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Segmental dynamics of polyethylene-alt-propylene studied by NMR spin
echo techniques
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Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular
weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based
upon 1H→ 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed
from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo
pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions
to this function and allows one to extract the segmental mean-squared displacements in the millisecond
time range, which is hardly accessible by other experimental methods. The proposed technique in
combination with time-temperature superposition yields information about segmental translation in
polyethylene-alt-propylene over 6 decades in time from 10�6 s up to 1 s. The time dependence of
the mean-squared displacement obtained in this time range clearly shows three regimes of power law
with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse
model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the
fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time
range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect
on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude
ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the
intramolecular part obtained from the experimental data is not in agreement with the predictions
of the tube-reptation model for the regimes of incoherent and coherent reptation. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4984265]

INTRODUCTION

Polymers are one of the most widely used industrial mate-
rials with the majority of them being operated in the melt state
at some point of the manufacturing process. Generally, this
type of matter, in comparison to simple liquids, possesses
unique properties due to the high length of macromolecules
and entanglements occurring between them. Knowledge of
the segmental dynamics of macromolecules on the experi-
mental and theoretical level allows one to predict some of the
melt’s macroscopic characteristics. However, a high number of
degrees of freedom in a macromolecule chain leads to the com-
plexity of local motions, covering a wide range of timescales.
There is a variety of models addressing this problem in differ-
ent ways. The most well-established treatment was proposed in
a so-called “Rouse model.”1,2 Predictions of the Rouse model
hold well for polymer melts with molecular weight M << Mc,
where Mc is a critical molecular mass above which entangle-
ments become relevant for times t >> τs,3,4 where τs is the
segmental relaxation time. However, the Rouse model is not
able to predict the frequency and molecular weight dependen-
cies of T1, as well as the diffusion coefficients and segmental
mean-squared displacements experimentally observed in the
case of entangled polymer melts, i.e., M > Mc. One of the
most popular theoretical approaches attempting to take into

account the topological constraints imposed by entanglements
is the tube-reptation model.5–7 In the frame of this concept, it is
assumed that the surrounding of a macromolecule forms a ficti-
tious tube, within which the motion of the chain is constrained,
thus introducing an additional source of intermolecular forces
in a polymer melt in comparison with the Rouse model. In this
scenario, the whole time range of segmental dynamics can be
separated into four regimes, characterized by different time
limits. At times τs << t << τe (τe is the entanglement time)
the chain senses no constraints, and its dynamics follows the
Rouse model. The second regime, which can be named inco-
herent reptation, stands for the slower dynamics determined by
the motions of the chain in a tube at times τe << t << τR, where
τR = τsN2 is the longest Rouse mode relaxation time. In this
regime, a single chain already reptates inside the tube, but dif-
ferent parts of it move independently from each other and the
effects of the contour length fluctuations are playing an impor-
tant role. At longer times, the effect of the coherent reptation
takes place, when the chain coherently moves along the tube in
the time interval τR << t << τd , where τd is known as a disen-
gagement time. At times t >> τd , the chain leaves the tube and
the diffusion eventually becomes “normal.” The characteris-
tic time and molecular weight dependencies for each regime
resulting from the tube-reptation model are summarized
below:3,5–8,14
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A number of other theoretical models describing the segmental
dynamics in polymer melts has been developed over the years,
such as renormalized Rouse models9,10 and the mode-mode
coupling model.11 Nevertheless, none of the mentioned mod-
els is able to explain all the experimental results obtained in
polymer melts. Therefore, the study of the segmental dynamics
in polymers at different time scales is still of high importance
for discriminating between different model predictions.

Nuclear magnetic resonance (NMR) based methods have
always been widely used for the study of polymer melts,12–14

specifically 1H NMR, since polymers contain a large num-
ber of 1H nuclei. For proton spins, I = 1

2 , the detectable
relaxation of the nuclear magnetization is determined by the
dipole-dipole interactions,12 which in turn are modulated by
the molecular motions. In Refs. 15–17, it was theoretically pre-
dicted for the first time and also experimentally proven with
the use of a fast field-cycling (FFC) relaxometry technique that
intra- and inter-molecular contributions to dipole-dipole inter-
actions in polymer melts can be isolated from each other via
isotopic dilution and studied separately. This finding gave a
new rise to fundamental NMR investigations of polymer melt
segmental dynamics with FFC methods,18–24 which, with the
help of frequency-temperature superposition combined with
field-gradient (FG) NMR experiments, are describing pro-
cesses in melts in a very wide time range.25 However, both
field-cycling relaxometry (FC) as well as FG NMR techniques
have certain limitations, frequently imposed by the NMR hard-
ware. Conventional FFC relaxometers are not able to directly
probe frequencies lower than ∼10 kHz (corresponding to
times longer than ∼100 µs). A number of works performed
on a dedicated home-built FFC machine, allowing ultra-low
magnetic field measurements, were presented recently.22,23 In
this case, one has to take into consideration a possible non-
exponentiality of the longitudinal magnetization decay due to
the violation of the Redfield limit and the presence of the local
magnetic fields.12 On the other hand, the FG methods are lim-
ited by the maximum achievable gradient strength necessary
for probing the slow dynamics of a chain and effects of spin-
diffusion,26 usually corresponding to the smallest accessible
mean-squared displacements (MSD) of about 200 Å.

Another powerful and widely used tool for the investiga-
tion of the segmental dynamics in polymers is quasi-elastic
neutron scattering (QENS) and neutron spin echo (NSE).27–29

FIG. 1. Time scale of a highly entangled polymer melt’s segmental dynam-
ics accessible by different techniques. The hatched part of FFC rectangle
represents the time range covered with the help of ultra-low field experiments.

The longest times and largest displacements available for these
methods are dictated by the lowest value of the scattering
wave vector k and the maximum temperature the polymer can
withstand before the onset of degradation. Typically, this corre-
sponds to displacements in the order of 10 Å and times around
10 ns (in the best case 100 ns and 30 Å).

The schematic representation of the time ranges covered
by different NMR techniques and neutron scattering is shown
in Fig. 1 for the better illustration.

One can see that the interval from 100 µs to 10 ms is either
not directly covered or hardly accessible by the discussed
techniques (at least demanding a particularly sophisticated
hardware). This gap can be studied with the use of double-
quantum (DQ) coherence excitation,30–34 which requires in
its most quantitative incarnation the application of a sophis-
ticated radio frequency (RF) pulse sequence. Alternatively,
methods based on treating the transverse magnetization decay
can be used for the same purpose, employing such experimen-
tal techniques as a simple free induction decay (FID), the Hahn
echo (HE), the dipolar-correlation effect (DCE) or the solid
echo (SE).35–40 Recently a new method, based on the DCE
on the Hahn echo decay, has been developed and applied to
obtain the segmental mean-squared displacements in a highly
entangled polybutadiene melt,41 with results that are in good
agreement with the results provided by FFC NMR. In this
work, we present a novel complementary method for investi-
gating the translational motion of segments in polymer melts.
The experimental technique relies on the construction of a
build-up function which is essentially identical to that of ear-
lier approaches described in Refs. 42–46. However, in the cited
works the theoretical analyses were restricted to a spin-pair
approximation, i.e., absolutely ignoring intermolecular mag-
netic dipole-dipole interactions. The method proposed in the
present study is based on a formalism which considers all the
spins in the system. It is applied to the evaluation of the Hahn-
echo and the solid-echo NMR signals, and covers the above
mentioned gap in the experimentally accessible times in the
millisecond range.

