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Abstract

Sparsity-based approaches have been popular in many applications in image processing and 

imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary 

to improve image recovery from undersampled measurements. In the context of inverse problems 

in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank 

techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive 

dictionary domain, and the resulting image and dictionary estimation from undersampled 

measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is 

modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) 

that are estimated from limited measurements. In this work, we investigate a data-adaptive 

extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed 

into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in 

some adaptive dictionary domain. We investigate various formulations and efficient methods for 

jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary 

from limited measurements. We also obtain efficient sparsity penalized dictionary-blind 

compressed sensing methods as special cases of our LASSI approaches. Our numerical 

experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic 

resonance image reconstruction from limited k-t space data compared to recent methods such as k-

t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.
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I. Introduction

Sparsity-based techniques are popular in many applications in image processing and 

imaging. Sparsity in either a fixed or data-adaptive dictionary or transform is fundamental to 

the success of popular techniques such as compressed sensing that aim to reconstruct images 

from limited sensor measurements. In this work, we focus on low-rank and adaptive 
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dictionary-sparse models for dynamic imaging data and exploit such models to perform 

image reconstruction from limited (compressive) measurements. In the following, we briefly 

review compressed sensing (CS), CS-based magnetic resonance imaging (MRI), and 

dynamic data modeling, before outlining the contributions of this work.

A. Background

CS [1]–[4] is a popular technique that enables recovery of signals or images from far fewer 

measurements (or at a lower rate) than the number of unknowns or than required by Nyquist 

sampling conditions. CS assumes that the underlying signal is sparse in some transform 

domain or dictionary and that the measurement acquisition procedure is incoherent in an 

appropriate sense with the dictionary. CS has been shown to be very useful for MRI [5], [6]. 

MRI is a relatively slow modality because the data, which are samples in the Fourier space 

(or k-space) of the object, are acquired sequentially in time. In spite of advances in scanner 

hardware and pulse sequences, the rate at which MR data are acquired is limited by MR 

physics and physiological constraints [5].

CS has been applied to a variety of MR techniques such as static MRI [5], [7], [8], dynamic 

MRI (dMRI) [6], [9]–[11], parallel imaging (pMRI) [12]–[15], and perfusion imaging and 

diffusion tensor imaging (DTI) [16]. For static MR imaging, CS-based MRI (CSMRI) 

involves undersampling the k-space data (e.g., collecting fewer phase encodes) using 

random sampling techniques to accelerate data acquisition. However, in dynamic MRI the 

data is inherently undersampled because the object is changing as the data is being collected, 

so in a sense all dynamic MRI scans (of k-t space) involve some form of CS because one 

must reconstruct the dynamic images from under-sampled data. The traditional approach to 

this problem in MRI is to use “data sharing” where data is pooled in time to make sets of k-

space data (e.g., in the form of a Casorati matrix [17]) that appear to have sufficient samples, 

but these methods do not fully model the temporal changes in the object. CS-based dMRI 

can achieve improved temporal (or spatial) resolution by using more explicit signal models 

rather than only implicit k-space data sharing, albeit at the price of increased computation.

CSMRI reconstructions with fixed, non-adaptive signal models (e.g., wavelets or total 

variation sparsity) typically suffer from artifacts at high undersampling factors [18]. Thus, 

there has been growing interest in image reconstruction methods where the dictionary is 

adapted to provide highly sparse representations of data. Recent research has shown benefits 

for such data-driven adaptation of dictionaries [19]–[22] in many applications [18], [23]–

[25]. For example, the DLMRI method [18] jointly estimates the image and a synthesis 

dictionary for the image patches from undersampled k-space measurements. The model 

there is that the unknown (vectorized) image patches can be well approximated by a sparse 

linear combination of the columns or atoms of a learned (a priori unknown) dictionary D. 

This idea of joint dictionary learning and signal reconstruction from undersampled 

measurements [18], known as (dictionary) blind compressed sensing (BCS) [26], has been 

the focus of several recent works (including for dMRI reconstruction) [18], [27]–[36]. The 

BCS problem is harder than conventional (non-adaptive) compressed sensing. However, the 

dictionaries learned in BCS typically reflect the underlying image properties better than pre-

determined models, thus improving image reconstructions.
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While CS methods use sparse signal models, various alternative models have been explored 

for dynamic data in recent years. Several works have demonstrated the efficacy of low-rank 

models (e.g., by constraining the Casorati data matrix to have low-rank) for dynamic MRI 

reconstruction [17], [37]– [39]. A recent work [40] also considered a low-rank property for 

local space-time image patches. For data such as videos (or collections of related images 

[41]), there has been growing interest in decomposing the data into the sum of a low-rank 

(L) and a sparse (S) component [42]–[44]. In this L+S (or equivalently Robust Principal 

Component Analysis (RPCA) [42]) model, the L component may capture the background of 

the video, while the S component captures the sparse (dynamic) foreground. The L+S model 

has been recently shown to be promising for CS-based dynamic MRI [45], [46]. The S 

component of the L+S decomposition could either be sparse by itself or sparse in some 

known dictionary or transform domain. Some works alternatively consider modeling the 

dynamic image sequence as both low-rank and sparse (L & S) [47], [48], with a recent work 

[49] learning dictionaries for the S part of L & S. In practice, which model provides better 

image reconstructions may depend on the specific properties of the underlying data.

When employing the L+S model, the CS reconstruction problem can be formulated as 

follows:

(P0)

In (P0), the underlying unknown dynamic object is x = xL+xS ∈ ℂNxNyNt, where xL and xS 

are vectorized versions of space-time (3D) tensors corresponding to Nt temporal frames, 

each an image1 of size Nx × Ny. The operator A is the sensing or encoding operator and d 
denotes the (undersampled) measurements. For parallel imaging with Nc receiver coils, 

applying the operator A involves frame-by-frame multiplication by coil sensitivities 

followed by applying an undersampled Fourier encoding (i.e., the SENSE method) [50]. The 

operation R1(xL) reshapes xL into an NxNy × Nt matrix, and ||·||* denotes the nuclear norm 

that sums the singular values of a matrix. The nuclear norm serves as a convex surrogate for 

matrix rank in (P0). Traditionally, the operator T in (P0) is a known sparsifying transform 

for xS, and λL and λS are non-negative weights.

