pitches (e.g., Culling and

Darwin, 1993).

More recently, it has been suggested that temporal fine

structure (TFS) plays a role in the ability to perceptually seg-

regate concurrent sounds (e.g., Qin and Oxenham, 2003;

Hopkins and Moore, 2009; Apoux and Healy, 2011, 2013;

Lunner et al., 2012; Apoux et al., 2013; Jackson and Moore,

2013). Apoux and Healy (2013) examined sentence intelligi-

bility in the presence of a single competing talker when the

speech and background envelopes were mixed and then

imposed on (a) the target-speech TFS or (b) the competing-

talker TFS. It was found that these conditions produced

equivalent target-sentence intelligibility, indicating that the

presence of the speech TFS was not beneficial and sugges-

ting that this TFS did not supply speech information. In a

third condition (c), the envelope from the target speech and

that from the competing talker were each imposed on its

own TFS, and then mixed. This dual-TFS condition pro-

duced far better target intelligibility, suggesting that the

presence of two TFS streams was important for segregation

of the target from the background and the resulting intelligi-

bility of the target.

These findings suggesting that the TFS is important for

the perceptual segregation of concurrent sounds indicate

that HI and CI listeners face particular challenges. It has been

argued that HI listeners have reduced access to speech TFS

(Buss et al., 2004; Lorenzi et al., 2006; Hopkins et al., 2008;

Ardoint et al., 2010; Hopkins and Moore, 2011). Accordingly,

a deficit in the processing of this cue would limit the ability to

segregate a target voice from a competing voice and under-

stand what is said. The difficulty faced by CI listeners is likely

even greater. These individuals generally receive no speech

TFS (devices having specialty TFS coding excluded) and

instead hear the envelopes of incoming sounds imposed on a

single pulse-train carrier. Therefore, when more than one

speech source is present, the complex ensemble modulation

resulting from mixed envelopes is imposed on a single TFS,

which may indicate to the auditory system that only one sound

is present.

The two-talker situation also represents a different chal-

lenge to speech segregation algorithms than does the speech-

plus-noise situation. When the interference is non-speech

noise, classification as embodied in IBM estimation provides

a natural framework as speech and non-speech noise belong

to two distinct classes of signals. Is the binary or ratio mask-

ing framework applicable to two-talker separation? The

answer is yes, as shown in several recent studies in super-

vised speech separation. Huang et al. (2014, 2015) trained

DNNs and recurrent neural networks (RNNs) to estimate the

IBM and the IRM for separating two talkers. Their results

show that supervised T-F masking outperforms nonnegative

matrix factorization methods in two-talker separation. At

about the same time, Tu et al. (2014) and Du et al. (2014)

trained DNNs to map from the spectrogram of two-talker

mixtures to those of individual talkers. Zhang and Wang
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(2016) recently trained multiple DNNs to form a deep

ensemble to perform two-talker separation. Their study also

contrasts T-F masking and spectral mapping approaches in

two-talker conditions. However, to our knowledge, none of

the two-talker separation algorithms were tested on human

listeners.

Whatever the cause of the inability of HI and CI listen-

ers to segregate concurrent voices and understand one talker

in the presence of another, an effective algorithm would ren-

der these issues moot by performing this segregation task for

the listener. In the current study, a monaural DNN-based

IRM estimation algorithm is introduced to increase the intel-

ligibility of a male voice in the presence of a competing

female talker. Its performance is then assessed at different

SNRs in both HI and NH listeners.

II. METHOD

A. Subjects

Two groups of listeners participated, and particular care

was taken to ensure that no subject in either group had any

prior exposure to any of the sentences employed. The HI

group was composed of ten individuals who had sensorineu-

ral hearing impairment and wore bilateral hearing aids. They

were recruited from The Ohio State University Speech-

Language-Hearing Clinic and were selected to represent typ-

ical patients. Accordingly, hearing losses ranged from mild

to moderately severe and were moderate on average.