THEORY

In order to extract information about the time dependence
of the proton dipole-dipole correlation function and segmental
mean-squared displacements in a polymer melt, a special func-
tion should be considered, which is constructed from signals
given by three different spin echo experiments:

• S1 -
(
P̂π/2x − τ − P̂π/2y

)
, known as solid echo,

• S2 -
(
P̂π/2x − τ − P̂π/2x

)
,

• S3 -
(
P̂π/2x − τ − P̂πx

)
, known as Hahn echo,

where P̂θα is an operator, rotating the spin system by the angle
θ about axis α. This function is named the solid-echo build-up
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function and is defined by the following equation:

ISE(t) ≡
S1(t) + S2(t) − S3(t)

S1(t) + S2(t)
. (1)

In this expression, t = 2τ is the time moment at which the
spin echo is observed and τ is the interval between two RF
pulses. For any exponential relaxation decay, the solid-echo
build-up function equals zero, which means that any possi-
ble contributions from the mobile fractions are removed. It
will be shown that the initial rise of this function contains
additive contributions from intra- and intermolecular dipole-
dipole interactions, with the latter comprising the information
about translational motion of segments. Note that for a two-
spin system the introduced function ISE(t) is analogous to the
Γ(t) function described in Refs. 42 and 43 and β(2τ; τ) func-
tion discussed in Refs. 44 and 45, see also similar approaches
in Ref. 46 and the literature cited therein.

Following the mathematical derivation presented in the
Appendix, one can obtain with help of modified Anderson-
Weiss approximation the expression for the ISE(t) for spins
I = 1

2 ,

ISE(t) = 1 −

∑
k

exp

{
− 1

8

∑
m

〈(
ϕ̃d

km (τ) + ϕd
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)2
〉}

∑
k

exp

{
− 1

8

∑
m

〈(
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km (τ) − ϕd
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)〉} , (2)

where

ϕd
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3γ2~

2
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0

dt1
1 − 3cos2 (θkm (t1))

r3
km (t1)

Pfl
km (t1) , (3)

ϕ̃d
km (t − τ) =

3γ2~

2

t∫
τ

dt1
1 − 3cos2 (θkm (t1))

r3
km (t1)

Pfl
km (t1) . (4)

The quantities ϕd
kl (τ) and ϕ̃d

km (t − τ) are related to the motion
of proton spins in local dipolar fields after the first and the
second RF pulses, respectively, and contain information about
polymer segments dynamics through the time dependence of

the factors 1−3cos2(θkm(t1))
r3

km(t1)
inside the integrals at the right-hand

sides of expressions (3) and (4). The bracket 〈. . .〉 denotes the
equilibrium averaging over lattice variables.

For the situations when all the spins are equivalent, i.e.,
terms inside the sums in the expression (2) do not depend on
k, this can be simplified to

ISE(t) = 1 −
1

Ns

∑
k

exp


−

1
2

∑
m

〈
ϕ̃d

km (τ) · ϕd
km (τ)

〉


= 1 − exp


−

1
2Ns

∑
k;m

〈
ϕ̃d

km (τ) · ϕd
km (τ)

〉


, (5)

where N s is the total number of spins in the system with the
resonance frequency ω0. Note that in the many-spins system
the function ISE(t) is similar to the so-called double-quantum
build-up function InDQ(τDQ), which was derived in Ref. 34;
the two functions differ only in a numerical factor.

The main approximation made in the course of the deriva-
tion of Eq. (5) is the modified Anderson-Weiss approximation
first formulated in Ref. 35. It is exact for times t << T eff

2 ,

where T eff
2 is the time, at which a transverse magnetization

decays to e�1 of its initial value, and takes into account (at
variance with the ordinary Anderson-Weiss approximation)
flip-flop processes causing spin-diffusion for times t > T eff

2 .
It is clearly observed that all the obtained expressions con-
tain both intra- and inter-molecular magnetic dipole-dipole
interactions between proton spins.

At times t < T eff
2 the argument in the exponential in (5) is

small, thus enabling one to decompose this expression into a
Taylor series. Keeping only the terms quadratic in phase yields

ISE(t) =
1

2Ns

∑
k;m

〈
ϕ̃d

km (τ) · ϕd
km (τ)

〉
+ .... (6)

Then using the expressions (3)–(5) and employing the transla-
tional invariance of the time-dependent correlation functions,
(6) can be rewritten as follows:

ISE(t) =
9
8
γ4~2

τ∫
0

(τ − t1)
{
Ad

0 (τ + t1) + Ad
0 (τ − t1)

}
dt1 + ...,

(7)
where

Ad
0 (t) =

1
Ns

∑
k,m
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1 − 3 cos (θkm (t))

r3
km (t)

·
1 − 3 cos (θkm (0))

r3
km (0)

〉
.

(8)
The time dependent total dipole-dipole correlation function
Ad

0 (t) for polymer melts was analyzed in details earlier.35 It can
be separated into a sum of intermolecular and intramolecular
parts, corresponding to the contributions from protons from
the different and the same macromolecules, respectively,

Ad
0 (t) = Ad;inter

0 (t) + Ad;intra
0 (t) . (9)

The intermolecular contribution for times much longer than the
segmental relaxation time t >> τs is connected with the rela-
tive mean-squared displacement of proton spins from different
macromolecules 〈r̃2 (t)〉 by the following expression:

Ad;inter
0 (t) =

√
2

3π
16π

5
ns〈

r̃2 (t)
〉3/2

, (10)

where ns is the volume density of protons in the system. Con-
sidering (9), the experimentally measurable function ISE(t)
can also be represented as the sum of intramolecular and
intermolecular contributions,

ISE(t) = ISE;intra(t) + ISE;inter(t). (11)

With the use of relation (10), it is possible to demon-
strate that the intermolecular part of the build-up function
is connected in a rather simple way with the relative mean-
squared displacements of polymer segments from different
macromolecules:

ISE;inter(t) =
18π

5

√
2

3π
γ4~2ns

τ∫
0

(τ − t1)



1〈
r̃2 (τ + t1)

〉3/2

+
1〈

r̃2 (τ − t1)
〉3/2




dt1 + .... (12)

