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AIMS
A modular interdisciplinary platform was developed to investigate the economic impact of oseltamivir treatment by dosage
regimen under simulated influenza pandemic scenarios.

METHODS
The pharmacology module consisted of a pharmacokinetic distribution of oseltamivir carboxylate daily area under the
concentration–time curve at steady state (simulated for 75 mg and 150 mg twice daily regimens for 5 days) and a phar-
macodynamic distribution of viral shedding duration obtained from phase II influenza inoculation data. The epidemiological
module comprised a susceptible, exposed, infected, recovered (SEIR) model to which drug effect on the basic reproductive
number (R0), a measure of transmissibility, was linked by reduction of viral shedding duration. The number of infected
patients per population of 100 000 susceptible individuals was simulated for a series of pandemic scenarios, varying
oseltamivir dose, R0 (1.9 vs. 2.7), and drug uptake (25%, 50%, and 80%). The number of infected patients for each scenario
was entered into the health economics module, a decision analytic model populated with branch probabilities, disease utility,
costs of hospitalized patients developing complications, and case-fatality rates. Change in quality-adjusted life years was
determined relative to base case.
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RESULTS
Oseltamivir 75mg relative to no treatment reduced themedian number of infected patients, increased change in quality-adjusted
life years by deaths averted, and was cost-saving under all scenarios; 150 mg relative to 75 mg was not cost effective in low
transmissibility scenarios but was cost saving in high transmissibility scenarios.

CONCLUSION
This methodological study demonstrates proof of concept that the disciplines of pharmacology, disease epidemiology and health
economics can be linked in a single quantitative framework.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• To date, modelling of influenza has been conducted in discrete discipline areas.
• The discrete pharmacology, epidemiology and health economic models are not linked and make assumptions about the
adjacent disciplines that are inappropriate.

• There are no epidemiological or health economic models which have taken into account between subject variability in
the pharmacology of influenza treatments.

WHAT THIS STUDY ADDS
• This study provides the first integrated interdisciplinary framework to understand the cost-utility of antiviral therapy
under various influenza pandemic scenarios linking drug pharmacokinetics/pharmacodynamics, epidemiological and
health economics endpoints.

• This quantitative framework was able to show that oseltamivir reduced the median number of infected individuals,
increased quality-adjusted life years by deaths averted, and was cost-saving under most pandemic scenarios.

• Given the growing need to justify pricing of medicines to society and payer, the methodology of interdisciplinary
pharmacometrics can be applied across all disease areas where the pharmacokinetics/pharmacodynamics, clinical or
epidemiological endpoints of interest can eventually be linked to health economic value.

Introduction
Influenza is a common transmissible viral respiratory illness
that, in susceptible individuals, can be associated with
substantial morbidity and mortality due to complications
such as pneumonia and bronchitis. Influenza tends to spread
rapidly in seasonal epidemics and in some cases extensive
spread results in a pandemic.

A very relevant and essential public health topic is
influenza pandemic containment and how to apply strategies
to mitigate the impact of a pandemic in a timely manner
[1, 2]. To date, however, even the most sophisticated mathe-
matical modelling approaches, which are important for
informing influenza pandemic planning, do not consider
basic features of antiviral pharmacology. These approaches
consider drug effect as either on or off in terms of altering
transmission [1, 2]. There has been very little consideration
of variability in pharmacokinetics (PK) or drug
response/pharmacodynamics (PD) [1, 2]. Furthermore, such
models have not linked drug PK/PD to epidemiological or
health economics endpoints. An integrated framework
linking these modules is required to better understand the
cost-utility of current and emerging antiviral therapies, and
their application and optimal deployment to manage influ-
enza pandemics.

The current antiviral cornerstone of influenza pandemic
preparedness is the neuraminidase inhibitor oseltamivir [3].
Oseltamivir is an oral prodrug that is extensively metabolized
by hepatic carboxylesterase 1A1 to oseltamivir carboxylate
(OC). Once in circulation, OC is predominately cleared by

the kidney via glomerular filtration and renal secretion.
Following oral dosing, plasma oseltamivir concentrations
decline rapidly with an apparent elimination half-life (t1/2)
of 1–3 h, while OC has a t1/2 of 6–10 h [4]. OC inhibits
the production of influenza virus (viral shedding) from
infected host cells [4] thereby reducing the duration of
infection and hastening resolution of signs and symptoms
of infection.

