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Abstract

Purpose—To evaluate in a multi-institutional study whether radiomic features useful for prostate 

cancer (PCa) detection from 3 Tesla (T) multi-parametric MRI (mpMRI) in the transition zone 

(TZ) differ from those in the peripheral zone (PZ).

Materials and Methods—3T mpMRI, including T2-weighted (T2w), apparent diffusion 

coefficient (ADC) maps, and dynamic contrast-enhanced MRI (DCE-MRI), were retrospectively 

obtained from 80 patients at three institutions. This study was approved by the institutional review 

board of each participating institution. First-order statistical, co-occurrence, and wavelet features 

were extracted from T2w MRI and ADC maps, and contrast kinetic features were extracted from 

DCE-MRI. Feature selection was performed to identify ten features for PCa detection in the TZ 

and PZ, respectively. Two logistic regression classifiers used these features to detect PCa and were 

evaluated by area under the receiver-operating characteristic curve (AUC). Classifier performance 

was compared with a zone-ignorant classifier.

Results—Radiomic features that were identified as useful for PCa detection differed between TZ 

and PZ. When classification was performed on a per-voxel basis, a PZ-specific classifier detected 

PZ tumors on an independent test set with significantly higher accuracy (AUC = 0.61-0.71) than a 

zone-ignorant classifier trained to detect cancer throughout the entire prostate (p<0.05). When 
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classifiers were evaluated on MRI data from multiple institutions, statistically similar AUC values 

(p > 0.14) were obtained for all institutions.

Conclusions—A zone-aware classifier significantly improves the accuracy of cancer detection 

in the PZ.
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INTRODUCTION

Prostate MRI provides excellent contrast of anatomic structures on T2-weighted (T2w) MRI, 

as well as diffusion characteristics and microvasculature on diffusion-weighted (DW) MRI 

and dynamic contrast-enhanced (DCE) MRI, respectively (1). However, up to one quarter of 

prostate cancers in the transition zone (TZ) might not be detected on MRI, primarily due to 

the presence of benign tumor confounding pathologies such as benign prostatic hyperplasia 

(2). Additionally, areas of benign stroma or hyperplasia may manifest as restricted diffusion 

on DW MRI and heterogeneous enhancement on DCE MRI (3). As a result, functional 

imaging (DW MRI, DCE MRI) is not necessarily useful for detecting TZ tumors.

Computer-assisted diagnosis (CAD) tools provide increased sensitivity and specificity in 

detecting prostate cancer on multi-parametric MRI, to complement radiologists’ assessments 

(4). Recently there has been substantial interest in the role of computer-extracted (or 

radiomic) texture features to quantitatively describe tissue microarchitecture and 

morphology. A number of CAD approaches have used textural features, including first and 

second order co-occurring statistical measurements, from T2w and diffusion weighted MRI 

and kinetic features from DCE MRI for prostate cancer detection (4-17).

Although many CAD studies have been published over the past decade (4-17), these studies 

focus on imaging data from a single institution. In order for a CAD algorithm to be generally 

useful, however, it must be robust to differences in MR imaging parameters. This is a 

particularly important consideration since MR imaging parameters and scanning protocols 

are not standard across institutions. Furthermore, the variance (or drift) in MRI parameters 

(T1w, T2w, Diffusion) across vendor platforms and scanners is well-known and documented 

(22). Therefore, it is important to identify radiomic features and develop associated CAD 

algorithms that are robust to this variability induced by differences in MR imaging 

parameters across scanners and vendor platforms.

The prostate gland can be divided into three primary anatomical regions: the peripheral zone 

(PZ), the TZ, and the central zone. Prostate cancer in the central zone is rare (18). While 

some CAD approaches are designed to look for prostate cancer only in the PZ (7-9, 19, 20) 

or TZ (10, 11), many approaches tend to be zone-ignorant. However, the appearance of 

prostate cancer on MRI tends to depend on the tumor’s location in the prostate gland (5, 6). 