In the case when the relative mean-squared displacement
of polymer segments from different macromolecules can be
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described by a time independent exponent α, i.e., 〈r̃2 (t)〉
= A · tα, integration of the right-hand side of expression (12)
can be performed exactly with the assumption that α < 2/3,
yielding

ISE;inter(t) =
18π

5
f (α)

√
2

3π
γ4~2ns

t2〈
r̃2 (t)

〉3/2
+ ..., (13)

where

f (α) =
2

3α
2

(
21− 3α

2 − 1
)

4
(
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2

) (
1 − 3α

4

) . (14)

From Eq. (13), one can obtain the relative mean-squared
displacement of polymer segments from different polymer
chains,

〈
r̃2 (t)

〉
= *
,

18π
5

f (α)

√
2

3π
γ4~2ns

t2

ISE;inter(t)
+
-

2
3

. (15)

Note that the characteristic flip-flop time is considerably longer

than the spin-spin relaxation time τfl ≈
(

9
2

) 2
4−3α T eff

2 > 2T eff
2 .35

Then for times τ < τfl ≈
(

9
2

) 2
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2 , expression (5) can be
rewritten as

ISE;inter(t) = 1 − exp
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.

(16)
The relative mean-squared displacement of polymer seg-
ments from different macromolecules for time-independent
exponent α can then be calculated using the following
relation:

〈
r̃2 (t)

〉
=
*.
,

18π
5

f (α)

√
2

3π
γ4~2ns

t2

ln
(

1
1−ISE;inter (t)

) +/
-

2
3

. (17)

The experimental results processed using this expression
are going to be compared with the results calculated with
the help of another method described recently in Ref. 41.
It implies the construction of the dipolar-correlation build-
up function, correlating the Hahn echo signals at time

moments t
2 and t: IDC (t) = 1 − SHE (t)SHE (0)

(SHE( t
2 ))2 , where SHE(t)

is the Hahn echo signal at the time moment t = 2τ. Then
the MSD can be obtained from the intermolecular part of
IDC(t),

〈
r̃2 (t)

〉
=
*.
,

9π
5

f (α)

√
2

3π
γ4~2ns

t2

ln
(

1
1−IDC;inter (t)

) +/
-

2
3

. (18)

EXPERIMENT

Poly(ethylene-alt-propylene) (PEP) with a narrow molar
mass (M) distribution (Mn/Mw < 1.06) was synthesized from
poly(isoprene) via hydrogenation47 and kindly provided by

D. Richter (Forschungszentrum Jülich, Germany). The poly-
mer combines a very simple structure, a low glass transition
temperature of Tg = 206 K,24 and only a weak tendency to crys-
tallize. Two samples were prepared: one of them represents
fully protonated PEP with a molar mass of M = 200 kDa. The
second sample is an isotopic mixture composed of fully proto-
nated and fully deuterated PEP of the same molecular weight
200 kDa, with weight fractions of 10% 1H and 90% 2H, respec-
tively, blended according to the procedure described in Ref. 22.
The concentration was controlled through weighing. For the
NMR measurements, the samples were filled into standard
5 mm NMR tubes and then degassed under vacuum at around
330 K for at least 48 h to remove paramagnetic oxygen. Both
samples were in a highly entangled state due to the molecular
weight of 200 kDa significantly exceeding the critical mass of
PEP, Mc ∼ 2kDa;48 therefore, the anomalous segmental diffu-
sion regime is expected in a broad range of time, representing
the point of interest for the present work. Transverse NMR
relaxation experiments were performed in a broad temperature
range T = 283 K–440 K using three different NMR spectrom-
eters. The measurements at temperatures T = 283 K–338 K
were carried out on a Minispec mq40 (Bruker, 1H 40 MHz)
in the University of Ilmenau. The intermediate temperature
range T = 338 K–400 K was covered on the Minispec mq20
(Bruker, 1H 20 MHz) in the University of Halle, Germany.
Finally, high temperatures above 400 K were covered with the
use of a homemade relaxometer based on a Halbach design
magnet51 operating at a 1H frequency of 17 MHz in Ilmenau.
The results of all the measurements at different T were treated
in the same way, since the analysis of the data based on the
formalism developed before is independent from the Larmor
frequency. In order to calculate the solid-echo build-up func-
tion ISE(t), one needs to obtain signals S1, S2, and S3 result-
ing from three different pulse sequences

(
P̂π/2x − τ − P̂π/2y

)
,(

P̂−π/2x − τ − P̂−π/2x

)
, and

(
P̂−π/2x − τ − P̂πx

)
, as was discussed

earlier. In principle, the numerator of ISE(t), S1 + S2 � S3, can
be obtained in one single experiment, using the pulse sequence(
P̂π/2x − τ − P̂π/2k1

P̂π/4k2
P̂π/4k3

)
with proper phase cycling for k1,

k2, k3 so that the π/4 RF pulses are either in phase (Hahn echo
S3) or cancel each other (S1 or S2). However, this type of exper-
iments demands a high homogeneity of the RF field, otherwise
artifacts connected with a non-perfect angle of a magnetization
flip following the RF pulse can appear. In this work, signals S3

and S12 = S1 + S2 (with the use of phase cycling) were mea-
sured separately and were then combined in order to obtain
ISE(t) = S12(t)−S3(t)

S12(t) . As an example, in Fig. 2 the solid-echo

build-up function ISE is plotted as a function of time t = 2τ for
the fully protonated and the diluted sample at T = 333 K.

The representation of these data into the relative mean-
squared displacements according to Eq. (17) is valid only
for times t < T eff

2 . Thus, the area of the curves which was
not used for analysis is marked on the plot, corresponding to
T eff

2 of the protonated sample, as it is always lower than T eff
2

of the diluted one, due to the almost full elimination of the
intermolecular proton dipole-dipole interactions in the latter.
The intermolecular part of the build-up function ISE ;inter(t),
which is necessary for obtaining MSD with the use of (17), can
be extracted from these data via extrapolation to zero proton
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FIG. 2. Proton solid-echo build-up function ISE as a function of time for the
protonated (100% 1H) and diluted (10% 1H) PEP 200k. The vertical line
marks the T eff

2 characteristic time of a transverse magnetization decay for the
protonated sample.

content in the polymer sample,

ISE;inter(t) = 1 − *
,

1 − ISE
υ (t)

1 − ISE
p (t)

+
-

− 1
1−υ

. (19)

Here, υ is the proton concentration in the diluted sample
and ISE

p (t) and ISE
υ (t) are solid-echo build-up functions of the

protonated and the diluted samples, respectively.
Note that Eq. (17) only yields the relative MSD 〈r̃2 (t)〉

of polymer segments from different chains. At the present
state of polymer dynamics theory, a detailed model connect-
ing the relative mean-squared displacement 〈r̃2 (t)〉 of two
polymer segments with the absolute mean-squared displace-
ment of individual polymer segments 〈r2(t)〉 over the whole
time range has not been formulated. However, it is reason-
able to expect that they are connected in the following way:
〈r̃2 (t)〉 = α̃〈r2 (t)〉, where α̃ ≤ 2, depending on the degree of
correlation of segmental motions. In the case when motions of
polymer chains are not correlated α̃ = 2, which certainly takes
place in the normal diffusion regime, whereas α̃ = 0 in the case
when segmental motions are completely correlated, i.e., seg-
ments are rigidly bonded. Further on, it is assumed that α̃ = 2
holds over the whole time range covered by the experiments,
leading to the simple relation 〈r̃2 (t)〉 = 2〈r2 (t)〉. In Fig. 3,
the segmental mean-squared displacement 〈r2(t)〉 at different
temperatures T = 283 K–440 K is plotted. It was calculated
from the solid-echo build-up functions ISE with the use of
Eq. (17).