B. Contributions

This work investigates in detail the extension of the L+S model for dynamic data to a Low-

rank + Adaptive Sparse SIgnal (LASSI) model. In particular, we decompose the underlying 

temporal image sequence into a low-rank component and a component whose overlapping 

spatiotemporal (3D) patches are assumed sparse in some adaptive dictionary domain2. We 

propose a framework to jointly estimate the underlying signal components and the 

1We focus on 2D + time for simplicity but the concepts generalize readily to 3D + time.
2The LASSI method differs from the scheme in [51] that is not (overlapping) patch-based and involves only a 2D (spatial) dictionary. 
The model in [51] is that R1(xS) = DZ with sparse Z and the atoms of D have size NxNy (typically very large). Since often Nt < 
NxNy, one can easily construct trivial (degenerate) sparsifying dictionaries (e.g., D = R1(xS)) in this case. On the other hand, in our 
framework, the dictionaries are for small spatiotemporal patches, and there are many such overlapping patches for a dynamic image 
sequence to enable the learning of rich models that capture local spatiotemporal properties.
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spatiotemporal dictionary from limited measurements. We compare using ℓ0 and ℓ1 penalties 

for sparsity in our formulations, and also investigate adapting structured dictionaries, where 

the atoms of the dictionary, after being reshaped into space-time matrices are low-rank. The 

proposed iterative LASSI reconstruction algorithms involve efficient block coordinate 

descent-type updates of the dictionary and sparse coefficients of patches, and an efficient 

proximal gradient-based update of the signal components. We also obtain novel sparsity 

penalized dictionary-blind compressed sensing methods as special cases of our LASSI 

approaches.

Our experiments demonstrate the promising performance of the proposed data-driven 

schemes for dMRI reconstruction from limited k-t space data. In particular, we show that the 

LASSI methods give much improved reconstructions compared to the recent L+S method 

and methods involving joint L & S modeling [47]. We also show improvements with LASSI 

compared to the proposed spatiotemporal dictionary-BCS methods (that are special cases of 

LASSI). Moreover, learning structured dictionaries and using the ℓ0 sparsity “norm” in 

LASSI are shown to be advantageous in practice. Finally, in our experiments, we compare 

the use of conventional singular value thresholding (SVT) for updating the low-rank signal 

component in the LASSI algorithms to alternative approaches including the recent 

OptShrink method [52]–[54].

A short version of this work investigating a specific LASSI method appears elsewhere [55]. 

Unlike [55], here, we study several dynamic signal models and reconstruction approaches in 

detail, and illustrate the convergence and learning behavior of the proposed methods, and 

demonstrate their effectiveness for several datasets and undersampling factors.

C. Organization

The rest of this paper is organized as follows. Section II describes our models and problem 

formulations for dynamic image reconstruction. Section III presents efficient algorithms for 

the proposed problems and discusses the algorithms’ properties. Section IV presents 

experimental results demonstrating the convergence behavior and performance of the 

proposed schemes for the dynamic MRI application. Section V concludes with proposals for 

future work.

II. Models and Problem Formulations

A. LASSI Formulations

We model the dynamic image data as x = xL + xS, where xL is low-rank when reshaped into 

a (space-time) matrix, and we assume that the spatiotemporal (3D) patches in the vectorized 

tensor xS are sparse in some adaptive dictionary domain. We replace the regularizer ζ(xs) = ||
TxS||1 with weight λS in (P0) with the following patch-based dictionary learning regularizer

(1)
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to arrive at the following problem for joint image sequence reconstruction and dictionary 

estimation:

(P1)

Here, Pj is a patch extraction matrix that extracts an mx × my × mt spatiotemporal patch from 

xS as a vector. A total of M (spatially and temporally) overlapping 3D patches are assumed. 

Matrix D ∈ ℂm×K with m = mxmymt is the synthesis dictionary to be learned and zj ∈ ℂK is 

the unknown sparse code for the jth patch, with PjxS ≈ Dzj .

We use Z ∈ ℂK×M to denote the matrix that has the sparse codes zj as its columns, ||Z||0 

(based on the ℓ0 “norm”) counts the number of nonzeros in the matrix Z, and λZ ≥ 0. 

Problem (P1) penalizes the number of nonzeros in the (entire) coefficient matrix Z, allowing 

variable sparsity levels across patches. This is a general and flexible model for image 

patches (e.g., patches from different regions in the dynamic image sequence may contain 

different amounts of information and therefore all patches may not be well represented at the 

same sparsity) and leads to promising performance in our experiments. The constraint ||Z||∞ 
≜ maxj ||zj||∞ ≤ a with a > 0 is used in (P1) because the objective (specifically the regularizer 

(1)) is non-coercive with respect to Z [56]. 3 The ℓ∞ constraint prevents pathologies that 

could theoretically arise (e.g., unbounded algorithm iterates) due to the non-coercive 

objective. In practice, we set a very large, and the constraint is typically inactive.

The atoms or columns of D, denoted by di, are constrained to have unit norm in (P1) to avoid 

scaling ambiguity between D and Z [56], [57]. We also model the reshaped dictionary atoms 

R2(di) as having rank at most r > 0, where the operator R2(·) reshapes di into a mxmy × mt 

space-time matrix. Imposing low-rank (small r) structure on reshaped dictionary atoms is 

motivated by our empirical observation that the dictionaries learned on image patches 

(without such a constraint) tend to have reshaped atoms with only a few dominant singular 

values. Results included in the supplement4 show that dictionaries learned on dynamic 

image patches with low-rank atom constraints tend to represent such data as well as learned 

dictionaries with full-rank atoms. Importantly, such structured dictionary learning may be 

less prone to over-fitting in scenarios involving limited or corrupted data. We illustrate this 

for the dynamic MRI application in Section IV.

When zj is highly sparse (with ||zj||0 ≪ min(mt,mxmy)) and R2(di) has low rank (say rank-1), 

the model PjxS ≈ Dzj corresponds to approximating the space-time patch matrix as a sum of 

a few reshaped low-rank (rank-1) atoms. This special (extreme) case would correspond to 

approximating the patch itself as low-rank. However, in general the decomposition Dzj could 

3Such a non-coercive function remains finite even in cases when ||Z|| → ∞. For example, consider a dictionary D that has a column di 
that repeats. Then, in this case, the patch coefficient vector zj in (P1) could have entries α and −α respectively, corresponding to the 
two repeated atoms in D, and the objective would be invariant to arbitrarily large scaling of |α| (i.e., non-coercive).
4Supplementary material is available in the supplementary files/multimedia tab.
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involve numerous (> min(mt,mxmy)) active atoms, corresponding to a rich, not necessarily 

low-rank, patch model. Experimental results in Section IV illustrate the benefits of such rich 

models.