Configurations were flat to sloping. Ages ranged from 60 to

74 years of age (mean¼ 69.7 years of age), and five listeners

were female. Hearing status was confirmed on day of test

using otoscopy, tympanometry (ANSI, 1987), and pure-tone

audiometry (ANSI, 2004, 2010). Otoscopy was unremark-

able and middle-ear pressures were within normal limits for

all subjects. Pure-tone averages (PTAs) for each subject,

based on audiometric thresholds at 500, 1000, and 2000 Hz

and averaged across ears, ranged from 35 to 67 dB hearing

level (HL), with a mean of 48.0. These subjects were num-

bered in order of increasing PTA so that higher subject num-

ber corresponded to greater mid-frequency hearing loss.

Figure 1 displays these audiograms.

The NH group was composed of ten listeners having

audiometric thresholds of 20 dB HL or better at octave fre-

quencies from 250 to 8000 Hz (ANSI, 2010). The exceptions

were two listeners who had thresholds of 25/30 dB HL at

250 Hz in one ear. The NH subjects were recruited from

undergraduate courses at The Ohio State University and

received course credit for participating. Ages ranged from 19

to 23 years of age (mean¼ 19.8 years of age), and all were

female. Young listeners with NH were selected for the current

task to represent an upper bound for human performance.

B. Stimuli

The stimuli were drawn from the Institute of Electrical

and Electronics Engineers (IEEE) corpus Revised List of

Phonetically Balanced Sentences (Harvard Sentences; IEEE,

1969). This set is composed of 720 grammatically and seman-

tically correct sentences each having 5 scoring keywords. The

sentences were recorded at 44.1 kHz with 16-bit resolution

and were down-sampled to 16 kHz for processing and presen-

tation. The stimuli consisted of target sentences mixed with

interfering sentences. Each target sentence was mixed with

only one interfering sentence, and there was no overlap

between the set of target sentences and the set of interfering

sentences. All target sentences were spoken by the same male

talker (average fundamental frequency¼ 132 Hz, standard

deviation¼ 41 Hz), and all interfering sentences were spoken

by the same female talker (average fundamental frequency

¼ 209 Hz, standard deviation¼ 42 Hz).

Target and interfering sentences were paired such that

each was approximately equal in duration. The paired sen-

tences had durations within 0.015 s on average and no differ-

ence between members of a pair exceeded 0.113 s. Target

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Right ears are represented by circles and left

ears are represented by X’s. Arrows indicate thresholds exceeding audiometer limits. Also displayed is subject number, listener age in years, and gender. The

NH limit of 20 dB HL is represented by the horizontal dotted line in each panel.
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signals tended to be slightly longer in duration. Mixture

durations ranged from 1.781 s to 3.349 s (mean¼ 2.628 s,

standard deviation¼ 0.302 s). Target and interfering sen-

tence files were mixed so that their onsets aligned, in order

to eliminate any precursor or preceding fringe containing

only one voice, which could serve to facilitate segregation

and inflate intelligibility. Because the materials were senten-

ces having no fixed structure or format, the alignment of

vowels and consonants across sentences was essentially

random.

Stimuli employed for testing human subjects consisted

of 120 target sentences mixed with 120 interfering sentences.

These 240 sentences were not used during algorithm train-

ing, in order to determine how well the DNN generalized to

new, unseen sentences. Each subject heard sentences mixed

at three SNRs. SNRs for the HI listeners were �3, �6, and

�9 dB. Those for the NH listeners were �6, �9, and

�12 dB. These SNRs were selected to produce a variety of

unprocessed intelligibility scores and to reduce floor and

ceiling effects.

The stimuli employed for algorithm training were also

drawn from the IEEE corpus (also 44.1 kHz and 16-bit,

down-sampled to 16 kHz). The training set included 600 sen-

tences spoken by the male target talker and 600 sentences

spoken by the female competing talker. Two thousand mix-

tures were generated at each of 8 SNRs ranging from

�15 dB to 6 dB in steps of 3 dB by randomly mixing one tar-

get sentence with one interfering sentence. In each mixture,

the interfering sentence was either truncated or looped and

repeated so that it matched the target-sentence duration.

Further, the interfering-sentence start point was selected ran-

domly for each mixture in order to produce many mixtures

out of the same two sentences. Finally, the training set was

down-sampled by a factor of 10 by randomly discarding

90% of all mixture time frames, in order retain diversity in

the training set but reduce the amount of time required to

train the DNN. Five percent of the remaining frames were

set aside for the purposes of cross validation. This yielded

�421 000, 20-ms time frames of training data. The entire

training process took about 10 h on a GPU server.