The long-time limitations of validity of the curves for
each temperature are connected with the value of T eff

2 , which
is increasing with T. On the other hand, the short-time limit
is determined by the difference between the values of ISE

p

and ISE
υ , which is becoming too small, leading to a high

uncertainty of the calculated ISE ; inter and, consequently, of
〈r2(t)〉. In addition to that, it is necessary to mention the
problem of calculation of f (α), given by (14) and appearing
in (17), as it depends on the a priori unknown power-law

FIG. 3. Segmental mean-squared displacements 〈r2(t)〉 of PEP 200k for
different temperatures.

exponent of the MSD time dependence’s power law. Tak-
ing into account the fact that α in polymer melts is always
in the range 0.2 ≤ α ≤ 0.5, the maximum range of f (α)
and, thus, of the numerical coefficient for MSD in (17) is(

f (0.5)
f (0.2)

) 2
3 � 1.36. A more careful mathematical treatment of

that problem is necessary, whereas in this work the simple
model of a linear change of α during the transitions was
assumed.

In order to illustrate the actual interval of the measured dis-
placements in time, the time-temperature superposition (TTS)
principle was applied. It relies on the assumption that no phase
and no glass transition takes places within the probed tem-
perature range, and that the temperature dependence of the
Kuhn segment length is negligible. The temperature depen-
dent coefficients applied for the horizontal (i.e. time) shift of
MSD curves in Fig. 3 relative to the reference temperature
were taken from the segmental relaxation time temperature
dependence data τs(T ) obtained by shear rheology, dielec-
tric spectroscopy, and FFC NMR, presented in Ref. 23 and
shown in Fig. 6 as well. The reference temperature was set
to be 333 K and results were compared with the MSD of
PEP with M = 80 kDa measured by means of neutron spin
echo spectroscopy carried out by Wischnewsky et al. at the
temperature of 492 K.28 In order to perform such a com-
parison the extrapolation of the τs(T ) to 492 K was done
and the value of τs obtained in this way (marked in Fig. 6)
was used for the temperature shift of the NSE data. The
result of this superposition yields a master curve shown in
Fig. 4.

One can see that data obtained by the combination of NMR
spin echoes coincides well with NSE data in the time interval t
≈ 10�6–10�5 s and extends significantly the probed time range
of the segmental mean-squared displacements up to ≈1 s at
T = 333 K. Three power-law regimes are revealed. Two transi-
tion times were estimated from the intersections of the power
laws: τe ≈ 4.6 µs, corresponding to the transition between
the Rouse (I, t < τe) and the incoherent reptation (II, τe < t
< τR) regime, and τR ≈ 47 ms, marking the transition between
incoherent reptation (II) and coherent reptation (III, t > τR)
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FIG. 4. PEP 200k MSD time dependence obtained via time-temperature
superposition of the curves in Fig. 3 and MSD of PEP 80k measured by
neutron spin echo (NSE) spectroscopy.28 Three different power-law regimes
are revealed with exponents as indicated. The crossover times τe and τR are
determined from the intersections of the power laws. The inset shows the
predictions of the tube-reptation model for the MSD time dependence.

regimes in the frames of the tube-reptation model. It is noted
that to the best of the authors’ knowledge, the latter transition
in PEP 200k was observed for the first time.

The exponents of the power laws in regimes (I) α = 0.5
±0.05 and (III)α = 0.51±0.01, respectively, are in good agree-
ment with the values predicted by the tube-reptation model (α
= 0.5), whereas in regime (II) the observed exponent α = 0.2
± 0.01 is lower than the theoretical value of α = 0.25. Model
prediction for the ratio between τR and τe for the case of PEP
is τR

τe
= N2

N2
e
� 8 000, where Ne is a number of Kuhn seg-

ments corresponding to one entanglement. The data displayed
in Fig. 4 yields the value τR

τe
≈ 10 000, which is remarkably

close to the theoretical predicted one.
With these results, it is possible to estimate the charac-

teristic tube diameter dt of polyethylene-alt-propylene using

the value of τe: 〈r2(τe)〉
1
2 =

√
2

π
3
2

dt ,8 resulting in dt =

√
π

3
2

2

〈r2(τe)〉
1
2 ≈ 3.9 nm, which is in good agreement with the cal-

culated value 4.88 nm and the NSE data yielding 4 nm from
Ref. 48.

In Ref. 23, the same polymer PEP 200k was studied with
field-cycling relaxometry and the values of α ≈ 0.5 for regime
I and α ≈ 0.2 in the beginning of regime II were obtained,
as well as the tube diameter of 4.6 nm. In Fig. 5, the MSD
obtained from NMR spin echo presented in Fig. 3 is compared
with the FC relaxometry and NSE data, and with the results
from the method based on the dipolar correlation effect on the
Hahn echo (DC), using expression (18). For the latter, again
the principle of time-temperature superposition was applied
for constructing a master curve using the same temperature
shift factors as before.

Exceeding the time range of NSE spectroscopy and FFC
relaxometry, the presented spin echo method, as well as the
dipolar correlation based method, is able to reach regime III
of the tube-reptation model. Dipolar correlation data clearly
yields 3 regimes of time-dependent segmental MSD with expo-
nents close to the ones observed with the use of ISE ;inter .
The difference of absolute values of MSD between these two

FIG. 5. PEP 200k MSD time dependence obtained through ISE ;inter (the solid
echo formalism) and IDC ;inter (the dipolar correlation effect) compared with
FC data in PEP 200k24 and MSD of PEP 80k measured with the use of NSE.28

methods is satisfactory; the tube diameter calculated from DC
data is slightly higher than calculated before dt ≈ 4.2 nm.