Problem (P1) jointly learns a decomposition x = xL + xS and a dictionary D along with the 

sparse coefficients Z (of spatiotemporal patches) from the measurements d. Unlike (P0), the 

fully-adaptive Problem (P1) is nonconvex. An alternative to (P1) involves replacing the ℓ0 

“norm” with the convex ℓ1 norm (with ) as follows:

(P2)

Problem (P2) is also nonconvex due to the product Dzj (and the nonconvex constraints), so 

the question of choosing (P2) or (P1) is one of image quality, not convexity.

Finally, the convex nuclear norm penalty ||R1(xL) ||* in (P1) or (P2) could be alternatively 

replaced with a nonconvex penalty on the rank of R1(xL), or the function  for p < 1 

(based on the Schatten p-norm) that is applied to the vector of singular values of R1(xL) 

[47]. While we focus mainly on the popular nuclear norm penalty in our investigations, we 

also briefly study some of the alternatives in Section III and Section IV-D.

B. Special Case of LASSI Formulations: Dictionary-Blind Image Reconstruction

When λL → ∞ in (P1) or (P2), the optimal low-rank component of the dynamic image 

sequence becomes inactive (zero). The problems then become pure spatiotemporal 

dictionary-blind image reconstruction problems (with xL = 0 and x = xS) involving ℓ0 or ℓ1 

overall sparsity [56] penalties. For example, Problem (P1) reduces to the following form:

(2)

We refer to formulation (2) with its low-rank atom constraints as the DINO-KAT 

(DIctioNary with lOw-ranK AToms) blind image reconstruction problem. A similar 

formulation is obtained from (P2) but with an ℓ1 penalty. These formulations differ from the 

ones proposed for dynamic image reconstruction in prior works such as [28], [35], [31]. In 

[35], dynamic image reconstruction is performed by learning a common real-valued 

dictionary for the spatio-temporal patches of the real and imaginary parts of the dynamic 

image sequence. The algorithm therein involves dictionary learning using K-SVD [21], 

where sparse coding is performed using the approximate and expensive orthogonal matching 

pursuit method [58]. In contrast, the algorithms in this work (cf. Section III) for the overall 

sparsity penalized DINO-KAT blind image reconstruction problems involve simple and 

efficient updating of the complex-valued spatio-temporal dictionary (for complex-valued 3D 
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patches) and sparse coefficients (by simple thresholding) in the formulations. The 

advantages of employing sparsity penalized dictionary learning over conventional 

approaches like K-SVD are discussed in more detail elsewhere [56]. In [31], a spatio-

temporal dictionary is learned for the complex-valued 3D patches of the dynamic image 

sequence (a total variation penalty is also used), but the method again involves dictionary 

learning using K-SVD. In the blind compressed sensing method of [28], the time-profiles of 

individual image pixels were modeled as sparse in a learned dictionary. The 1D voxel time-

profiles are a special case of general overlapping 3D (spatio-temporal) patches. Spatio-

temporal dictionaries as used here may help capture redundancies in both spatial and 

temporal dimensions in the data. Finally, unlike the prior works, the DINO-KAT schemes in 

this work involve structured dictionary learning with low-rank reshaped atoms.

III. Algorithms and Properties

A. Algorithms

We propose efficient block coordinate descent-type algorithms for (P1) and (P2), where, in 

one step, we update (D,Z) keeping (xL, xS) fixed (Dictionary Learning Step), and then we 

update (xL, xS) keeping (D,Z) fixed (Image Reconstruction Step). We repeat these 

alternating steps in an iterative manner. The algorithm for the DINO-KAT blind image 

reconstruction problem (2) (or its ℓ1 version) is similar, except that xL = 0 during the update 

steps. Therefore, we focus on the algorithms for (P1) and (P2) in the following.

1) Dictionary Learning Step—Here, we optimize (P1) or (P2) with respect to (D,Z). We 

first describe the update procedure for (P1). Denoting by P the matrix that has the patches 

PjxS for 1 ≤ j ≤ M as its columns, and with C ≜ ZH, the optimization problem with respect to 

(D,Z) in the case of (P1) can be rewritten as follows:

(P3)

Here, we express the matrix DCH as a Sum of OUter Products (SOUP) . We then 

employ an iterative block coordinate descent method for (P3), where the columns ci of C and 

atoms di of D are updated sequentially by cycling over all i values [56]. Specifically, for 

each 1 ≤ i ≤ K, we solve (P3) first with respect to ci (sparse coding) and then with respect to 

di (dictionary atom update).

For the minimization with respect to ci, we have the following subproblem, where 

 is computed using the most recent estimates of the other variables:

(3)

The minimizer ĉi of (3) is given by [56]
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(4)

where the hard-thresholding operator HλZ (·) zeros out vector entries with magnitude less 

than λZ and leaves the other entries (with magnitude ≥ λZ) unaffected. Here, |·| computes 

the magnitude of vector entries, 1M denotes a vector of ones of length M, “⊙” denotes 

element-wise multiplication, min(·, ·) denotes element-wise minimum, and we choose a such 

that a > λZ. For a vector c ∈ ℂM, ej∠c ∈ ℂM is computed element-wise, with “∠” denoting 

the phase.

Optimizing (P3) with respect to the atom di while holding all other variables fixed yields the 

following subproblem:

(5)

Let  denote an optimal rank-r approximation to R2 (Eici) ∈ ℂmxmy×mt that is 

obtained using the r leading singular vectors and singular values of the full singular value 

decomposition (SVD) R2 (Eici) ≜ UΣV H. Then a global minimizer of (5), upon reshaping, is

(6)

where W is any normalized matrix with rank at most r, of appropriate dimensions (e.g., we 

use the reshaped first column of the m × m identity matrix). The proof for (6) is included in 

the supplementary material.

If r = min(mxmy,mt), then no SVD is needed and the solution is [56]

(7)

where w is any vector on the m-dimensional unit sphere (e.g., we use the first column of the 

m × m identity).