C. Algorithm description

The current study employed a DNN to estimate the IRM

from two-talker mixtures. To generate the IRM, the target-

talker signal sðtÞ and the interfering-talker signal nðtÞ were

divided into 20-ms time frames with 10-ms overlap, and

then a Hamming window was applied to each signal. Each

frame was transformed into 161 frequency bins via a short-

time Fourier transform. Accordingly, each frequency bin

corresponded to a bandwidth of �50 Hz. Magnitude spectro-

grams of sðtÞ and nðtÞ at time frame m and frequency bin c
are denoted as Sðm; cÞ and Nðm; cÞ. The IRM for the target

talker is defined in the current study as

IRM m; cð Þ ¼
S2 m; cð Þ

S2 m; cð Þ þ N2 m; cð Þ
:

In this case, the IRM amounts to the Wiener filter, which is

the optimal estimator of the target signal in the power spec-

trum (Wang et al., 2014). The IRM for the interfering talker,

1� IRM, was also included in the training target since this

constraint acts as a regularizer during training (Huang et al.,
2015).

An overview of the separation process is given in Fig. 2.

The process starts with the extraction of acoustic features

from a speech mixture; these features were normalized to

zero mean and unit variance in every dimension. After train-

ing, extracted features were fed into the trained DNN to

obtain an estimate of the target IRM, denoted as RM.

Estimated target magnitude ~Sðm; cÞ is calculated as

~Sðm; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMðm; cÞ

p
� Yðm; cÞ;

where Yðm; cÞ is the magnitude response of the mixture

signal. Mixture phase and the estimated target magnitude

were used to generate the separated target speech in the

time domain. Specifically, 15-dimensional (15-D) amplitude

modulation spectrogram (AMS), 13-dimensional (13-D)

relative spectral transformed perceptual linear prediction

(RASTA-PLP), 31-dimensional (31-D) mel-frequency ceps-

tral coefficients (MFCCs), 64-dimensional (64-D) gamma-

tone frequency features (GF), and 31-D power-normalized

cepstral coefficients (PNCCs) were extracted from each time

frame and used as a feature set for DNN training. This set

combines two complementary feature sets: AMS, RASTA-

PLP, and MFCC revealed from Wang et al. (2013), and GF

and PNCC from Delfarah and Wang (2016). It was found

that this set of five features produced better results than an

individual feature set. Detailed descriptions of these features

FIG. 2. (Color online) Diagram of the proposed DNN-based speech separation framework. A two-talker mixture first undergoes feature extraction. A DNN is

trained using these features to estimate the IRM for the male target talker as well as the IRM for the female interfering talker. The estimated IRM for the target

talker is pointwise multiplied with the magnitude spectrogram of the two-talker mixture, which results in the estimated magnitude spectrogram of the target

speech. Finally, an overlap-add method is used to resynthesize the target speech signal from the estimated magnitude spectrogram and the mixture phase.
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are given in these earlier studies (see also Chen et al., 2014).

The trained DNN can estimate one time frame of the IRM

from the corresponding frame of features. However, in order

to provide temporal context, a feature window of 13 feature

frames was used to simultaneously predict 3 frames of the

training target, all centered at the current frame (Wang et al.,
2014). This process was shifted frame-by-frame, allowing

each time frame of the IRM to be predicted three times, and

the three estimates (one for each shift) were then averaged to

produce the final estimate of one IRM frame.

The DNN had an input layer with 13� 154 units, 4 hid-

den layers of 2048 units each, and an output layer with

6� 161 units. Rectified linear units (Nair and Hinton, 2010)

were used for all hidden layers, and the output layer used sig-

moid units. The dropout rate of 0.2 was used for regulariza-

tion purposes. The training algorithm was adaptive gradient

descent, and it was run for 100 epochs. These DNN parame-

ters and choices were made on the basis of previous studies

(see, e.g., Chen et al., 2016) and pilot experimentation. Note

that separation results were not very sensitive to these param-

eter values.