In addition to that, it should be taken into account that
the ISE ;inter build-up function has an amplitude two times
higher than that of the IDC ;inter function, which can be seen
from the comparison of (16) and the analogous expression
for IDC ;inter in Ref. 41. This leads to a better signal-to-noise
ratio of the formalism presented in this work than that of the
dipolar correlation based method. At the same time, the lat-
ter is technically simpler, demanding only performing a Hahn
echo experiment. On the contrary, for the construction of the
ISE function, a series of double pulse experiments with per-
fectly tuned receiver phase and RF pulses of a high-quality is
necessary.

In Fig. 6, the temperature dependencies of all the charac-
teristic time constants of the tube-reptation model in PEP are
presented: segmental relaxation time τs, entanglement time τe,
Rouse relaxation time τR, and disengagement relaxation time
τd . The graph is based on Fig. 7 from Ref. 24 with the addi-
tion of the data obtained in the present work by the spin echo
method. Values of τs(T ) are provided by 1H FC NMR, shear-
stress rheology,24 dielectric spectroscopy, and solid-state 2H
NMR49 for different molecular weights of PEP, since τs is
weight independent. τs(T ) data are interpolated by a four-
parameter function50 and this function is vertically shifted to
intersect τe, τR, and τd values. The presented values of the
entanglement time τe for PEP 200k are obtained with the use
of NSE,28 1H FC NMR,24 and the spin echo method, described
in this work. It is clearly seen that τe provided by the spin echo
method for T = 333 K is in good agreement with the other two
experimental values. Furthermore, the spin echo method is the
only one providing the value of the Rouse relaxation time τR

for PEP 200k. In addition to this, temperature dependence of
the terminal relaxation time for PEP 200k τd(T ) obtained with
the use of shear-stress rheology24 is shown for the complete
illustration of the relaxation times map in PEP.

Another important analysis, which can be performed
in the frame of the presented formalism, is the investiga-
tion of the relative contributions of the intermolecular and
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FIG. 6. Relaxation map of PEP: τs (T) for different M determined by 1H FC NMR (black closed symbols), shear-stress rheology (colored closed points),24

NSE (extrapolated), dielectric spectroscopy (unpublished data), and solid-state 2H NMR (crosses).49 τe (T) values for PEP 200k are obtained by 1H FC NMR,24

NSE,28 and the spin echo method presented in this work. The value of τR at T = 333K for PEP 200k is provided only by the spin echo method. τd (T) is measured
with the use of shear-stress rheology.24 τs (T) data are interpolated by a four-parameter function (solid black line),50 and this function is vertically shifted to
intersect τe, τR, and τd values (dashed lines).

intramolecular interactions to the total dipole-dipole corre-
lation function. These contributions Ainter (translational) and
Aintra (reorientational) are contained in the exponent of the nor-
malized Hahn echo signal35 and their ratio can be extracted in
the following way:

Ainter

Aintra
=

Lp(t) − Lυ(t)

Lυ(t) − υLp(t)
. (20)

In this expression, Lp(t) and Lυ(t) are logarithms of the nor-
malized Hahn echo signals of protonated and diluted sam-
ples, respectively. It is noted that the ratio Ainter

Aintra is, by nature
of its construction, not normalized for exponential trans-
verse relaxation contributions corresponding to the highly
mobile fractions, which may well differ for the inter- and
intramolecular contributions. Apart from that, the additivity
assumption inherent to the “single-point” extrapolation of
Ainter used in this work will have to be checked by means
of an isotope dilution series, which was beyond the current
scope.

It is known52 that the model prediction for the ratio of the
intermolecular part of the dipole-dipole correlation function
over the intramolecular part in the case of isotropic dynam-
ics, when the segment displacements are not correlated with
the initial conformation of a chain, is Ainter

Aintra ∝ 〈r
2(t)〉

1
2 . On

the contrary, in the case of anisotropic segmental motions,

as for instance, within regime II and III in the frame of the
tube-reptation model at times τe < t < τR, theory yields
Ainter

Aintra ∝ 〈r
2(t)〉−

1
2 . Therefore, calculating and plotting Ainter

Aintra

against the root mean-squared displacement 〈r2(t)〉
1
2 (RMSD)

allows one to discriminate between fundamentally different
models. This graph is presented in Fig. 7(a) along with the
dependence predicted by the tube-reptation model.

The exponent of a Ainter

Aintra dependence on RMSD in regime
I (τs < t < τe) is 1.28 ± 0.08, which is sufficiently close to the
theoretical prediction for isotropic models. Interestingly, the
behavior of Ainter

Aintra in regimes II and III is completely different
from what follows from the model prediction: here the ratio
grows as a function of RMSD with the exponent of the power
law 0.47 ± 0.02 in regime II, tending to reach a plateau in
regime III. Calculation of the reorientational and translational
dipole-dipole correlation functions for PEP 200k employing
FFC relaxometry data was as well performed in Ref. 24 for
regime I and the beginning of regime II. The comparison of
these data to the results obtained in this work is shown in
Fig. 7(b). Here, the ratio Ainter

Aintra is plotted as a function of the nor-
malized time t/τe, showing essentially different behavior of the
data provided by different methods for times t/τe = 10�1

� 103.
This apparent contradiction between the results of the present
work and FC relaxometry data needs to be further investi-
gated. Preliminary explanation of this phenomenon can rely

FIG. 7. (a) Ratio of the intermolecu-
lar dipole-dipole interactions contribu-
tion to the total dipole-dipole correla-
tion function over the intramolecular
contribution in PEP 200k as a function
of the root mean-squared displacement

〈r2(t)〉
1
2, separated into 3 regimes of seg-

mental dynamics based on MSD data
and fitted in regimes I and II (black line).
The blue line represents the prediction
of the tube-reptation model. (b) The
comparison of the same ratio obtained
in this work with the FC data24 as a
function of the rescaled time.
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on two reasons. First, both techniques provide the ratio Ainter

Aintra

based on different integral transformations of the total proton
magnetic dipole-dipole correlation function. In the case of FC
relaxometry, it is a weighted sum of Fourier transformations
of the dipole-dipole correlation functions at the resonance and
double resonance frequencies, whereas in the case of the spin
echo method one deals with a convolution of the discussed
dipole-dipole correlation function with time. This leads to a
possible difference in the numerical coefficients and even in
a functional behavior during the crossover between different
regimes of macromolecular motion. However, it is emphasized
that the ratio Ainter

Aintra does not affect the MSD results, as according
to Eq. (17), MSD depends only on the intermolecular part of the
SE build-up function. Second, both methods can be subjects
to additional disturbing effects at long times/low frequen-
cies: FC in regime II, at frequencies on the order of 100 Hz,
approaches the Redfield limit (problem mentioned in the Intro-
duction), and SE and DC methods are affected by the spin
non-equivalency and highly mobile impurities at high temper-
atures. Moreover, results provided by the multi-quantum (MQ)
resonance method differ from the both sets of data presented
here, yielding weaker isotope-dilution effects.31 Therefore,
FFC and time-domain (transverse-evolution) approaches such
as MQ, HE, or SE have been observed before to provide dif-
ferent results for the inter/intra ratio. However, the significant
uncertainties related to this ratio do not challenge the consis-
tent MSD result. Generally, the relative contributions of intra-
and intermolecular dipole-dipole interactions to the total pro-
ton dynamical correlation function will be studied in more
details in the future, as it can provide a valuable insight on the
segmental dynamics in a polymer melt.