In the case of (P2), when minimizing with respect to (D,Z), we again set C = ZH, which 

yields an ℓ1 penalized dictionary learning problem (a simple variant of (P3)). The dictionary 

and sparse coefficients are then updated using a similar block coordinate descent method as 

for (P3). In particular, the coefficients ci are updated using soft thresholding:
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(8)

2) Image Reconstruction Step—Minimizing (P1) or (P2) with respect to xL and xS 

yields the following subproblem:

(P4)

Problem (P4) is convex but nonsmooth, and its objective has the form f(xL, xS) + g1(xL) + 

g2(xS), with , g1(xL) ≜ λL ||R1(xL)||*, and 

. We employ the proximal gradient method [45] for (P4), 

whose iterates, denoted by superscript k, take the following form:

(9)

(10)

where the proximity function is defined as

(11)

and the gradients of f are given by

The update in (9) corresponds to the singular value thresholding (SVT) operation [59]. 

Indeed, defining , it follows from (9) and (11) [59] that

(12)

Here, the SVT operator for a given threshold τ > 0 is
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(13)

where UΣVH is the SVD of Y with σi denoting the ith largest singular value and ui and vi 

denoting the ith columns of U and V, and (·)+ = max(·, 0) sets negative values to zero.

Let . Then (10) and (11) imply that  satisfies the 

following Normal equation:

(14)

Solving (14) for  is straightforward because the matrix pre-multiplying  is diagonal, and 

thus its inverse can be computed cheaply. The term  in (14) can also be 

computed cheaply using patch-based operations.

The proximal gradient method for (P4) converges [60] for a constant step-size tk = t < 2/ℓ, 

where ℓ is the Lipschitz constant of ∇f(xL, xS). For (P4), . In practice, ℓ can be 

precomputed using standard techniques such as the power iteration method. In our dMRI 

experiments in Section IV, we normalize the encoding operator A so that ||A||2 = 1 for fully-

sampled measurements (cf. [45], [61]) to ensure that  in undersampled (k-t space) 

scenarios.

When the nuclear norm penalty in (P4) is replaced with a rank penalty, i.e., g1(xL) ≜ λL 

rank(R1(xL)), the proximity function is a modified form of the SVT operation in (12) (or 

(13)), where the singular values smaller than  are set to zero and the other singular 

values are left unaffected (i.e., hard-thresholding the singular values). Alternatively, when 

the nuclear norm penalty is replaced with  (for p < 1) applied to the vector of singular 

values of R1(xL) [47], the proximity function can still be computed cheaply when p = 1/2 or 

p = 2/3, for which the soft thresholding of singular values in (13) is replaced with the 

solution of an appropriate polynomial equation (see [62]). For general p, the xL update could 

be performed using strategies such as in [47].

The nuclear norm-based low-rank regularizer ||R1(xL)||* is popular because it is the tightest 

convex relaxation of the (nonconvex) matrix rank penalty. However, this does not guarantee 

that the nuclear norm (or its alternatives) is the optimal (in any sense) low-rank regularizer 

in practice. Indeed, the argument  of the SVT operator in (12) can be interpreted as 

an estimate of the underlying (true) low-rank matrix R1(xL) plus a residual (noise) matrix. In 

[52], the low-rank denoising problem was studied from a random-matrix-theoretic 

perspective and an algorithm – OptShrink – was derived that asymptotically achieves 
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minimum squared error among all estimators that shrink the singular values of their 

argument. We leverage this result for dMRI by proposing the following modification of (12):

(15)

Here, OptShrinkrL (.) is the data-driven OptShrink estimator from Algorithm 1 of [52] (see 

the supplementary material for more details and discussion of OptShrink). In this variation, 

the regularization parameter λL is replaced by a parameter rL ∈ ℕ that directly specifies the 

rank of , and the (optimal) shrinkage for each of the leading rL singular values is 

implicitly estimated based on the distribution of the remaining singular values. Intuitively, 

we expect this variation of the aforementioned (SVT-based) proximal gradient scheme to 

yield better estimates of the underlying low-rank component of the reconstruction because, 

at each iteration k (in (9)), the OptShrink-based update (15) should produce an estimate of 

the underlying low-rank matrix R1(xL) with smaller squared error than the corresponding 

SVT-based update (12). Similar OptShrink-based schemes have shown promise in practice 

[53], [54]. In particular, in [53] it is shown that replacing the SVT-based low-rank updates in 

the algorithm [45] for (P0) with OptShrink updates can improve dMRI reconstruction 

quality. In practice, small rL values perform well due to the high spatio-temporal correlation 

of the background in dMRI.

Fig. 1 shows the LASSI reconstruction algorithms for Problems (P1) and (P2), respectively. 

As discussed, we can obtain variants of these proposed LASSI algorithms by replacing the 

SVT-based xL update (12) in the image reconstruction step with an OptShrink-based update 

(15), or with the update arising from the rank penalty or from the Schatten p-norm (p < 1) 

penalty. The proposed LASSI algorithms start with an initial ( , D0, Z0) . For example, 

D0 can be set to an analytical dictionary, Z0 = 0, and  and  could be (for example) set 

based on some iterations of the recent L+S method [45]. In the case of Problem (2), the 

proposed algorithm is an efficient SOUP-based image reconstruction algorithm. We refer to 

it as the DINO-KAT image reconstruction algorithm in this case.

B. Convergence and Computational Cost

The proposed LASSI algorithms for (P1) and (P2) alternate between updating (D,Z) and (xL, 
xS). Since we update the dictionary atoms and sparse coefficients using an exact block 

coordinate descent approach, the objectives in our formulations only decrease in this step. 

When the (xL, xS) update is performed using proximal gradients (which is guaranteed to 

converge to the global minimizer of (P4)), by appropriate choice of the constant-step size 

[63], the objective functions can be ensured to be monotone (non-increasing) in this step. 

Thus, the costs in our algorithms are monotone decreasing, and because they are lower-

bounded (by 0), they must converge. Whether the iterates in the LASSI algorithms converge 

to the critical points [64] in (P1) or (P2) [56] is an interesting question that we leave for 

future work.
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In practice, the computational cost per outer iteration of the proposed algorithms is 

dominated by the cost of the dictionary learning step, which scales (assuming K ∝ m and M 
∝ K,m) as O(m2MJ), where J is the number of times the matrix D is updated in the 

dictionary learning step. The SOUP dictionary learning cost is itself dominated by various 

matrix-vector products, whereas the costs of the truncated hard-thresholding (4) and low-

rank approximation (6) steps are negligible. On the other hand, when dictionary learning is 

performed using methods like K-SVD [21] (e.g., in [18], [30]), the associated cost 

(assuming per-patch sparsity ∝ m) may scale worse5 as O(m3MJ). Section IV illustrates that 

our algorithms converge quickly in practice.