Whereas PZ tumors usually manifest on T2w MRI as round or ill-defined hypointense 

lesions, TZ tumors are usually moderately hypointense, lenticular-shaped lesions, often with 

spiculated margins (21). Additionally, radiomic texture features extracted from T2w MRI, as 
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well as ADC maps and DCE MRI, for characterizing TZ tumors have been shown to be 

different from those characterizing PZ tumors on multi-parametric MRI (5, 6).

Although there has been some recent work on identifying zone-specific radiomic features 

associated with prostate cancer in the TZ and PZ (5, 6), these limited studies have been 

specific to a single institution, and the resilience of these features was not evaluated in a 

cross-institutional setting. The purpose of this work was to evaluate in a multi-institutional 

study whether radiomic features for prostate cancer detection from multi-parametric 3 Tesla 

(T) MRI in the TZ are similar to the features that are useful for prostate cancer detection in 

the PZ.

MATERIALS AND METHODS

Patients

This retrospective study included 87 patients from three institutions (Turku University 

Hospital, Turku, Finland; St. Vincent’s Hospital, Sydney, Australia; and Mt. Sinai Hospital, 

New York, USA) and was approved by the institutional review board of each institution. 

Patients from Turku University were part of a previously completed prospective study (23) 

or were enrolled in an ongoing prospective clinical trial (Clinical Trial registration: 

NCT02002455). All patients underwent multi-parametric MRI due to suspicion for prostate 

cancer either prior to prostate biopsy (52 patients) (23) or prior to radical prostatectomy (35 

patients). Five patients from the former group were excluded due to poor quality of MRI, 

and two patients were excluded because complete multi-parametric MRI was not performed. 

Whole-mount prostatectomy specimens were also available for the 35 patients who 

underwent radical prostatectomy following MRI, as well as 18 patients who underwent pre-

biopsy MRI but subsequently underwent radical prostatectomy. Thus, a total of 80 patients 

were included (age range, 40-79 years; median, 64 years); radical prostatectomy specimens 

were available for 51 of these patients. Further details regarding the patients included in this 

study can be found in Table 1.

MRI Acquisition

MRI was performed with a 3-Tesla MR scanner either with a body coil (67 patients) or an 

endorectal coil (13 patients). The multi-parametric MRI protocol consisted of T2-weighted 

imaging, diffusion-weighted imaging, and dynamic contrast-enhanced imaging. MRI 

acquisition details are listed in Table 1.

Histopathological Analysis and Cancer Annotation on MRI

For subjects from Turku University who underwent radical prostatectomy following MRI 

acquisition, whole mount prostatectomy sections were obtained, processed as described in 

(24), and stained with hematoxylin and eosin. All of the histopathologic material was 

analyzed by one genitourinary pathologist (8 years of experience in genitourinary pathology) 

in consensus with another pathologist (6 years of experience in genitourinary pathology). 

The Gleason score was assigned as a combination of primary, secondary, and tertiary 

Gleason grades according to the 2005 International Society of Urological Pathology 

Modified Gleason Grading System (25). A tertiary Gleason grade was assigned when a 
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Gleason grade pattern higher than the primary and secondary Gleason grade patterns was 

present but accounted for less than 5% of the tumor (26). Following histopathological 

analysis, the histologic slides (50 × 75 mm2) were digitized in 2400 dpi resolution using a 

high resolution scanner.

In order to obtain “ground truth” annotation of prostate cancer extent on MRI, deformable 

co-registration of MRI and whole mount histological sections was performed. 

Correspondences between histological sections and T2w MRI slices were determined by a 

genitourinary pathologist and radiologist working in unison. Subsequently, corresponding 

histological sections and MRI slices were co-registered using an interactive B-spline elastic 

registration scheme (27). The final result was a labeling of each MRI voxel within the 

prostate as corresponding to cancer or benign prostate tissue.