Whilst there is general agreement that oseltamivir in
adults with influenza accelerates time to clinical symptom al-
leviation, there are divergent views expressed in the literature
on whether oseltamivir reduces risk of lower respiratory tract
complications, and admittance to hospital [5, 6].

Recently, Rayner and colleagues have identified the
PK/PD determinants of oseltamivir efficacy, showing an area
under the concentration–time curve (AUC) relationship with
time to cessation of viral shedding and time to resolution of
influenza symptoms [7]. The AUC breakpoints were similar
for virological and clinical endpoints, indicating that the PD
effects of oseltamivir on viral shedding and symptoms were
synchronized by drug exposure.

In epidemiology, the basic reproductive number (R0) is a
fundamental concept describing transmissibility of an infec-
tious disease in a given population. Qualitatively, R0 is
defined as the number of secondary infections produced from
a primary infective source [8]. Quantitatively, R0 can be
captured implicitly within a simple transmission model
called the susceptibility, infectivity and recovered model,
which describes the progression of an epidemic/pandemic
over time in a population [9].
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Modelling approaches, such as decision analytic models,
are commonly employed in health economic studies to
estimate the cost-utility of various interventions and health
outcomes. The cost-utility analysis is a specific type of cost-
effectiveness analysis in which effectiveness is measured in
terms of quality-adjusted life-years (QALY). The QALY is cal-
culated by using utility values to adjust the duration of time
in a particular health state for the quality of an individual’s
life in that health state. A recent review reported that most
antiviral economic studies used static models, which are inca-
pable of incorporating the dynamic nature of the viral trans-
mission process [10].

The current work describes a modular approach to link
oseltamivir PK/PD [7], influenza epidemiology via a variant
of the susceptibility, infectivity and recovered model, and a
health economic decision analytic model. Our motivation
was driven by: (i) public health considerations: to understand
the impact of oseltamivir pharmacological variability on
patient outcomes, health utilization and economics under
different simulated pandemic scenarios; and (ii) production
of a proof of concept framework: to integrate drug PK/PD,
dynamic disease transmission, and health economic data.
To our knowledge, linking of the adjacent disciplines of
pharmacology, epidemiology and health economics has not
to date been successfully implemented in a single quantita-
tive framework.

Methods

Pharmacology (PK/PD) module
The PK/PD relationships were previously generated based on
data from 140 subjects collected from two phase II inocula-
tion studies; each study was approved by an ethics committee
and conducted in accordance with the Declaration of
Helsinki; all participants gave their informed consent prior
to inclusion. For a full description of the study designs, popu-
lation, and PK/PD analysis see [7, 11]. A three-group (placebo,
low and high exposure) OC AUC relationship with time to
cessation of viral shedding (Figure 1A) and resolution of com-
posite symptoms (Figure 1B) have been reported. An AUC
breakpoint of >14 180 ng.h ml�1 was identified as a common
PK/PD threshold of interest [5] based on enhanced cessation
of viral shedding and resolution of influenza symptoms
(Figure 1A,B). A previously published oseltamivir population
PK model of 390 healthy and infected subjects ranging from
1–78 years across a dose range of 20–1000 mg was used to de-
scribe OC exposure. The final covariate model from this pop-
ulation PK analysis included a relationship between weight
and creatinine clearance on OC clearance and weight on the
OC central volume of distribution. All covariates had a fitted
allometric exponent [11]. From this final covariate model, we
simulated oseltamivir PK parameter profiles in 5000 70-kg
adult patients aged 18–65 with normal renal function receiv-
ing the standard 75 mg twice daily (BID) and 150 mg BID
oseltamivir for 5 days. The population pharmacokinetic
model structure consisted of a two-compartment model with
first-order absorption of oseltamivir and first-order conver-
sion of oseltamivir to OC and a one-compartment model
with first-order elimination of OC. The AUCs for each patient

were quantified and the proportion of patients with OC AUCs
above the identified PK/PD viral shedding threshold
(14 180 ng.h ml�1) was calculated for each dosing regimen.
Additional Monte Carlo simulations were conducted for each
dosage regimen, sampling from the oseltamivir population
AUC distributions (Figure 1C) to construct a density distribu-
tion of the population fraction achieving target attainment
for each regimen. For each patient at a given oseltamivir dose,
an individual duration of viral shedding (Tshed; ϒ) value was
assigned from a log-normal Tshed distribution based on inoc-
ulation study data [7] (see Table 1).

Epidemiology module
To link oseltamivir PK/PD to influenza epidemiology, we used
a stochastic susceptible, exposed, infected, recovered (SEIR)
epidemiological model [12], adapted to incorporate the
impact of antiviral therapy (Figure 2A).