IV. Numerical Experiments

A. Framework

The proposed LASSI framework can be used for inverse problems involving dynamic data, 

such as in dMRI, interventional imaging, video processing, etc. Here, we illustrate the 

convergence behavior and performance of our methods for dMRI reconstruction from 

limited k-t space data. Section IV-B focuses on empirical convergence and learning behavior 

of the methods. Section IV-C compares the image reconstruction quality obtained with 

LASSI to that obtained with recent techniques. Section IV-D investigates and compares the 

various LASSI models and methods in detail. We compare using the ℓ0 “norm” (i.e., (P1)) to 

the ℓ1 norm (i.e., (P2)), structured (with low-rank atoms) dictionary learning to the learning 

of unstructured (with full-rank atoms) dictionaries, and singular value thresholding-based xL 

update to OptShrink-based or other alternative xL updates in LASSI. We also investigate the 

effects of the sparsity level (i.e., number of nonzeros) of the learned Z and the 

overcompleteness of D in LASSI, and demonstrate the advantages of adapting the patch-

based LASSI dictionary compared to using fixed dictionary models in the LASSI 

algorithms. The LASSI methods are also shown to perform well for various initializations of 

xL and xS.

We work with several dMRI datasets from prior works [45], [47]: 1) the Cartesian cardiac 

perfusion data [45], [61], 2) a 2D cross section of the physiologically improved nonuniform 

cardiac torso (PINCAT) [65] phantom data (see [47], [66]), and 3) the in vivo myocardial 

perfusion MRI data in [47], [66]. The cardiac perfusion data were acquired with a modified 

TurboFLASH sequence on a 3T scanner using a 12-element coil array. The fully sampled 

data with an image matrix size of 128×128 (128 phase encode lines) and 40 temporal frames 

was acquired with FOV = 320 × 320 mm2, slice thickness = 8 mm, spatial resolution = 3.2 

mm2, and temporal resolution of 307 ms [45]. The coil sensitivity maps are provided in [61]. 

The (single coil) PINCAT data (as in [66]) had image matrix size of 128 × 128 and 50 

temporal frames. The single coil in vivo myocardial perfusion data was acquired on a 3T 

scanner using a saturation recovery FLASH sequence with Cartesian sampling (TR/TE = 

2.5/1 ms, saturation recovery time = 100 ms), and had a image matrix size of 90×190 (phase 

encodes × frequency encodes) and 70 temporal frames [47].

5In [56], we have shown that efficient SOUP learning-based image reconstruction methods outperform methods based on K-SVD in 
practice.
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Fully sampled data (PINCAT and in vivo data were normalized to unit peak image intensity, 

and the cardiac perfusion data [45] had a peak image intensity of 1.27) were retrospectively 

undersampled in our experiments. We used Cartesian and pseudo-radial undersampling 

patterns. In the case of Cartesian sampling, we used a different variable-density random 

Cartesian undersampling pattern for each time frame. The pseudo-radial (sampling radially 

at uniformly spaced angles for each time frame and with a small random rotation of the 

radial lines between frames) sampling patterns were obtained by subsampling on a Cartesian 

grid for each time frame. We simulate several undersampling (acceleration) factors of k-t 

space in our experiments. We measure the quality of the dMRI reconstructions using the 

normalized root mean square error (NRMSE) metric defined as ||xrecon – xref||2 / ||xref||2, 

where xref is a reference reconstruction from fully sampled data, and xrecon is the 

reconstruction from undersampled data.

We compare the quality of reconstructions obtained with the proposed LASSI methods to 

those obtained with the recent L+S method [45] and the k-t SLR method involving joint L & 

S modeling [47]. For the L+S and k-t SLR methods, we used the publicly available 

MATLAB implementations [61], [66]. We chose the parameters for both methods (e.g., λL 

and λS for L+S in (P0) or λ1, λ2, etc. for k-t SLR [47], [66]) by sweeping over a range of 

values and choosing the settings that achieved good NRMSE in our experiments. We 

optimized parameters separately for each dataset to achieve the lowest NRMSE at some 

intermediate undersampling factors, and observed that these settings also worked well at 

other undersampling factors. The L+S method was simulated for 250 iterations and k-t SLR 

was also simulated for sufficient iterations to ensure convergence. The operator T (in (P0)) 

for L+S was set to a temporal Fourier transform, and a total variation sparsifying penalty 

(together with a nuclear norm penalty for enforcing low-rankness) was used in k-t SLR. The 

dynamic image sequence in both methods was initialized with a baseline reconstruction (for 

the L+S method, L was initialized with this baseline and S with zero) that was obtained by 

first performing zeroth order interpolation at the nonsampled k-t space locations (by filling 

in with the nearest non-zero entry along time) and then backpropagating the filled k-t space 

to image space (i.e., pre-multiplying by the AH corresponding to fully sampled data).

For the LASSI method, we extracted spatiotemporal patches of size 8 × 8 × 5 from xS in 

(P1) with spatial and temporal patch overlap strides of 2 pixels.6 The dictionary atoms were 

reshaped into 64×5 space-time matrices, and we set the rank parameter r = 1, except for the 

invivo dataset [47], [66], where we set r = 5. We ran LASSI for 50 outer iterations with 1 

and 5 inner iterations in the (D,Z) and (xL, xS) updates, respectively. Since Problem (P1) is 

nonconvex, the proposed algorithm needs to be initialized appropriately. We set the initial Z 
= 0, and the initial xL and xS were typically set based on the outputs of either the L+S or k-t 

SLR methods. When learning a square dictionary, we initialized D with a 320 × 320 DCT, 

and, in the overcomplete (K > m) case, we concatenated the square DCT initialization with 

normalized and vectorized patches that were selected from random locations of the initial 

reconstruction. We empirically show in Section IV-D that the proposed LASSI algorithms 

typically improve image reconstruction quality compared to that achieved by their 

6While we used a stride of 2 pixels, a spatial and temporal patch overlap stride of 1 pixel would further enhance the reconstruction 
performance of LASSI in our experiments, but at the cost of substantially more computation.
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initializations. We selected the weights λL, λS, and λZ for the LASSI methods separately 

for each dataset by sweeping over a range (3D grid) of values and picking the settings that 

achieved the lowest NRMSE at intermediate undersampling factors (as for L+S and k-t SLR) 

in our experiments. These tuned parameters also worked well at other undersampling factors 

(e.g., see Fig. 5(h)), and are included in the supplement for completeness.