Compared to the earlier DNN based two-talker separation

studies discussed in Sec. I, the current algorithm is distinct

mainly in two aspects. First, although related, our training

target differs from those used in these studies. Second, the

current algorithm utilizes a larger and more diverse set of

acoustic features, and benefits from larger contextual win-

dows both in the input and the output layers of the DNN. In

Huang et al. (2014, 2015), magnitude spectrogram and log-

mel spectrogram features were used as input features with a

context window of at most seven frames. Du et al. (2014) and

Tu et al. (2014) used log-power spectrogram features and a

context window of seven frames. Zhang and Wang (2016)

also used magnitude spectrogram features but exploited con-

textual information using an ensemble of DNNs with different

window lengths. However, all of these earlier studies pre-

dicted only one frame of the ideal mask, not three as in the

current study. As a result, the current scores measured on

objective metrics (presented in Sec. III B) are better.

D. Procedure

Each subject heard a total of 6 conditions (3 SNRs � 2

processing conditions), with 20 target sentences per condi-

tion. Conditions were blocked first for SNR, with the three

SNRs presented in a new random order for each subject. The

two processing conditions (unprocessed, algorithm proc-

essed) were heard juxtaposed within each SNR. These two

conditions were randomized and balanced such that each

was heard first during half of the blocks across all subjects.

Condition orders were first determined for the HI subjects,

then used for the NH subjects by pairing each with a ran-

domly selected HI subject.

Stimuli were converted to analog form using an Echo

Digital Audio Gina 3 G digital-to-analog converter (Santa

Barbara, CA), amplified using a Mackie 1202-VLZ mixer

(Woodinville, WA), and presented diotically over Sennheiser

HD 280 Pro headphones (Wedemark, Germany). Hearing-

impaired listeners were tested with hearing aids removed. The

overall root-mean-square (RMS) level of each stimulus was

set to 65 dBA in each ear for the NH subjects using a sound-

level meter and flat-plate coupler (Larson Davis models 824

and AEC 101, Depew, NY). This same 65 dBA level was

used for the HI subjects, with the addition of frequency-

specific gains as prescribed by the NAL-R hearing-aid fitting

formula (Byrne and Dillon, 1986). These gains were custom-

ized for each participant’s specific hearing loss and were

implemented using a RANE DEQ 60 L digital equalizer

(Mukilteo, WA), as described in Healy et al. (2015). The total

RMS level following NAL-R amplification did not exceed 99

dBA for any participant.

A brief familiarization prior to the start of the experiment

involved 15 sentences spoken by the male target talker and 15

by the female interfering talker, all drawn from the pool used

for algorithm training. The first five sentences were presented

three times each, first in quiet (spoken by the target talker),

then following algorithm processing, and finally as an unpro-

cessed mixture with a competing sentence. This was followed

by five algorithm-processed sentences, then five sentences in

unprocessed mixtures. The middle SNR employed for each

listener group was employed for familiarization (�6 dB for

HI and �9 dB for NH). During this familiarization, the HI

subjects were asked if the sound level was uncomfortably

loud. No subject reported the level to be uncomfortable.

Following the familiarization, subjects heard the six blocks of

experimental conditions. Subjects completed the experiment

while seated with the experimenter in a double-walled sound

booth. They were instructed to attend to the male voice, to

repeat back each sentence as best they could, and to guess if

unsure of the content of the sentence. No sentence was

repeated for any listener. The experimenter controlled the pre-

sentation of each stimulus and scored keywords correctly

reported.

III. RESULTS AND DISCUSSION

Figure 3 illustrates the operation of the current separation

algorithm at the lowest SNR of �12 dB. Spectrograms for

the target signal, the interfering signal, and the mixture are

given in Figs. 3(a), 3(b), and 3(c), respectively. Figure 3(d)

shows the IRM, and its estimate is given in Fig. 3(f). These

are aligned vertically for ease of comparison. Figure 3(e)

shows the spectrogram of the separated speech. As shown in

Fig. 3(e), the weaker target signal [Fig. 3(a)] is largely recov-

ered from the mixture [Fig. 3(c)].

A. Human performance

In addition to scoring male-voice target-sentence intelli-

gibility, the experimenter monitored the content of the inter-

fering female-voice sentences to ensure that the subjects were

not inadvertently reporting the wrong voice. Inadvertent

reports did not occur, and on the rare occasion that a word

from the competing sentence was reported (�1% of the

unprocessed HI trails), the subject indicated knowing that it

was from the wrong voice.