CONCLUSION

In the present research, a novel approach to the inves-
tigation of segmental dynamics in entangled polymer melts,
based on the formalism developed by the authors in previous
works, was presented. It implies the use of the combination
of pulse sequences

(
P̂π/2x − τ − P̂π/2y

)
,
(
P̂π/2x − τ − P̂π/2x

)
, and(

P̂π/2x − τ − P̂πx
)

in isotopically diluted samples, and construc-

tion of the solid-echo build-up function ISE , which allows one
to extract the segmental mean-squared displacement in a melt
and to study the dynamical proton dipole-dipole correlation
function at the millisecond range, which is hardly accessible
by other experimental methods. Using this method in combi-
nation with time-temperature superposition, MSD in a time
range of 6 decades was obtained, yielding clear transitions of
the power-law dependence between regimes I, II, and III in
the frame of the tube-reptation model, with exponents being
in good agreement with the values predicted by the theory. For
the first time, the Rouse relaxation time τR for PEP 200k was
measured, corresponding to the transition between regimes
of the coherent and incoherent reptation. The tube diame-
ter calculated from the obtained data, dt ≈ 3.9 nm, was in
good agreement with literature data. The MSD findings were
confirmed as well using an alternative method based on the
dipolar-correlation effect on the Hahn echo (proposed by the
authors in Ref. 41). However, the dependence of the relative

intermolecular dipole-dipole interactions on the root mean-
squared displacement was at variance with the predictions of
the tube-reptation model for regimes II and III, whereas the
result for regime I was in satisfactory agreement with the the-
ory. For the more precise and detailed study of this phenomena,
polyethylene oxide is being investigated, which has a simple
structure and all the proton spins magnetically equivalent to
each other, and the results of this work are going to be presented
as well in the future contributions.
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APPENDIX: CALCULATION OF S1 SIGNAL

Consider a system described as in Ref. 35 by the following
Hamiltonian:

Ĥ = Ĥs + ĤL + Ĥsec
dd . (A1)

In this expression, Ĥs =
∑
k
~ω0 Îz

k is the Zeeman spin Hamilto-

nian describing the interaction of proton spins with the external
magnetic field B0, ω0 = �γB0 is the resonance frequency cor-
responding to that magnetic field, ĤL is the Hamiltonian of
the lattice degrees of freedom related to the motions of the
macromolecules in space, and Ĥsec

dd is the secular part of the
dipole-dipole interaction Hamiltonian, where only homonu-
clear interactions of 1H nuclei are considered throughout the
paper. The latter gives the main contribution to transverse
relaxation at high frequencies and can be expressed in the
standard way,

Ĥsec
dd =

1
2

∑
k;l

Akl

(
Îz
k Îz

l −
1
4

(
Î+
k Î−l + Î−k Î+

l

))
, (A2)

where for i , j

Akl =
γ2~2

r3
kl

(
1 − 3cos2(θkl)

)
. (A3)

Here γ denotes the gyromagnetic ratio of proton spins, k and l
are the indices enumerating spins, rkl is the distance between
spins k and l, and θkl is the angle between the direction of B0

and rkl. Îz
k , Î+

k = Îx
k + iÎy

k , Î−k = Îx
k − iÎy

k are z-component, raising
and lowering operators, respectively, of spin k, and Aii = 0.
For the better representation, the expression for Ĥsec

dd can be
rewritten as follows:

Ĥsec
dd =

3
4

∑
k;l

Akl Î
z
k Îz

l −
1
4

∑
k;l

Ãkl Îk · Î l. (A4)

In Eq. (A4), Îk · Î l = Îx
k Îx

l + Îy
k Îy

l + Îz
k Îz

l and Ãkl = Akl − 2Jkl,
where Jkl is the constant of an exchange interaction between
spins k and l (Note that this is a correction of a misprint in
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the corresponding expression in Ref. 35). The scalar part of
(A4) is usually neglected for the sake of simplification of the
calculations in the frame of the Anderson-Weiss approxima-
tion, used in the cases where incomplete motional narrowing
conditions take place.36 That term comprises the spin diffusion
phenomenon due to the presence of the interspin flip-flop inter-
actions. In Ref. 35, it was shown that taking into account the
scalar term leads to a deviation from the standard Anderson-
Weiss approach of less than 10% for times t ≤ 2T eff

2 , where

T eff
2 is the effective spin-spin relaxation time (time by which

magnetization decays by e times) of a spin system governed
by the Hamiltonian (A2), which means that in this time range
neglecting the scalar term while for analyzing experimental
data is acceptable.

Following the same formalism, consider the response of
the spin system to the RF pulse sequence (P̂π/2x − τ − P̂π/2y ) —
the so-called solid echo.

At the time origin, the state of the total (spin + lattice)
system is described by the equilibrium density matrix,

ρ̂eq =
1
Z

exp
(
−βĤ

)
� ρ̂

eq
s ρ̂

eq
L =

1
Zs

exp
(
−βĤs

)
ρ̂

eq
L

�
1
Zs

exp
(
I − β~ω0 Îz

)
ρ̂

eq
L . (A5)

In this expression, β = 1
kBT is the inverse temperature of the

system, ρ̂eq
L is the equilibrium density matrix of the lattice,

Zs � (2I + 1)Ns is the statistical sum of the spin system in the
high-temperature approximation, i.e., β~ω0 << 1, which is
valid with high accuracy at any temperature above ≈10 mK,
N s is the total number of spins in the system with the resonance
frequency ω0, and Îz =

∑
k

Îz
k . After application of the first RF

pulse, rotating the spins by an angle π/2 about the x axis, the
equilibrium matrix turns into

ρ̂0 = P̂π/2x ρ̂eq ≡ exp
(
−i
π

2
Îx

)
ρ̂eq exp

(
i
π

2
Îx

)
�

1
Zs

(
I + β~ω0 Îy

)
ρ̂

eq
L . (A6)

The system now follows the free evolution determined by the
Hamiltonian (A1) and the density matrix of the total system at
time t is equal to

ρ̂(t) = Ŝ(t) ρ̂0 = exp
(
−itL̂H

)
ρ̂0, (A7)

where, for the purpose of abbreviation, the Liouville space
formalism is used (see, for example, Ref. 13), i.e., Ŝ(t) is the
superoperator of the evolution caused by the Hamiltonian Ĥ
= Ĥs + ĤL + Ĥsec

dd , which, by definition, is acting in accordance
with the following rule:

Ŝ(t) ρ̂0 = exp
(
−iĤt

)
ρ̂0 exp

(
iĤt

)
. (A8)

L̂H is the Liouville operator defined by the relation

L̂H ρ̂ =
1
~

[
Ĥ; ρ̂

]
. (A9)

Consequently, at time t = τ, the second RF pulse P̂π/2y acts
on the spin system and rotates the spin system by the angle π

2
about the y axis. Considering the situation when the experi-
mentally measurable quantity is the y component of the total

spin of the system, its value at time t can be calculated with the
help of the statistical operator, yielding the following standard
relation:

S1(t) ≡
〈
Îy(t)

〉
= Tr

(
Îy ρ̂(t)

)
�

β~ω0

(2I + 1)Ns
Tr

(
ÎyŜ(t − τ)P̂π/2y Ŝ(τ)Îy ρ̂

eq
L

)
, (A10)

where Tr (. . . ) is the trace operation over all the spin and lattice
variables and Îy =

∑
k

Îy
k .