We also evaluate the proposed variant of LASSI involving only spatiotemporal dictionary 

learning (i.e., dictionary blind compressed sensing). We refer to this method as DINOKAT 

dMRI, with r = 1. We use an ||0 sparsity penalty for DINO-KAT dMRI (i.e., we solve 

Problem (2)) in our experiments, and the other parameters are set or optimized (cf. the 

supplement) similarly as described above for LASSI.

The LASSI and DINO-KAT dMRI implementations were coded in Matlab R2016a. Our 

current Matlab implementations are not optimized for efficiency. Hence, here we perform 

our comparisons to recent methods based on reconstruction quality (NRMSE) rather than 

runtimes, since the latter are highly implementation dependant. A link to software to 

reproduce our results will be provided at http://web.eecs.umich.edu/~fessler/.

B. LASSI Convergence and Learning Behavior

Here, we consider the fully sampled cardiac perfusion data in [45], [61] and perform eight 

fold Cartesian undersampling of k-t space. We study the behavior of the proposed LASSI 

algorithms for reconstructing the dMRI data from (multicoil) undersampled measurements. 

We consider four different LASSI algorithms in our study here: the algorithms for (P1) (with 

ℓ0 “norm”) and (P2) (with ℓ1 norm) with SVT-based xL update; and the variants of these two 

algorithms where the SVT update step is replaced with an OptShrink (OPT)- type update. 

The other variants of the SVT update including hard thresholding of singular values or 

updating based on the Schatten p-norm are studied later in Section IV-D. We learned 320 × 

320 dictionaries (with atoms reshaped by the operator R2(·) into 64 × 5 space-time matrices) 

for the patches of xS with r = 1, and xL and xS were initialized using the corresponding 

components of the L+S method with λL = 1.2 and λS = 0.01 in (P0) [45]. Here, we jointly 

tuned λL, λS, and λZ for each LASSI variation, to achieve the best NRMSE.

Fig. 2 shows the behavior of the proposed LASSI reconstruction methods. The objective 

function values (Fig. 2(a)) in (P1) and (P2) decreased monotonically and quickly for the 

algorithms with SVT-based xL update. The OptShrink-based xL update does not correspond 

to minimizing a formal cost function, so the OPT-based algorithms are omitted in Fig. 2(a). 

All four LASSI methods improved the NRMSE over iterations compared to the 

initialization. The NRMSE converged (Fig. 2(b)) in all four cases, with the ℓ0 “norm”-based 

methods outperforming the ℓ1 penalty methods. Moreover, when employing the ℓ0 sparsity 

penalty, the OPT-based method (rL = 1) outperformed the SVT-based one for the dataset. 

The sparsity fraction (||Z||0 /mM) for the learned coefficients matrix (Fig. 2(c)) converged to 

small values (about 10–20 %) in all cases indicating that highly sparse representations are 

obtained in the LASSI models. Lastly, the difference between successive dMRI 

reconstructions (Fig. 2(d)) quickly decreased to small values, suggesting iterate convergence.
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Figs. 2(g) and (h) show the reconstructions7 and xL and xS components of two representative 

frames produced by the L+S [45] (with parameters optimized to achieve best NRMSE) and 

LASSI (OPT update and ℓ0 sparsity) methods, respectively. The LASSI reconstructions are 

sharper and a better approximation of the reference frames (fully sampled reconstructions) 

shown. In particular, the xL component of the LASSI reconstruction is clearly low-rank, and 

the xS component captures the changes in contrast and other dynamic features in the data. 

On the other hand, the xL component of the conventional L+S reconstruction varies more 

over time (i.e., it has higher rank), and the xS component contains relatively little 

information. The richer (xL, xS) decomposition produced by LASSI suggests that both the 

low-rank and adaptive dictionary-sparse components of the model are well-suited for dMRI.

Figs. 2(e) and (f) show the real and imaginary parts of the atoms of the learned D in LASSI 

with OptShrink-based xL updating and ℓ0 sparsity. Only the first columns (time-point) of the 

(rank-1) reshaped 64×5 atoms are shown as 8×8 patches. The learned atoms contain rich 

geometric and frequency-like structures that were jointly learned with the dynamic signal 

components from limited k-t space measurements.

C. Dynamic MRI Results and Comparisons

Here, we consider the fully sampled cardiac perfusion data [45], [61], PINCAT data [47], 

[66], and in vivo myocardial perfusion data [47], [66], and simulate k-t space undersampling 

at various acceleration factors. Cartesian sampling was used for the first dataset, and pseudo-

radial sampling was employed for the other two. The performance of LASSI and DINO-

KAT dMRI is compared to that of L+S [45] and k-t SLR [47]. The LASSI and DINO-KAT 

dMRI algorithms were simulated with an ℓ0 sparsity penalty and a 320×320 dictionary. 

OptShrink-based xL updates were employed in LASSI for the cardiac perfusion data, and 

SVT-based updates were used in the other cases. For the cardiac perfusion data, the initial xL 

and xS in LASSI were from the L+S framework [45] (and the initial x in DINO-KAT dMRI 

was an L+S dMRI reconstruction). For the PINCAT and in vivo myocardial perfusion data, 

the initial xS in LASSI (or x in DINO-KAT dMRI) was the (better) k-t SLR reconstruction 

and the initial xL was zero. All other settings are as discussed in Section IV-A.

Tables I, II and III list the reconstruction NRMSE values for LASSI, DINO-KAT dMRI, L

+S [45] and k-t SLR [47] for the cardiac perfusion, PINCAT, and in vivo datasets, 

respectively. The LASSI method provides the best NRMSE values, and the proposed DINO-

KAT dMRI method also outperforms the prior L+S and k-t SLR methods. The NRMSE 

gains achieved by LASSI over the other methods are indicated in the tables for each dataset 

and undersampling factor. The LASSI framework provides an average improvement of 1.9 

dB, 1.5 dB, and 0.5 dB respectively, over the L+S, k-t SLR, and (proposed) DINO-KAT 

dMRI methods. This suggests the suitability of the richer LASSI model for dynamic image 

sequences compared to the jointly low-rank and sparse (k-t SLR), low-rank plus nonadaptive 

sparse (L+S), and purely adaptive dictionary-sparse (DINO-KAT dMRI) signal models.