Figure 4 shows sentence intelligibility based on key-

words correct for each subject in each condition. Scores for

the individual HI listeners at each SNR are displayed in the
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top panels,1 and those for the individual NH listeners

are displayed in the bottom panels. Unprocessed scores are

represented by circles and algorithm-processed scores are

represented by triangles. As in Fig. 1, HI subjects are num-

bered and plotted in order of increasing PTA. Apparent is

that performance in unprocessed conditions is very different

between HI and NH listeners. Whereas the NH listeners

could understand a large majority of keywords in most

conditions, the HI listeners performed far more poorly.

Understandably, these unprocessed scores for the HI listen-

ers generally decrease from left to right in each panel, as

degree of hearing loss increases. At the two least-favorable

SNRs (�6 and �9 dB), roughly half of the HI listeners were

able to report no more than 5% of the component keywords

within sentences in the presence of the competing female

talker.

Also apparent is that algorithm processing increased

scores for the HI listeners substantially. Intelligibility for

those HI listeners just described as having unprocessed

scores of 5% or below, increased to average over 70% at

those same two SNRs. Algorithm-processed scores were

over 80% correct on average across all HI listeners and

FIG. 3. (Color online) Illustration of

separating an IEEE sentence uttered by

a male talker (“It takes a good trap to

capture a bear.”) from another IEEE

sentence uttered by a female talker

(“Wood is best for making toys and

blocks.”), mixed at �12 dB SNR. (a)

Spectrogram of the target utterance.

(b) Spectrogram of the interfering

utterance. (c) Spectrogram of the two-

talker mixture. (d) IRM for the mix-

ture. (e) Estimated target spectrogram.

(f) Estimated IRM for the mixture.

“Freq.” indicates frequency.

FIG. 4. Intelligibility of IEEE sentences based on percentage of keywords reported correctly. Circles represent scores in the presence of a competing talker,

and triangles represent scores following algorithm processing of this mixture. Algorithm benefit is therefore represented by the height of the line connecting

these symbols. Individual HI listeners are represented by filled symbols in the top panels and individual NH listeners are represented by open symbols in the

bottom panels. The four SNRs employed are labeled at the top of the figure.
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SNRs. Algorithm benefit was as large as 87%-points (HI 7,

�3 dB and �9 dB SNR). Mean algorithm benefit exceeded

65%-points at all three SNRs for the half of the HI group

having the greatest degree of hearing loss (HI 6–10). As

expected, the presence of higher unprocessed scores for the

better-hearing half of the HI group and the NH listeners led

to smaller algorithm benefit. However, the half of the HI

group having the mildest hearing loss (HI 1–5) displayed

algorithm benefits of 20, 33, and 46%-points at �3, �6, and

�9 dB SNR, respectively, despite unprocessed scores of 74,

57, and 40% correct. The small minority of NH scores that

were around 50% correct—low enough to allow benefit to be

easily observed–increased to average over 85% correct.

Figure 5 displays group mean performance in each con-

dition for each listener group. Mean algorithm benefit was

42.5, 49.2, and 58.7%-points for the HI listeners and 6.1,

13.1, and 19.3%-points for the NH listeners, at the three

SNRs heard by each group. Planned comparisons (uncor-

rected paired t-tests) were performed on RAU-transformed

scores (Studebaker, 1985). Comparisons between unpro-

cessed and algorithm-processed scores indicated that signifi-

cant algorithm benefit was observed for the HI group at each

SNR [t(9)� 4.8, p< 0.001] and for the NH group at each

SNR [t(9)� 3.1, p< 0.05]. Further planned comparisons

between the unprocessed scores for NH listeners and the

processed scores for HI listeners at the SNRs common to

both listener groups indicated that scores were not statisti-

cally different at �6 or �9 dB SNR [t(18)� 1.3, p� 0.22].

B. Objective measures of intelligibility

As mentioned in Sec. I, previous computational studies

on two-talker separation did not use human speech intelligi-

bility as the evaluation metric, but rather used objective mea-

sures such as SNR. To facilitate replication and future

comparison, the current separation performance was also

evaluated using two objective metrics: short-time objective

intelligibility (STOI; Taal et al., 2011) and output SNR.