Cancer Annotation on Pre-Biopsy MRI

For the 29 subjects who did not undergo radical prostatectomy following MRI acquisition, 

ground truth for prostate cancer extent from excised surgical histopathology was not 

available. These included 16 subjects from St. Vincent’s Hospital and 13 subjects from Mt. 

Sinai Hospital. For the subjects from St. Vincent’s, a genitourinary radiologist (9 years of 

experience) assessed multi-parametric MRI for cancer presence and annotated prostate 

cancer extent, if present, on T2w MRI. For the subjects from Mt. Sinai, a genitourinary 

radiologist (5 years of experience) annotated the extent of visible cancer on T2w MRI within 

sextants associated with positive biopsy results. All lesions were correlated with fusion 

targeted biopsy results.

MRI Post-Processing

DCE MRI and ADC maps (24) obtained from DWI were spatially aligned with T2w MRI 

via volumetric affine registration, which corrected inter-acquisition movement and inter-

protocol resolution differences. After inter-protocol alignment, all MRI data from all 

institutions were computationally analyzed at the T2w MRI resolution of 0.625 × 0.625 × 

3mm2. The prostate capsule and TZ were manually annotated on T2w MRI by a radiologist 

with 7 years of experience in prostate MRI. Finally, T2w and DCE MRI were corrected for 

acquisition-based MRI intensity artifacts (28). We first corrected for intensity inter- and 

intra-patient T2w MRI “intensity drift”, which causes T2w MRI intensities to lack tissue-

specific numeric meaning (22). This effect was corrected by interactive implementation of 

the generalized scale algorithm (22), which aligns image intensity histograms across 

different MRI studies, thereby enabling MRI intensities to have a consistent tissue-specific 

numeric meaning. Additionally, for patients who were imaged using an endorectal probe, the 

bias field artifact occurring on T2w and DCE MRI was corrected by the N3 algorithm (29).

Radiomic Features

Our feature set included signal intensities on T2w MRI, ADC values, and six kinetic features 

describing the uptake and washout of contrast on DCE MRI (see Table 2). In addition, 224 

radiomic features (see Table 2), including first-order statistical, co-occurrence, and wavelet 

features computed from both T2w MRI and ADC maps, were extracted. These features are 

designed to accentuate smooth and spiculated margins and to differentiate between 
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homogeneous regions of low signal intensity associated with prostate cancer and 

surrounding normal prostate tissue.

Identifying Features for Discriminating Cancerous from Benign Voxels

Radiomic features were selected based on (a) resilience and lack of variability between 

patients and institutions and (b) ability to discriminate between cancerous and benign 

prostate voxels. Feature resilience across patients and institutions was determined based on 

Cronbach’s intra-class correlation coefficient (ICC) (30), which measures the level of 

concordance in feature values. Features associated with an ICC > 0.9 were considered 

resilient to inter-patient and inter-institutional differences. For each feature identified as 

resilient, binary logistic regression was implemented to classify individual voxels as 

cancerous or benign, and the area under the receiver-operating characteristic (ROC) curve 

(AUC) was calculated based on the posterior probabilities of a voxel being classified as 

cancerous. Finally, features associated with both the highest AUC values and ICC > 0.9 were 

identified as being useful for characterizing prostate cancer in a multi-institutional setting. 

Two separate sets of features were identified: one set of features that characterize TZ cancers 

(FTZ) and another set of features to characterize PZ cancers (FPZ). Additionally, a third set of 

features was identified that did not specifically consider zonal anatomy (FALL). Separate 

radiomic feature sets were obtained based on patients from Turku University (I1), patients 

from St. Vincent’s (I2), and the combination of patients who underwent radical 

prostatectomy from Turku University and St. Vincent’s (I12 = I1 ∪ I2). Thus, nine separate 

feature sets were obtained: , , , , , , , , and . Note 

that only feature sets , , and  were selected based on resilience to inter-patient 

and inter-institutional differences, while the other feature sets were selected based on 

resilience to inter-patient differences only.