The differential equations describing the SEIR model are:

dS
dt

¼ � β
N

� �
SI (1)

dE
dt

¼ β
N

� �
SI � Eκ (2)

dI
dt

¼ Eκ � F0γ0I � FAUChigh � γhighI � FAUClow� γlowI (3)

dR
dt

¼ F0γI þ FAUChigh� γhighI þ FAUClow� γlowI (4)

where S is the number of individuals in the population who
are susceptible to influenza, E represents the number of indi-
viduals exposed and in the latent stage of influenza infection,
I represents the number of infected individuals, and R repre-
sents individuals who have recovered from infection and
are immune to re-infection. The parameter β governs infectiv-
ity, and is a composite of both frequency of individual inter-
actions (population density and social behaviours), and the
probability that an interaction will result in a successful influ-
enza infection in a susceptible individual (infectiousness). κ
represents the transit time from E to I (delay time between
influenza exposure and development of symptoms), which
is assumed to be 1 day [13] while γ governs the disease recovery
rate in the population. F0 represents the fraction of the simu-
lated population not receiving therapy, FAUClow is the fraction
of the population receiving oseltamivir with an
AUC ≤ 14 180 ng.hml�1, and FAUChigh is the fraction of the pop-
ulation receiving oseltamivir with an AUC> 14 180 ng.hml�1,
obtained from the pharmacology module. N equals the total
population (assumed to be 100 000). Because each simulation
was limited to a single influenza season (1 year), population
birth and death rates were not incorporated into the model.
Initial conditions for each compartment were as follows:
S = 100 000; E = 0; I = 1; R = 0.

As oseltamivir acts to reduce duration of illness by
inhibiting Tshed, the recovery rate γ in the SEIR model is
inversely related to Tshed (Tshed = 1/γ). The R0 or transmissibil-
ity can be expressed in approximate terms [12] as
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Figure 1
Pharmacology (pharmacokinetics/pharmacodynamics) module. Figure 1A and B were adopted from Rayner et al. [7] and show the relationship
between oseltamivir area under the concentration-time curve (AUC) and time to cessation of viral shedding and resolution of symptoms, respec-
tively, from phase II data. A cut-off AUC of 14 180 ng.h ml�1 separated low (blue dashed line) and high oseltamivir exposed (green solid line)
patients in the three-group relationship (AUC breakpoints are shown in brackets next to number of patients carrying over); red dotted line shows
unexposed patients (placebo). Figure 1C shows the proportion simulated above and below the cut-off AUC at two dosage regimens (75 and
150 mg twice daily for 5 days) using an established pop pharmacokinetic (PK) model (Kamal et al. [9]). Dark red = ‘low’ AUC group; light blue
= high ‘AUC’ group
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R0 ≈ infectivity rate/rate of recovery ≈ β/γ ≈ β × Tshed and hence
empirically by reducing Tshed, oseltamivir reduces R0.

To confirm that the SEIR model provided results that were
in general agreement with prior experience, the SEIR model
(without incorporation of antiviral therapy) was validated
using data from a previous influenza outbreak in the
Midwestern USA (2007–2008 seasons) extracted from the
Centers for Disease Control and Prevention influenza
seasonal summary database (http://www.cdc.gov/flu/
weekly/pastreports.htm). In the Midwestern USA, 20 263
patients were tested for influenza, with 4970 confirmed with
an influenza infection. The structural model validation was
achieved by loading the SEIR structural model (without anti-
viral therapy) and the data from the Midwestern influenza
outbreak into Berkeley Madonna Software. Using the model
fitting procedure available in Berkeley Madonna, which uses
a weighted sum of squared differences approach to achieve
minimization, the attack rate and viral shedding rate was
estimated. These values were consistent with those used in
our simulations and provided a satisfactory fit with the origi-
nal data set.

Using the model, simulations were then undertaken to
evaluate the impact of oseltamivir treatment regimens under
a number of pandemic scenarios; input parameters used in
the simulations are provided in Table 1. The simulation
scenarios evaluated were stratified by: treatment (no treat-
ment, oseltamivir 75 mg and 150 mg BID for 5 days); the
percent drug uptake, i.e., percentage of the infected popula-
tion who had an uptake of oseltamivir (25%, 50%, and
80%); and transmissibility (R0 of approximately 1.9 and 2.7)
[14]. For each update scenario, 100% adherence to therapy
was assumed. Parameters for β were adjusted to achieve the
requisite R0 number as outlined in Table 1. For each of the

above, 1000 Monte Carlo simulations (pandemics) were
conducted to provide the median attack rate (number of
infected cases per total population of 100 000). Each simula-
tion was run across a period of 1 year i.e. an entire flu season.
All pharmacometric and epidemiological simulations were
conducted in Berkley Madonna version 8.3.18.