STOI is a standard objective measure for intelligibility with

values typically ranging from 0 to 1, roughly corresponding

to proportion correct. Another benefit of providing STOI

results, along with human speech intelligibility results, is

that such results should be valuable for improving computa-

tional models of speech intelligibility (see, e.g., Kressner

et al., 2016). The average objective scores for all test mix-

tures are shown in Table I. The results in the table show that

the current DNN-based separation algorithm led to large and

consistent improvements in SNR and STOI. The amount of

improvement increased as the input SNR decreased. At the

input SNR of �12 dB, the algorithm produced a very large

SNR gain of 17.1 dB, and improved the STOI score by

40%-points.

IV. GENERAL DISCUSSION

A. Human performance

The current conditions highlight the difficulty that HI

individuals have in understanding speech in the presence of

a single competing talker, and represent one of the situations

in which HI and NH listeners perform most differently. This

vast performance difference can be seen in the unprocessed

scores of Fig. 4, where the listeners with large amounts of

hearing loss (HI 6–10) performed far more poorly than their

milder-loss HI or NH counterparts. This variability across HI

subjects on unprocessed conditions is also reflected by the

error bars displayed in Fig. 5.

In contrast, the performance provided by the current

monaural algorithm can be seen in the high scores of most

all listeners, even at the highly unfavorable SNRs employed.

The algorithm produced significant intelligibility increases

for all listener groups at all SNRs, but improvements were

largest for the HI listeners having the most hearing loss and

correspondingly lowest unprocessed scores. Also important,

FIG. 5. Group-mean intelligibility scores and standard errors for HI and NH listeners hearing unprocessed IEEE sentences in the presence of a competing

talker and sentences following algorithm processing, at the SNRs indicated. Statistical significance is indicated as follows: *p< 0.05, **p< 0.005,

***p< 0.001, ****p< 0.00005, ns¼ nonsignificant.

TABLE I. Average separation performance measured in SNR and short-

time objective intelligibility (STOI) across all test mixtures at the different

input SNRs.

Input SNR (dB) Output SNR (dB) Unprocessed STOI Processed STOI

�12.00 5.10 0.435 0.835

�9.00 6.09 0.499 0.866

�6.00 7.11 0.569 0.891

�3.00 8.20 0.642 0.911
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the current DNN algorithm produced no significant

decreases in intelligibility. Accordingly, the algorithm

appears to work for those in need, but does not hinder perfor-

mance under conditions where it is unnecessary. One way to

assess algorithm performance is to compare the intelligibility

it affords HI listeners relative to the unprocessed perfor-

mance of young NH listeners, under identical noise condi-

tions. The current algorithm allowed the HI listeners to come

on average within 6.5%-points of the NH listeners at �6 dB

SNR, and to exceed the performance of NH listeners by 1%-

point at �9 dB SNR (see Fig. 5).

Possible reasons for the inability of HI listeners to segre-

gate concurrent voices and understand a target talker in the

presence of a competing talker were addressed in Sec. I.

Subject reports support the notion that HI subjects are unable

to segregate. They all reported knowing which voice they

were supposed to report, but the data show that they were

largely unable to do so. Another issue surrounds listener age.

The current HI subjects were selected to represent typical HI

listeners and so they are older (aged� 60 years of age).

There is evidence that the use of TFS cues, a potentially

important cue for segregation, declines with age (for review,

see Moore, 2016). But whatever the cause for the inability to

segregate voices, and the resulting poor performance of typi-

cal HI individuals, the current algorithm renders these limi-

tations moot by performing the segregation task that the

listener cannot and allowing substantial increases in

intelligibility.

B. Translational potential

The translational potential of algorithms such as the cur-

rent one requires two main considerations: (1) The ability to

generalize to untrained situations and (2) the computational

demands of the algorithm.

1. Generalization

A first consideration involves the ability of an algorithm

to generalize to conditions not encountered during training.