Classifier Training and Evaluation

For each training set, two separate logistic regression classifiers (31) were trained: one used 

FTZ to detect cancer in the TZ (CTZ) and the other used FPZ to detect cancer in the PZ (CPZ). 

For comparison, a zone-ignorant classifier (CALL) that leveraged FALL to detect cancer 

across the entire prostate was also trained and evaluated. The performance of CTZ, CPZ, and 

CALL was evaluated by the AUC. In order to keep training and testing populations separate 

from each other, separate classifiers were trained using each feature set: , , , 

, , , , , and  based on , , , , , , , 

, and . Each of these classifiers was trained in a leave-one-out cross-validation 

scheme and evaluated in terms of its ability to detect prostate cancer on MRI obtained from 

an independent institution (e.g.,  and  were evaluated on data from St. Vincent’s and 

Mt. Sinai, and  and  were evaluated on data from Turku University and Mt. Sinai). 

Additionally, correlations between AUC values representing cancer detection accuracy and 

Gleason scores associated with prostate cancer lesions were assessed via Spearman’s 

correlation coefficient.
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RESULTS

Differences in Radiomic Features between TZ and PZ Classifiers

The top ten radiomic features selected for detecting TZ and PZ tumors are listed in Table 3. 

The features in  and  included a combination of Gabor wavelet features, co-

occurrence features, and edge descriptors extracted from T2w MRI, whereas  included 

only co-occurrence features. Only two of the features in , and none in  or  were 

based on ADC maps; no features extracted from DCE MRI were included in FPZ. Gabor 

wavelet features, co-occurrence features, and edge descriptors extracted from T2w MRI 

were useful for detecting TZ cancer, too. Unlike for FPZ, however, each of , , and 

 included 1-6 features computed from ADC maps. The top ranked Gabor wavelet and 

co-occurrence features in  and  are shown in Figure 1.

The features in FALL corresponded more closely with the features in FPZ than FTZ. In 

particular, 3/10 features were common to both  and , 2 co-occurrence features 

(sum variance and information measure 1) were common to both  and , and 9/10 

features were identical between  and . By contrast, two Gabor features were 

common to both  and , two Kirsch edge descriptors were identical between 

and , and  and  did not intersect at all.

Classifier Performance

When applied to detect PZ cancer on the studies in I1 and I2, , , and  yielded 

AUC values ranging between 0.61 and 0.71, although these classifiers yielded lower AUC 

values when applied to studies in I3 (0.54-0.58; see Table 4). , , and  detected 

PZ cancer with higher AUC than , , and , respectively. The difference in 

AUC between  and , as well as between  and , was statistically 

significant (p < 0.05). , , and  detected prostate cancer in the TZ on a per-voxel 

level with AUC values ranging between 0.54 and 0.68, and , , and  yielded 

statistically similar AUC values (0.53-0.66; see Table 4). There were no statistically 

significant differences in AUC values between CALL and CTZ.

Correlation with Gleason Scores

When  was applied for cancer detection on MRI from I1, AUC values correlated poorly 

with Gleason scores (ρ = 0.05, see Figure 2(a)). When  was applied for cancer detection 

on MRI from I1, AUC values correlated somewhat with Gleason scores (ρ = 0.16, see Figure 

2(b)).

Effect of Training Cohort on Classifier Performance

A two-sample Student’s t-test was used to evaluate whether statistically significant 

differences existed between AUC values yielded by , , and , as well as between 
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, , and . When applied to detect cancer on the studies in I1, I2, and I3, , 

, and  yielded statistically similar AUC values (p > 0.14 for TZ cancer and p > 0.56 

for PZ cancer).