Health economics module
The number of infected individuals obtained from each sim-
ulated pandemic scenario, from the epidemiology module
(SEIR model), were entered into a decision analytic model,
i.e. a decision tree (See Figure 3). Each branch of the decision
model represents a possible decision or occurrence which is
mutually exclusive. A cost-utility analysis was undertaken
based on the US population of healthy adults, aged 18–64
years, from both a payer and societal perspective. The payer
perspective included only direct costs, whereas the societal
perspective included both direct and indirect costs. Total
costs and QALYs were determined over a 1-year time period.
These two outcomes were combined to calculate incremental
cost-effectiveness ratios (ICERs), a commonly used metric in
cost-utility analysis that is constructed by dividing the differ-
ence in cost between two interventions by the difference in
effectiveness between two interventions. ICERs are a useful
way of describing the increased cost required to yield one
more unit of effectiveness when implementing one strategy
over another. QALYs were calculated by multiplying the life-
years (LY) by a utility, a value that describes the patient’s qual-
ity of life in a certain health state ranging from 0 to 1 with 0
being death and 1 being perfect health. The number of LYs
gained by a therapeutic intervention was determined by the
number of deaths averted (one LY was lost per death from a
population of 100 000 individuals). The expected value of
utility was determined from the utility of all the health state
events in Figure 3.

While there is no consensus as to the optimal ICER
threshold in the USA, experts in a recent commentary advo-
cated for a threshold of $100 000 to $150 000 per QALY. For
the purpose of this study, we assumed that a gain of one QALY
was valued at 100 000 USD [15]. Therefore, an ICER>100 000
USD per QALY indicated the new intervention was not cost-
effective. Because of the difficulty in interpreting an ICER
<0 (ΔC< 0 andΔE> 0), in these instances we simply indicate
that cost-saving has occurred.

An infected individual entered the health economics (HE)
model either as an outpatient or inpatient (Figure 3). Inpa-
tients admitted into a general ward or an intensive care unit
could experience pneumonia, sepsis, or acute respiratory
distress syndrome (ARDS) [16–18]. We assumed that patients
could only experience one influenza-related complication
within 1 year. The infected patient either recovered from
the infection or died. It was also assumed that all patients
were 100% adherent to treatment received, and that
oseltamivir reduced the time of symptom alleviation by
21 hours and had no direct effects on influenza complications
or hospitalization rate [19–21].

Data inputs for the HE model (Table 2) such as branch
probabilities, direct medical costs (medication and hospitali-
zation), direct nonmedical costs (transportation to and from
hospital), length of hospitalization, case-fatality rates from

Table 1
Input parameters used in the pharmacology–epidemiology modules

Descriptor Value

Population size (In) 100 000 cases

Latency period (1/κ) 1 day

FAUChigh (150 mg BID) 0.795 (0.095)

FAUChigh (75 mg BID) 0.326 (0.048)

Tshed(0) (No treatment) 6 (2.5) days

Tshed(low) (AUC 0–14 180 ng.h ml�1) 3 (0.58) days

Tshed(high) (AUC > 14 180 ng.h ml�1) 1.9 (0.51) days

β, Moderate infectivity 0.21 days�1

β, High infectivity 0.41 days�1

κ, the delay rate between exposure to influenza and symptom
development; FAUChigh, the mean (SD) fraction of the simulated
population receiving oseltamivir with an AUC >14 180 ng.h ml�1;
Tshed(0), the duration of viral shedding under no treatment;
Tshed(low), the mean (SD) duration of viral shedding if OC AUC is
<14 180 ng.h ml�1; Tshed(high), the mean (SD) duration of viral
shedding if OC AUC is greater than 14 180 ng.h ml�1 β, the rate of
infectivity; AUC, area under the concentration–time curve; BID,
twice daily
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influenza complications and health state utilities (which are
used in the construction of the QALY) were obtained from
the published literature [22–42] and Healthcare Cost and
Utilization Project Nationwide Inpatient Sample database.
Where possible, data related to the 2009 pandemic H1N1
influenza was used. All costs were converted to 2013 USD
using the Consumer Price Index [43]. Indirect costs, defined
as the costs attributed to daily work productivity loss by age,
were determined by the approach of Meltzer et al. [36].