It is often of interest to compute the reconstruction NRMSE over a region of interest (ROI) 

containing the heart. Additional tables included in the supplement show the reconstruction 

7Gamma correction was used to better display the images in this work.
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NRMSE values computed over such ROIs for LASSI, DINOKAT dMRI, L+S, and k-t SLR 

for the cardiac perfusion, PINCAT, and in vivo datasets. The proposed LASSI and DINO-

KAT dMRI methods provide much lower NRMSE in the heart ROIs compared to the other 

methods.

Fig. 3 shows the NRMSE values computed between each reconstructed and reference frame 

for the LASSI, L+S, and k-t SLR outputs for two datasets. The proposed LASSI scheme 

clearly outperforms the previous L+S and k-t SLR methods across frames (time). Fig. 4 

shows the LASSI reconstructions of some representative frames (the supplement shows 

more such reconstructions) for each dataset in Tables I-III. The reconstructed frames are 

visually similar to the reference frames (fully sampled reconstructions) shown. Fig. 4 also 

shows the reconstruction error maps (i.e., the magnitude of the difference between the 

magnitudes of the reconstructed and reference frames) for LASSI, L+S, and k-t SLR for the 

representative frames of each dataset. The error maps for LASSI show fewer artifacts and 

smaller distortions than the other methods. Results included in the supplement show that 

LASSI recovers temporal (x–t) profiles in the dynamic data with greater fidelity than other 

methods.

D. A Study of Various LASSI Models and Methods

Here, we investigate the various LASSI models and methods in detail. We work with the 

cardiac perfusion data [45] and simulate the reconstruction performance of LASSI for 

Cartesian sampling at various undersampling factors. Unless otherwise stated, we simulate 

LASSI here with the ℓ0 sparsity penalty, the SVT-based xL update, r = 1, an initial 320×320 

(1D) DCT dictionary, and xS initialized with the dMRI reconstruction from the L+S method 

[45] and xL initialized to zero. In the following, we first compare SVT-based updating of xL 

to alternatives in the algorithms and the use of ℓ0 versus ℓ1 sparsity penalties. The weights λL, 

λS, and λZ were tuned for each LASSI variation. Second, we study the behavior of LASSI 

for different initializations of the underlying signal components or dictionary. Third, we 

study the effect of the number of atoms of D on LASSI performance. Fourth, we study the 

effect of the sparsity level of the learned Z on the reconstruction quality in LASSI. Lastly, 

we study the effect of the atom rank parameter r in LASSI.

1) SVT vs. Alternatives and ℓ0 vs. ℓ1 patch sparsity—Figs. 5(a) and (b) show the 

behavior of the LASSI algorithms using ℓ0 and ℓ1 sparsity penalties, respectively. In each 

case, the results obtained with xL updates based on SVT, Opt- Shrink (OPT), or based on the 

Schatten p-norm (p = 0.5), and rank penalty are shown. The OptShrink-based singular value 

shrinkage (with rL = 1) and Schatten p-norm-based shrinkage typically outperform the 

conventional SVT (based on nuclear norm penalty) as well as the hard thresholding of 

singular values (for rank penalty) for the cardiac perfusion data. The OptShrink and Schatten 

p-norm-based xL updates also perform quite similarly at lower undersampling factors, but 

OptShrink outperforms the latter approach at higher undersampling factors. Moreover, the ℓ0 

“norm”-based methods outperformed the corresponding ℓ1 norm methods in many cases 

(with SVT or alternative approaches). These results demonstrate the benefits of appropriate 

nonconvex regularizers in practice.
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2) Effect of Initializations—Here, we explore the behavior of LASSI for different 

initializations of the dictionary and the dynamic signal components. First, we consider the 

LASSI algorithm initialized by the L+S and k-t SLR methods as well as with the baseline 

reconstruction (obtained by performing zeroth order interpolation at the nonsampled k-t 

space locations and then backpropagating to image space) mentioned in Section IV-A (all 

other parameters fixed). The reconstructions from the prior methods are used to initialize xS 

in LASSI with 8. Figs. 5(c) and (d) show that LASSI significantly improves the dMRI 

reconstruction quality compared to the initializations at all undersampling factors tested. The 

baseline reconstructions had high NRMSE values (not shown in Fig. 5) of about 0.5. 

Importantly, the reconstruction NRMSE for LASSI with the simple baseline initialization 

(Fig. 5(d)) is comparable to the NRMSE obtained with the more sophisticated k-t SLR 

initialization. In general, better initializations (for xL, xS) in LASSI may lead to a better final 

NRMSE in practice.

Next, we consider initializing the LASSI method with the following types of dictionaries (all 

other parameters fixed): a random i.i.d. gaussian matrix with normalized columns, the 

320×320 1D DCT, and the separable 3D DCT of size 320× 320. Fig. 5(g) shows that LASSI 

performs well for each choice of initialization. We also simulated the LASSI algorithm by 

keeping the dictionary D fixed (but still updating Z) to each of the aforementioned 

initializations. Importantly, the NRMSE values achieved by the adaptive-dictionary LASSI 

variations are substantially better than the values achieved by the fixed-dictionary schemes.

3) Effect of Overcompleteness of D—Fig. 5(e) shows the performance (NRMSE) of 

LASSI for various choices of the umber of atoms (K) in D at several acceleration factors. 

The weights in (P1) were tuned for each K. As K is increased, the NRMSE initially shows 

significant improvements (decrease) of more than 1 dB. This is because LASSI learns richer 

models that provide sparser representations of patches and, hence, better reconstructions. 

However, for very large K values, the NRMSE saturates or begins to degrade, since it is 

harder to learn very rich models using limited imaging measurements (without overfitting 

artifacts).

4) Effect of the Sparsity Level in LASSI—While Section IV-D1 compared the various 

ways of updating the low-rank signal component in LASSI, here we study the effect of the 

sparsity level of the learned Z on LASSI performance. In particular, we simulate LASSI at 

various values of the parameter λZ that controls sparsity (all other parameters fixed). Fig. 