Differences Between Small and Large Tumors

A two-sample Student’s t-test was used to evaluate whether both small (< 0.5 cm3 or < 1 

cm3 on T2w MRI) and large tumors (> 1 cm3 on T2w MRI) share the same characteristics 

on multi-parametric MRI. After Bonferroni correction for the effect of multiple testing, there 

were no significant differences between small and large tumors. Cancer detection improved 

with tumor size, as AUC values were somewhat correlated with tumor size (ρ = 0.14, see 

Figure 2(c)). Five small tumors from I1 that were <1 cm3 were associated with high Gleason 

scores (>7) and were therefore clinically significant. These tumors ranged in size from 

0.35-0.5 cm3. Four of these tumors were associated with AUC values ranging between 

0.58-0.79, while one was associated with an AUC value below 0.5. Of nine tumors smaller 

than 0.2 cm3 (considered the limit for tumor visibility on MRI), four were detected with an 

AUC ranging between 0.65-0.83, while the remaining five were associated with AUC values 

below 0.5.

DISCUSSION

In this study we identified and evaluated radiomic features associated with TZ and PZ 

tumors on multi-parametric MRI. We found that distinct sets of radiomic features were 

useful for cancer detection in the TZ and PZ, respectively. Furthermore, the cancer detection 

accuracy associated with these features was not significantly different across the three 

institutions considered in this study.

Regardless of training cohort, FTZ and FPZ did not overlap at all. This finding suggests that 

multi-parametric MRI radiomic features identified as useful for cancer detection in the PZ 

were distinct from radiomic features that are useful for cancer detection in the TZ. Our 

findings indicate the importance of Gabor wavelet features, co-occurrence texture features, 

and edge descriptors for distinguishing prostate cancer from benign prostate tissue in the TZ 

and the PZ. The multiscale, steerable Gabor wavelets that were dominant in FTZ regardless 

of training cohort appear to model localized frequency characteristics, thereby distinguishing 

between the hypo-intense, homogeneous texture of TZ tumors and the more heterogeneous 

surrounding normal TZ tissue. The co-occurrence features, which dominate  and play 

roles in  and  have previously been found to be particularly useful for distinguishing 

between hypo-intense PZ cancer and hyper-intense normal PZ tissue (6). The dearth of ADC 

and DCE features in FPZ and FTZ may be related to DWI and DCE MRI data quality.

Accounting for differences between TZ and PZ tumors by identifying unique feature sets 

FTZ and FPZ and subsequently developing distinct classifiers CTZ and CPZ led to 

significantly improved cancer detection in the PZ. CPZ yielded voxel-wise AUC values as 

high as 0.71, whereas CALL performed no better than random guessing (AUC ≤ 0.51). In 

contrast to the PZ, in the TZ CTZ and CALL performed similarly to each other, providing 

AUC values ranging between 0.54-0.68. This result may possibly be due to the inherent 
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difficulty in distinguishing between tumors in the TZ and confounding disease, such as 

benign prostatic hyperplasia, that manifests predominantly in the TZ.

The AUC values associated with CTZ and CPZ were lower than those obtained in other 

studies [4, 5], which reported voxel-wise AUC values as high as 0.73-0.86 for cancer 

detection in the PZ and/or TZ. However, the results reported in (5, 6) were all based on 

cross-validation within a single institution. Our lower AUC could possibly be attributed to 

the fact that 75% of the tumors in our cohort were < 1 cm3 in size. Nevertheless, 80% of 

small tumors that were clinically significant (Gleason score > 7) were detected on MRI. The 

AUC values correlated somewhat with tumor size, as larger tumors were associated with 

higher AUC values (see Figure 2(c)). The correlation between Gleason scores and AUC 

values for all tumors from I1 was poor in both the TZ and PZ (see Figures 2(a), 2(b)). This is 

not surprising since the classifiers were trained to discriminate between prostate cancer and 

benign tissue; they were not trained to distinguish between cancer grades.

Our study did have its limitations. Firstly, this was a multi-institutional study. While this was 

a unique aspect of our study, it was also a limitation because the MRI acquisition parameters 

(e.g., b-values for acquiring diffusion-weighted MRI, temporal resolution of DCE MRI) 

differed between institutions. This lack of consistency may explain why primarily T2-

weighted MRI features were chosen during feature selection, whereas most ADC- and DCE-

based features were not highly ranked by our feature selection scheme. Nevertheless, our 

study demonstrated that radiomic features can be effective for prostate cancer detection even 

in the face of variability in image acquisition parameters. Secondly, whereas the MRI data 

from I1 and I2 was acquired using a body coil, the MRI data from I3 was acquired using an 

endorectal coil. This may have contributed to the lower cancer detection accuracy associated 

with I3, particularly in the PZ, where the effect of the endorectal coil would be most seen. 