Four pandemic scenarios were assessed in the HE model:
(i) high transmissibility and high severity; (ii) low transmis-
sibility and low severity; (iii) high transmissibility and low
severity; and (iv) low transmissibility and high severity.
Within each scenario, three interventions were assessed

(no treatment, oseltamivir 75 mg and oseltamivir 150 mg
BID for 5 days). Drug uptake was varied as described in
the epidemiological module (25%, 50%, and 80%). The β
values for transmissibility were obtained from the epidemi-
ological module (Table 1) whereas severity of illness (proxy
for virulence of disease) was based on health care utiliza-
tion; low severity was based on 2009 H1N1 pandemic expe-
rience [44]; and the high severity scenario involved
doubling the probability of hospitalization [45] for the
low severity scenario. All HE modelling was performed
using Microsoft Excel and R (R Development Core Team
(2008). R: A language and environment for statistical
computing. R Foundation for Statistical Computing,
http://www.R-project.org._)

Figure 2
Epidemiology module. Figure 2A shows the SEIR (susceptible, exposed, infected, recovered) influenza epidemiology model adapted to account
for oseltamivir treatment effect. Figure 2B shows fit of the SEIR model to 2007–2008 Influenza Epidemic Data from the Midwestern USA
(http://www.cdc.gov/flu/weekly/pastreports.htm). The fitting produced parameter values of β = 0.73, γ = 4.1 day, and 1/κ = 1 day. The grey dot-
ted line represents model fitted function; the solid black line represents actual data. AUC, area under the concentration-time curve; OC,
oseltamivir carboxylate
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Sensitivity analysis
As the magnitude and effect of the outcome of this proof of
concept quantitative framework is dependent on the point
estimate of Tshed used in our simulations, a sensitivity analy-
sis around the change in viral shedding in terms of infected
patients and the subsequent impact on the HE model was
warranted. Using the data provided by Rayner et al. [7], the
25th and 75th percentiles of viral shedding in each of the OC
AUC exposure groups defined by the classification and regres-
sion analysis were calculated. All dosing scenarios described
above were then repeated, using these upper and lower
bounds of viral shedding to provide upper and lower bounds
on number of patients infected (see Table 2). The number of
infected patient at 25% Tshed, 50% Tshed and 75% Tshed were
then used as inputs into the current HE model for
comparison.

Results

Pharmacology (PK/PD) module
The PK/PD target threshold, which separated low and high
oseltamivir exposure groups in the time to event relation-
ships [7] between OC AUC and cessation of influenza viral
shedding (Figure 1A) and resolution of influenza symptoms
(Figure 1B) was 14 180 ng.hml�1 [7]. The simulated AUC den-
sity distributions for the 75 mg and 150 mg BID dosing regi-
mens are shown in Figure 1C. Simulation results determined
that the proportion of patients in a population with OC AUCs
above the PK/PD threshold was 0.326 and 0.795 when treated
with 75 mg and 150 mg BID regimens, respectively (Table 1).
As shown in Table 1, the distribution of duration of viral
shedding (Tshed) data obtained from the influenza

inoculation studies [7] was as follows: for patients above the
PK/PD threshold, the Tshed distribution with mean (standard
deviation; SD) ϒhigh was 1.9 (0.51) days, for those less than
the PK/PD target the mean (SD) ϒlow was 3 (0.58) days, and
for patients not receiving drug the mean (SD) ϒ0 was 6 (2.5)
days.

Epidemiology module
A schematic of the epidemiological SEIR model adapted to
incorporate oseltamivir PK/PD is shown in Figure 2A
(see Methods). Results of the SEIR model external validation
to epidemic data gathered from a previous influenza outbreak
in the Midwestern USA (2007–2008 seasons) is shown in
Figure 2B. As shown, the model was adequately fitted to the
extracted data, capturing the fraction of the population
infected over the duration of the influenza outbreak.

The SEIR model was then used to simulate the median
number of individuals infected (per population of 100 000)
under different pandemic and treatment intervention scenar-
ios. Results of these simulations are shown in Table 3. A pan-
demic, by definition, requires an R0 > 1 [8, 12]. As shown, in
the low transmissibility scenario (R0 = 1.9), under no antiviral
treatment, approximately 37 000 individuals would be
infected, with that number decreasing to ~5000 under
oseltamivir 75 mg BID treatment and 25% drug uptake. As
expected, increasing the proportion of the infected popula-
tion receiving antiviral treatment (drug uptake) had a signifi-
cant impact on the incidence of infection in the population
in both low and high (R0 = 2.7) transmissibility pandemic
scenarios. A higher dose of oseltamivir, 150 mg BID, demon-
strated a greater improvement in reducing the number of
infected individuals as the percentage of the population
treated increased, particularly in the high transmissibility
scenario.