5(h) shows the NRMSE of LASSI at various sparsity levels of the learned Z and at several 

acceleration factors. The weight λZ decreases from left to right in the plot and the same set 

of λZ values were selected (for the simulation) at the various acceleration factors. Clearly, 

the best NRMSE values occur around 10–20% sparsity (when 32–64 dictionary atoms are 

used on the average to represent the reshaped 64×5 space-time patches of xS), and the 

NRMSE degrades when the number of nonzeros in Z is either too high (non-sparse) or too 

8We have also observed that LASSI improves the reconstruction quality over other alternative initializations such as initializing xL 
and xS using corresponding outputs of the L+S framework.
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low (when the dictionary model reduces to a low-rank approximation of space-time patches 

in xS). This illustrates the effectiveness of the rich sparsity-driven modeling in LASSI9.

5) Effect of Rank of Reshaped Atoms—Here, we simulate LASSI with (reshaped) 

atom ranks r = 1 (low-rank) and r = 5 (full-rank). Fig. 5(f) shows that LASSI with r = 1 

provides somewhat improved NRMSE values over the r = 5 case at several undersampling 

factors, with larger improvements at higher accelerations. This result suggests that structured 

(fewer degrees of freedom) dictionary adaptation may be useful in scenarios involving very 

limited measurements. In practice, the effectiveness of the low-rank model for reshaped 

dictionary atoms also depends on the properties of the underlying data.

V. Conclusions

In this work, we investigated a novel framework for reconstructing spatiotemporal data from 

limited measurements. The proposed LASSI framework jointly learns a low-rank and 

dictionary-sparse decomposition of the underlying dynamic image sequence together with a 

spatiotemporal dictionary. The proposed algorithms involve simple updates. Our 

experimental results showed the superior performance of LASSI methods for dynamic MR 

image reconstruction from limited k-t space data compared to recent works such as L+S and 

k-t SLR. The LASSI framework also outperformed the proposed efficient dictionary-blind 

compressed sensing framework (a special case of LASSI) called DINO-KAT dMRI. We also 

studied and compared various LASSI methods and formulations such as with ℓ0 or ℓ1 sparsity 

penalties, or with low-rank or full-rank reshaped dictionary atoms, or involving singular 

value thresholding-based optimization versus some alternatives including OptShrink-based 

optimization. The usefulness of LASSI-based schemes in other inverse problems and image 

processing applications merits further study. The LASSI schemes involve parameters (like in 

most regularization-based methods) that need to be set (or tuned) in practice. We leave the 

study of automating the parameter selection process to future work. The investigation of 

dynamic image priors that naturally lead to OptShrink-type low-rank updates in the LASSI 

algorithms is also of interest, but is beyond the scope of this work, and will be presented 

elsewhere.
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Fig. 1. 
The LASSI reconstruction algorithms for Problems (P1) and (P2), respectively. Superscript t 

denotes the iterates in the algorithm. We do not compute the matrices 

explicitly in the dictionary learning iterations. Rather, we efficiently compute products of Ei 

or  with vectors [56]. Parameter a is set very large in practice (e.g., a ∝ || A†d||2).
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Fig. 2. 
Behavior of the LASSI algorithms with Cartesian sampling and 8x undersampling. The 

algorithms are labeled according to the method used for xL update, i.e., SVT or OptShrink 

(OPT), and according to the type of sparsity penalty employed for the patch coefficients (ℓ0 

or ℓ1 corresponding to (P1) or (P2)). (a) Objectives (shown only for the algorithms for (P1) 

and (P2) with SVT-based updates, since OPT-based updates do not correspond to 

minimizing a formal cost function); (b) NRMSE; (c) Sparsity fraction of Z (i.e., ||Z||0 /mM) 

expressed as a percentage; (d) normalized changes between successive dMRI 

reconstructions ; (e) real and (f) imaginary parts of the atoms 

of the learned dictionaries in LASSI (using ℓ0 sparsity penalty and OptShrink-based xL 

update) shown as patches – only the 8 × 8 patches corresponding to the first time-point 

(column) of the rank-1 reshaped (64 × 5) atoms are shown; and frames 7 and 13 of the (g) 

conventional L+S reconstruction [45] and (h) the proposed LASSI (with ℓ0 penalty and 

OptShrink-based xL update) reconstruction shown along with the corresponding reference 

frames. The low-rank (L) and (transform or dictionary) sparse (S) components of each 

reconstructed frame are also individually shown. Only image magnitudes are displayed in 

(g) and (h).
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Fig. 3. 
NRMSE values computed between each reconstructed and reference frame for LASSI, L+S, 

and k-t SLR for (a) the cardiac perfusion data [45], [61] at 8x undersampling, and (b) the 

PINCAT data at 9x undersampling.

Ravishankar et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
LASSI reconstructions and the error maps (clipped for viewing) for LASSI, L+S, and k-t 

SLR for frames of the cardiac perfusion data [45], [61] (first row), PINCAT data [47], [66] 

(second row), and in vivo myocardial perfusion data [47], [66] (third row), shown along with 

the reference reconstruction frames. Undersampling factors (top to bottom): 8x, 9x, and 8x. 

The frame numbers and method names are indicated on the images.
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Fig. 5. 
Study of LASSI models, methods, and initializations at various undersampling (acceleration) 

factors for the cardiac perfusion data in [45], [61] with Cartesian sampling: (a) NRMSE for 

LASSI with ℓ0 “norm” for sparsity and with xL updates based on SVT (p = 1), OptShrink 

(OPT), or based on the Schatten p-norm (p = 0.5) or rank penalty (p = 0); (b) NRMSE for 

LASSI with ℓ1 sparsity and with xL updates based on SVT (p = 1), OptShrink (OPT), or 

based on the Schatten p-norm (p = 0.5) or rank penalty (p = 0); (c) NRMSE for LASSI when 

initialized with the output of the L+S method [45] (used to initialize xS with ) together 

with the NRMSE for the L+S method; (d) NRMSE for LASSI when initialized with the 

output of the k-t SLR method [47] or with the baseline reconstruction (performing zeroth 

order interpolation at the nonsampled k-t space locations and then backpropagating to image 

space) mentioned in Section IV-A (these are used to initialize xS with ), together with 

the NRMSE values for k-t SLR; (e) NRMSE versus dictionary size at different acceleration 

factors; (f) NRMSE improvement (in dB) achieved with r = 1 compared to the r = 5 case in 

LASSI; (g) NRMSE for LASSI with different dictionary initializations (a random dictionary, 

a 320×320 1D DCT and a separable 3D DCT of the same size) together with the NRMSEs 

achieved in LASSI when the dictionary is fixed to its initial value; and (h) NRMSE versus 

the fraction of nonzero coefficients (expressed as percentage) in the learned Z at different 

acceleration factors.
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