Finally, for 29 subjects in our cohort, ground truth prostate cancer extent on pathology was 

not available. For 13 of these subjects, prostate cancer extent was annotated on MRI based 

on correlation with fusion targeted biopsy results, but for the remaining 16 subjects a 

genitourinary radiologist annotated prostate cancer extent based on visual assessment of 

multi-parametric MRI alone. In the absence of pathology fused with MRI, it was not 

possible to be certain of the exact extent of prostate cancer for these cases.

In conclusion, the radiomic features identified as useful for cancer detection in the PZ were 

different from those that were useful for TZ cancers. These features were evaluated cross-

institutionally and found to be useful for prostate cancer detection on MRI from three 

institutions. Our finding that a zone-aware classifier significantly improves the accuracy of 

cancer detection in the PZ suggests that decision support tools for evaluating prostate MRI 

exams should take into account differences between TZ and PZ tumors.
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Appendix I: Radiomic Feature Descriptions

Texture Features

Texture features, including first-order statistics, co-occurrence features, Gabor and Haar 

wavelet features, and edge descriptors were calculated based on both T2w MRI and ADC 

maps. Parameter settings for these features, which are described below, are listed in Table 2.

First-order statistics [32]: Mean, standard deviation, and range of intensities

Co-occurrence features [33]: Statistical features computed from the join probability 

distribution of intensity value co-occurrences

Gabor wavelet features [34]: Multi-orientation features computed from a Gaussian function 

convolved with a sinusoid

Haar wavelet features [35]: Multi-level coefficients from a Haar wavelet decomposition

Edge descriptors [32]: Non-steerable gradient features obtained by convolution with Sobel 

and Kirsch operators

Pharmacokinetic Features

Time to Peak: The interval between the pre-contrast time point and post-contrast time point 

at which the lesion achieved maximum signal intensity

Maximum uptake: The signal intensity associated with the time to peak

Uptake rate: The rate of change in signal intensity over the interval between the first time 

point and the time to peak

Washout rate: The rate of change in signal intensity over the interval between the time to 

peak and the time point at which lowest signal enhancement is achieved

Enhancement: The signal intensity at the first post-contrast time point

Enhancement ratio: The ratio of enhancement to maximum uptake
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Figure 1. 
Ground truth extent of prostate cancer is delineated on T2w MRI in red for a representative 

slice of (left) a PZ tumor and (right) a TZ tumor. Feature maps of the top two selected 

features populating  and , respectively, are also shown. Heatmaps representing the 

pixel-wise probability of cancer presence, obtained via logistic regression classifiers trained 

on data from Turku University and St. Vincent’s, are shown when  is used and when 

 and  complement each other to detect cancer in both the PZ and TZ. Red indicates 

a high probability of cancer presence, yellow indicates a low probability of cancer presence, 

and blue, the absence of cancer.
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Figure 2. 
Scatterplot of areas under receiver operating characteristic curve (AUCs) yielded by the 

spatially-aware classifier on a per-patient basis versus (a) Gleason scores for patients from 

St. Vincent’s with TZ tumors, (b) Gleason scores for patients from St. Vincent’s with PZ 

tumors, and (c) overall tumor sizes for all 80 patients.