Within the accuracy of the high-temperature approx-
imation expression (A10) is exact. Its further evaluation
demands approximations due to the presence of the multi-
particle interaction term Ĥsec

dd given by expression (A2) in the
total Hamiltonian (A1). Subsequently, the modified Anderson-
Weiss approximation is used, details of which can be found in
Ref. 35.

A first step of this approximation is based on the transition
to the so-called interaction, or Dirac, representation. The main
difference from usual standard schemes is contained in choos-
ing the so-called “Zero Hamiltonian,” which in the present
case includes the scalar part of the Hamiltonian (A1), defined
as

Ĥ0 = Ĥs + ĤL −
1
4

∑
k;l

Ãkl Îk · Î l. (A11)

Therefore in our case the role of perturbation is assumed by
the following Hamiltonian:

Ĥsec;zz
dd =

3
4

∑
k;l

Akl Î
z
k Îz

l . (A12)

Expression (A10) can be rewritten as

S1(t) =
β~ω0

(2I + 1)Ns
Tr

(
ÎyŜ0(t) ˆ̃Ssec

dd (t − τ; τ)Ŝ−1
0 (τ)P̂π/2y

× Ŝ0(τ) ˆ̃Ssec
dd (τ; 0)Îy ρ̂

eq
L

)
. (A13)

Here, Ŝ0(t) = exp
(
−itL̂0

)
is the superoperator of evolution

created by the Hamiltonian (A11), and

ˆ̃Ssec
dd (t2; t1) = T̂ exp



−i

t2∫
t1

ˆ̃Lsec;zz
dd (t ′)dt ′




(A14)

is the superoperator of evolution created by the Hamiltonian
(A12) in the interaction representation, where T̂ means the
usual Dyson time ordering operator.

Then, for the calculation with superoperator (A14), one
can use the standard quantum statistical perturbation theory
to (A14) truncating the series decomposition on terms having

second order of magnitude with respect to
t2
∫
t1

ˆ̃Lsec;zz
dd (t). Then

contributions of higher orders of magnitude can be recovered
using the second cumulant, i.e., the Anderson-Weiss, approx-
imation for calculating the spin echo signal. For realization of
this procedure, it is necessary to be able to calculate the time
evolution of operators having the structure

Ŝ∗0(t)Îz
k Îz

l = exp

{
i
Ĥ0

~
t

}
Îz
k Îz

l exp

{
−i

Ĥ0

~
t

}
. (A15)
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In our case, the Zero Hamiltonian includes the scalar part of
the spin-spin interactions and, due to that, the right part of
expression (A15) cannot be calculated exactly. The approx-
imation suggested in Ref. 35 consists of the right-hand side
of operators having a structure similar to (A15) by its pro-
jection in the sense of Zwanzig-Mori; see, for example,
Ref. 53,

Ŝ∗0(t)Îz
k Îz

l ≈ P̂zz
kl Ŝ
∗
0(t)Îz

k Îz
l ≡ Îz

k Îz
l

Tr(Îz
k Îz

l Ŝ∗0(t)Îz
k Îz

l ρ̂
eq
L )

Trs(Î
z
k Îz

l )
2

= Îz
k Îz

l P fl
kl(t), (A16)

where Trs(. . . ) is the trace operation over all the spin
variables.

Note that experimentally measurable quantities are time-
dependent correlation functions having structures similar to
(A13). They do not depend on the choice of the initial moment
of time. The approximation (A16) obviously does not pos-
sess this feature; therefore, it should be applied with addi-
tional instructions to keep the discussed property. First of
all, time-dependent correlation functions should be rewrit-
ten into “normal form,” which means that the argument ti

of the spin operators as Ŝ∗0(ti)Î
z
k Îz

l at the initial moment of
time is zero. Then the approximation (A16) should be applied
to these time-dependent correlation functions written in the
“normal form.” For instance, let us discuss how to calcu-
late a quantity, which has the structure of the form J (t2; t1)
= Tr

((
Ŝ∗0(ti)Î

z
k Îz

l

)
B̂

(
Ŝ∗0(ti)Î

z
k Îz

l

)
ρ̂

eq
L

)
, where B̂ is a time inde-

pendent operator. Taking advantage of a translational invari-
ance, we can represent it in the normal form as follows: J (t2; t1)
= Tr

((
Ŝ∗0(t2 − t1)Îz

k Îz
l

)
B̂Îz

k Îz
l ρ̂

eq
L

)
. It is possible now to apply

the approximation (A16) and obtain J (t2; t1) = P fl
kl (t2 − t1)Tr(

Îz
k Îz

l B̂Îz
k Îz

l ρ̂
eq
L

)
. Here, Pkl

fl can be considered as the probability
for a given pair of spins with numbers k and l not to partici-
pate in flip-flop processes in the time interval t. For protons,
which have a spin I = 1

2 mutual flip-flop transitions between
spins with numbers k and l do not give a contribution to the
probability P fl

kl . The expression for this probability was derived
with the use of the standard Anderson-Weiss approximation in
Ref. 35,

Pfl
kl (t) = exp



−

t∫
0

dτ (t − τ)
I (I + 1)

6~2

∑
m

(〈
Ãkm (τ) Ãkm (0)

〉
eq

+
〈
Ãlm (τ) Ãlm (0)

〉
eq

)


. (A17)

Expression (A13) for the signal S1 can be rewritten in the
following form:

S1(t) =
β~ω0

(2I + 1)Ns
Tr

((
Ŝ0(τ)

(
ˆ̃Ssec

dd (t − τ; τ)
)−1

Ŝ−1
0 (t)Îy

)
P̂π/2y

× Ŝ0(τ) ˆ̃Ssec
dd (τ; 0)Îy ρ̂

eq
L

)
. (A18)