This has been a focus of the series of works by Healy,

Wang, and colleagues. Thus far, our algorithms have been

shown to generalize to untrained sentences (Healy et al.,
2013; Healy et al., 2015; Chen et al., 2016), untrained seg-

ments of the same noise type (Healy et al., 2015), entirely

novel noise types (Chen et al., 2016), and untrained SNRs

(Chen et al., 2016). Like the current algorithm, this work has

thus far involved the same target talker for training and test-

ing. There are at least two approaches to talker generaliza-

tion in the two-talker situation. In a first approach, the

algorithm is trained using target speech from a frequent com-

munication partner, such as a spouse, whereas interfering

speech comes from a variety of talkers. Such an approach,

called target-dependent training, has been described in

supervised speech separation literature (Du et al., 2014;

Zhang and Wang, 2016). In a second approach, which is

likely more appropriate for general noise reduction, the algo-

rithm is trained in a talker-independent way and thus gener-

alizes to untrained talkers. This can be potentially

accomplished through large-scale training using multiple

talkers. Recent work has also demonstrated that a RNN rep-

resents an effective approach for talker-independent segrega-

tion (Chen and Wang, 2016).

2. Computational aspects

A second consideration involves processing delays and

load. With regard to algorithm training, processing delays

are largely inconsequential, because training is completed

prior to algorithm operation. For the same reason, processing

load associated with training, as well as training duration, is

inconsequential. Large-scale training, while costly, repre-

sents an effective method to achieve generalizability (Chen

et al., 2016). In contrast, the processing delays and load

encountered during operation are critical considerations for

translation. It is important to note that the works by Healy

et al., have targeted effectiveness. But the implementation

considerations are also clear.

Processing delays during operation of an algorithm

implemented for telecommunications are less of a concern

because brief delays are not problematic. But an algorithm

optimized for a hearing aid or CI will need to limit group

delays to roughly 20–30 ms, corresponding to values that do

not disrupt various aspects of aided speech perception, includ-

ing auditory-visual synchrony (see Stone and Moore, 1999).

In terms of algorithm design, this affects the time windows

from which features are extracted from a noisy input and fed

to the trained DNN. One way to limit processing delay is to

employ past time frames and the current time frame, and to

limit the use of future time frames to within the tolerable

delay values. Our analysis with the aforementioned RNN

(Chen and Wang, 2016) indicates that it benefits little beyond

the first few future frames.

Processing load encountered during operation and algo-

rithm complexity are again less of a concern in a telecommu-

nication application, where the processing can be handled by

centralized equipment or by the users’ phone. But here again,

hearing technology is seemingly different. The processing

power of the behind-the-ear processor is extremely limited,

and it is tempting to view this as the platform constraining

operational complexity. One approach would be to reduce

algorithm complexity (e.g., number of layers and units/layer)

in order to run on the limited hardware platform. But this

would likely negatively affect algorithm performance.

A likely superior solution exists. This solution involves

hearing aid or CI processing by a smartphone-type device that

is carried by the listener and transmits bi-directionally to and

from an earpiece worn by the listener. This solution has the

advantages of both the vastly superior processing power and

battery life of the smartphone processor, and the extremely

small size of a wireless microphone/speaker earpiece. This

technology already exists. In fact, current smartphones offer

tremendous computing power and bi-directional transmission

to and from wireless earpieces.

V. CONCLUSIONS

The current work demonstrates the particular difficulty

that HI listeners have in understanding speech in the pres-

ence of a competing talker—a task that is handled
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effectively by NH listeners. Possible reasons for this diffi-

culty are addressed, and an algorithm based on a trained

DNN is introduced to deal with this situation. The DNN was

trained using a novel set of features extracted from the

speech signals. The IRMs estimated for two concurrent voi-

ces were used to segregate a male voice from the mixture of

a male and female voice. Increases in sentence intelligibility

were observed following algorithm processing at a variety of

SNRs. These were largest for the HI listeners, with an aver-

age of 59%-points at the least-favorable SNR and a maxi-

mum of 87%-points. The increases afforded by the current

algorithm allowed the HI listeners to perform equivalently to

young NH listeners (without the algorithm) in conditions of

identical background interference. To our knowledge, this is

the first monaural (single-microphone) algorithm that pro-

vides substantial speech intelligibility improvements for HI

listeners in the presence of interfering speech. Finally, the

somewhat different implementation considerations that

exist for telecommunications versus hearing aids and CIs are

discussed.
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