Ginsburg et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ginsburg et al. Page 14

Table 1

Description of subjects used in this study

Turku University St. Vincent’s Mt. Sinai

# subjects 40 27 13

Scanner Siemens Verio Philips Achieva Siemens Verio

Magnet strength 3T 3T 3T

Coil type Body coil Body coil Endorectal coil

T2-weighted MRI

 Field-of-view 200 × 200 mm2 220 × 220 mm2 140 × 140 mm2

 Matrix size 320 × 320 444 × 332 384 × 384

 Slice thickness 3 mm 3 mm 3 mm

DW MRI

 Field-of-view 260 × 260 mm2 180 × 180 mm2 260 × 186 mm2

 Matrix size 128 × 128 128 × 128 116 × 162

 Slice thickness 3 mm 3 mm 3 mm

 b-values 0, 100, 200, 350,
500 s/mm2

0, 1500 s/mm2 0, 2000 s/mm2

DCE MRI

 Field-of-view 240 × 240 mm2 200 × 200 mm2 250 × 250 mm2

 Matrix size 192 × 192 128 × 128 192 × 192

 Slice thickness 3 mm 3 mm 3 mm

 Flip angle 15° 8° 12°

 Temporal resolution 6.9 sec 5.5 sec 5 sec

 n time points 60 50 45

Age (mean±SD) 64.3±5.6 65.1±6.4 62.6±10.8

PSA (mean±SD) 9.8±6.3 6.9±5.8 5.9±4.2

Lesion size (mean±SD) 1.02±1.16 cm3 1.10±1.79 cm3 0.67±0.82 cm3

Zone containing lesions 23 TZ, 35 PZ 6 TZ, 24 PZ 8 TZ, 11 PZ

Gleason scores

 Low (≤6) 8 - NA

 Intermediate (7) 26 9 NA

 High (≥8) 6 2 NA

DW, diffusion-weighted; DCE, dynamic contrast enhanced; SD, standard deviation

J Magn Reson Imaging. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ginsburg et al. Page 15

Table 2

Overview of radiomic texture features used in this study

Features Pulse Sequence Parameters

Signal Intensities

 T2-weighted Axial T2-weighted -

  ADC Diffusion-weighted -

Texture

 First-order statistics [32] T2-weighted, ADC -

 Co-occurrence features [33] T2-weighted, ADC w = 3,5,7

 2D multi-angle Gabor [34] T2-weighted, ADC θ = 0-2.75, λ = 2.8-45.3

 Haar wavelet [35] T2-weighted, ADC 4 levels

 Edge descriptors [32] T2-weighted, ADC -

Kinetic

 Time-to-peak DCE -

 Initial enhancement DCE -

 Maximum enhancement DCE -

 Enhancement ratio DCE -

 Uptake rate DCE -

 Washout rate DCE -
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Table 3

Top ten radiomic features selected based on an intraclass correlation coefficient above 0.9 and high AUC 

values in distinguishing prostate cancer and benign tissue. Features extracted from ADC maps are shown in 

bold font.

F1, 2
PZ F1

PZ F2
PZ

Difference entropy (w = 5) Sum variance (w = 3) Sum variance (w = 5)

Gabor (θ = 1.12, λ = 22.6) Gabor (θ = 0.79, λ = 2.8) Sum entropy (w = 5)

Gabor (θ = 0.39, λ = 22.6) Gabor (θ = 0, λ = 5.7) Sum variance (w = 7)

Gabor (θ = 2.36, λ = 22.6) Gabor (θ = 1.96, λ = 11.3) Sum entropy (w = 7)

Info. measure 1 (w = 7) Kirsch edge descriptor 3 Sum average (w = 5)

Energy (w = 3) Kirsch edge descriptor 1 Info. measure 1 (w = 5)

Kirsch edge descriptor 3 Energy (w = 7) Diff. variance (w = 5)

Kirsch edge descriptor 2 Kirsch edge descriptor 2 Sum average (w = 3)

Gabor (θ = 2.36, λ = 8.2) Gabor (θ = 0.79, λ = 8.2) Info. measure 1 (w = 3)

T2w MRI intensity Gabor (θ = 1.58, λ = 45.3) Sum average (w = 7)

F1, 2
TZ F1

TZ F2
TZ

Gabor (θ = 2.35, λ = 45.3) Gabor (θ = 2.75, λ = 45.3) Gabor (θ = 1.18, λ = 22.6)