Employing the approximation (A16), the action of evolution

superoperators on the spin variables Ŝ0(τ)
(
ˆ̃Ssec

dd (t − τ; τ)
)−1

Ŝ−1
0 (t)Îy and Ŝ0(τ) ˆ̃Ssec

dd (τ; 0)Îy can be calculated exactly. Then,

using properties of the spin I = 1
2 , symmetry arguments like the

isotropy of the system, considering motions of lattice variables
classically, after somewhat bulky quantum statistical calcula-
tions, which were described in details in Ref. 35, one obtains
the following result:

S1 (t) =
β~ω0

4

∑
k;s

〈
cos (ϕ̃s (t − τ)) cos (ϕk (τ))

× *
,
δks + 4

∂2

∂ϕ̃d
ks∂ϕ

d
ks

+
-

∏
m

cos

(
ϕ̃d

sm (t − τ)

2

)

× cos *
,

ϕd
km (τ)

2
+
-

〉
, (A19)

where

ϕd
kl (τ) =

3γ2~

2

τ∫
0

dt1
1 − 3cos2 (θkl (t1))

r3
kl (t1)

P fl
kl (t1) , (A20)

ϕ̃d
km (t − τ) =

3γ2~

2

t∫
τ

dt1
1 − 3cos2 (θkm (t1))

r3
km (t1)

P fl
km (t1) ,

(A21)

the phases ϕk(τ)=ωk · τ, and ϕ̃s (t − τ) =ωs · (t − τ) are
connected with either chemical shift differences of different
protons or different Larmor frequencies caused by an external
magnetic field gradient, the latter being assumed small enough
for neglecting diffusion effects. The bracket 〈. . .〉 denotes, as
usual, the equilibrium averaging over lattice variables. The
quantities ϕd

km (τ) and ϕ̃d
sm (t − τ), where ϕd

ii (τ) = ϕ̃d
jj (t − τ)

= 0, are related to rotations of proton spins in local dipolar
fields after the first and the second RF pulses, respectively,
and contain information about polymer segments dynamics

through time dependence of the factors 1−3cos2(θkm(t1))
r3

km(t1)
inside

integrals at the right-hand side of expressions (A20) and
(A21). In the course of formal partial differentiations over
ϕd

km (τ) and ϕ̃d
sm (t − τ), these quantities should be considered

as independent variables. After that, it is necessary to use
the expressions (A20) and (A21) and then to make a statis-
tical averaging. Due to the factors cos (ϕ̃s (t − τ)) cos (ϕk (τ))

and cos
(
ϕ̃d

sm(t−τ)
2

)
cos

(
ϕd

km(τ)
2

)
the signal S1(t) has a maxi-

mum, i.e., an echo, at time t = 2τ. Note also, that the echo
can be observed even in the situations, which are actually
rather difficult to realize experimentally, when the phases ϕk(τ)
and ϕ̃k (t − τ) are very small, but motion of spins before and
after the second RF pulse are correlated due to the factor

cos
(
ϕ̃d

sm(t−τ)
2

)
cos

(
ϕd

km(τ)
2

)
.

The signals S2(t) and S3(t) can be calculated analogously,

S2 (t) =
β~ω0

4

∑
k;s

〈
sin (ϕ̃s (t − τ)) sin (ϕk (τ))

× *
,
δks + 4 (1 − δks)

∂2

∂ϕ̃d
ks∂ϕ

d
ks

+
-

∏
m

× cos

(
ϕ̃d

sm (t − τ)

2

)
cos *

,

ϕd
km (τ)

2
+
-

〉
, (A22)
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S3 (t) =
β~ω0

4

∑
k

〈
cos (ϕ̃k (t − τ) − ϕk (τ))

×
∏

m

cos

(
1
2

(
ϕ̃d

km (t − τ) + ϕd
km (τ)

))〉
. (A23)

The most important difference between the Hahn echo, sig-
nal S3, and the two variants of the solid echo, signal S1,
which is usually named the solid echo, and signal S2, occurs
in the factor cos

(
1
2

(
ϕ̃d

km (t − τ) + ϕd
km (τ)

))
, which considers

the influence of the local dipolar fields on the spin evolution
to be additive, as this expression contains the sum of phases
1
2

(
ϕ̃d

km (t − τ) + ϕd
km (τ)

)
, where the factor 1

2 reflects the fact

that spin I = 1
2 is treated. Note that at time t = 2τ Eq. (A23)

is equivalent to the expression derived in the same way for the
FID signal in Ref. 35.

Now consider the sum of two echo signals S1 and S2,
which were calculated before,

S12 (t) ≡ S1 (t) + S2 (t) =
β~ω0

4

∑
k;s

〈
cos (ϕ̃s (t − τ) − ϕk (τ))

× *
,
δks + 4

∂2

∂ϕ̃d
ks∂ϕ

d
ks

+
-

∏
m

cos

(
ϕ̃d

sm (t − τ)

2

)

× cos *
,

ϕd
km (τ)

2
+
-

〉
. (A24)

This sum has the same echo forming factor cos (ϕ̃k (t − τ)
− ϕk (τ)) as the Hahn echo (A23). Using this feature and the
fact that all the discussed signals have a maximal value at time
t = 2τ, the normalized function, which reflects the difference
between the solid and Hahn echoes, ISE(t) is defined as

ISE (t) ≡
S12 (t) − S3 (t)

S12 (t)
. (A25)

At time t = 2τ, when one can neglect the effects caused by the
difference of chemical shifts between different spins, the value
cos (ϕ̃k (t − τ) − ϕk (τ)) ≈ 1 and, in particular for polymer
melts with large molecular masses, the dependence of each
contribution inside the sums in expressions (A7) and (A8) on
the spin number k is very weak, i.e., they are equal to each
other. Therefore, one can derive from (A23)–(A25),

ISE (t) = 1−

∑
k

〈∏
m

cos
(

1
2

(
ϕ̃d

km (τ) + ϕd
km (τ)

))〉
∑
k;s

〈(
δks + 4 ∂2

∂ϕ̃d
ks∂ϕ

d
ks

)∏
m

cos
(
ϕ̃d

sm(τ)
2

)
cos

(
ϕd

km(τ)
2

)〉 .

(A26)

A many-spin generalization of the β(2τ; τ) function, described
in Ref. 45, can be obtained from the expression (A25) as well
if one replaces S12(t) in the denominator with its initial value
S12(2τ = 0; τ = 0), which is actually not straightforward to
determine experimentally.

Then, employing the following approximation for the
cosine function in (A26):

cos (x) = 1 −
1
2

x2 + ... � exp

{
−

1
2

x2
}

, (A27)

expression (A25) can be evaluated as

ISE(t) = 1 −

∑
k

exp

{
− 1

8

∑
m

〈(
ϕ̃d

km (τ) + ϕd
km (τ)

)2
〉}

∑
k

exp

{
− 1

8

∑
m

〈(
ϕ̃d

km (τ) − ϕd
km (τ)

)〉} .

(A28)
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