Gabor (θ = 1.94, λ = 5.7) Gabor(θ = 0, λ = 2.8) T2w MRI intensity

Haar diagonal coefficient Gabor (θ = 0.79, λ = 11.3) Gabor (θ = 2.75, λ = 45.3)

Gabor (θ = 0, λ = 11.3) Gabor (θ = 1.57, λ = 11.3) Info. measure 2 (w = 5)

Gabor (θ = 0, λ = 5.7) Gabor (θ = 2.36, λ = 8.2) Gabor (θ = 1.57, λ = 45.3)

Energy (w = 5) Intensity range (w = 5) Gabor (θ = 2.75, λ = 45.3)

Inverse diff. moment (w = 5) Gabor (θ = 1.57, λ = 2.8) Gabor (θ = 0, λ = 45.3)

Gabor (θ = 1.18, λ = 8.2) Gabor (θ = 1.57, λ = 5.7) Intensity mean (w = 3)

Gabor (θ = 1.57, λ = 2.8) Sobel horizontal edge Gabor (θ = 1.57, λ = 22.6)

Diagonal edge descriptor Diagonal edge descriptor Diagonal edge descriptor

F1, 2
ALL F1

ALL

Entropy (w = 5) Sum entropy (w = 3) Sum variance (w = 7)

Gabor (θ = 1.57, λ = 11.3) Gabor (θ = 2.75, λ = 2.8) Sum entropy (w = 7)

Gabor (θ = 1.57, λ = 22.6) Gabor (θ = 2.36, λ = 11.3) Sum variance (w = 5)

Gabor (θ = 1.57, λ = 11.3) Gabor (θ = 1.18, λ = 22.6) Sum entropy (w = 5)

Gabor (θ = 2.75, λ = 11.3) Gabor (θ = 0.39, λ = 11.3) Sum average (w = 5)

Gabor (θ = 2.75, λ = 22.6) Gabor (θ = 2.36, λ = 8.2) Info. measure 1 (w = 5)

Kirsch edge descriptor 3 Kirsch edge descriptor 1 Diff. variance (w = 5)

Kirsch edge descriptor 2 Gabor (θ = 0.39, λ = 22.6) Sum average (w = 7)

Gabor (θ = 2.36, λ = 8.2) Gabor (θ = 1.57, λ = 11.3) Info. measure 1 (w = 7)

Diagonal edge descriptor Kirsch edge descriptor 3 Sum average (w = 3)
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Table 4

For all combinations of training and testing datasets, the mean AUC for TZ and PZ cancer detection is shown 

for the zone-aware (CTZ and CPZ) and zone-ignorant (CALL) classifiers. Two-sample t-tests were used to 

evaluate the statistical significance of differences in AUC between zone-aware and zone-ignorant classifiers.

TZ Cancer Detection PZ Cancer Detection

AUC
(CTZ)

AUC
(CALL)

p-value AUC
(CPZ)

AUC
(CALL)

p-value

Trained on I1 (40)

  C 1→1 .58 .58 .93 .61 .51 .05

  C 1→2,2* .63 .66 .62 .68 .27 <.001

  C 1→3 .59 .56 .84 .56 .41 .19

Trained on I2 (11)

  C 2→2 .58 .58 .97 .70 .31 <.01

  C 2→2* .54 .61 .33 .66 .19 <.001

  C 2→1 .57 .57 .96 .60 .50 .02

  C 2→3 .64 .53 .27 .58 .38 .09

Trained on I1+I2 (51)

  C 1,2→1 .58 .59 .85 .63 .49 <.01

  C 1,2→2 .61 .60 .90 .71 .33 <.01

  C 1,2→2* .68 .59 .46 .64 .18 <.001

  C 1,2→3 .57 .57 .98 .54 .41 .30

2* refers to 16 patients from St. Vincent’s Hospital who did not undergo radical prostatectomy
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