Figure 3
Health economics module. The number of infected-influenza patients per population of 100 000 (calculated from the epidemiology module)
entered a decision analytic model. Patients received treatment in an outpatient or inpatient setting. Inpatients admitted into a general ward
(GW), or an intensive care unit (ICU) may experience pneumonia, sepsis, or acute respiratory distress syndrome (ARDS). The branch probabilities
(P1-P29) are shown for the base case (see Table 2 for data source). AVR, antiviral treatment; ED, emergency department; GP-OPD, general practice
or outpatient department
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Table 2
Input parameters, values and data sources used in the health eco-
nomics module

Parameters
Base–case
value Source(s)

Probabilities

Medical care received

Outpatient visit 0.972 [22]

Inpatient 0.028 [22]

Channels of inpatient admission

Through ED visit 0.778 [23]

Through outpatient
visit

0.222 [23]

Complication associated with influenza

No complications 0.383

Pneumonia 0.403 [16–18]

Sepsis 0.089 [17, 18]

ARDS 0.125 [17, 18]

Type of hospitalization

No complication

ICU 0

GW 1 Assumed

Pneumonia

ICU 0.518 [16]

GW 0.482

Sepsis

ICU 0.511 [24]

GW 0.489

ARDS

ICU 1 [18]

GW 0

Probable outcome from the medical care received

GP

Cure 0.9999

Death 0.0001 [25]

No complication

In GW

Cure 0.903

Death 0.097 [17, 18]

Pneumonia

In GW

Cure 0.493 [17, 18]

Death 0.507

In ICU

Cure 0.489

(continues)

Table 2
(Continued)

Parameters
Base–case
value Source(s)

Death 0.511 [17, 18]

Sepsis

In GW

Cure 0.081 [17, 18]

Death 0.919

In ICU

Cure 0.257

Death 0.743 [17, 18]

ARDS

In GW

Cure 0.002 [17, 18]

Death 0.998

In ICU

Cure 0.151

Death 0.849 [17, 18]

Costs (USD, year
of costing: 2013)

Direct medical care costs

Oseltamivir 132.77 [26]

Over the counter
medications

16.95 [27]

GP visit 169~ [22]

ED visit 551 [28]

Hospitalization

GW

No complication 17 260 [29]

Pneumonia 18 966 [29]

Sepsis 23 771 [29]

ARDS 45 330 [30]

ICU

Pneumonia 22 771 [31]

Sepsis 44 958 [32]

ARDS 128 860 [30]

Direct nonmedical care cost

Transportation
(per visit)

2.83 [33, 34]

Indirect costs (daily productivity loss by age)

Age 18–64 146.04 [35]

Productivity loss (days lost) = length of stay plus days of
convalescence

GP visit 2.0 [22, 36]

Hospitalization

(continues)
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HE module
The median number of infected individuals (per population
of 100 000) for each pandemic scenario (Table 3) was entered
into a decision analytic model and became part of the

economic analysis. The final HE decision analytic model is
shown in Figure 3. Data inputs (and literature sources) for
the HE model such as branch probabilities, direct medical
costs (medication and hospitalization), direct nonmedical
costs (transportation to and from hospital), length of hospi-
talization, case-fatality rates from influenza complications,
and health state utilities are shown in Table 2. As shown in
the table, the vast majority of influenza-infected patients in
a population present as outpatients (>97%), and of the 3%
who present as inpatients, 40% present with pneumonia as
an influenza complication followed by (ARDS; 12%) and
sepsis (8%).

HE simulation scenarios and treatment
comparison
Results of the HE analysis are shown in Table 4. As shown,
across all pandemic scenarios, 75 mg BID oseltamivir was
cost-saving relative to no treatment, i.e., ΔC (incremental
cost)<0 and ΔE (incremental effectiveness) >0 (see Methods,
Equation 5).

The decrease in costs (ΔC) was driven by savings from
direct medical and nonmedical costs and indirect nonmedi-
cal costs (through fewer work days lost) which offset the
increased drug costs. As shown in Table 4, and using the low
transmissibility and low severity pandemic scenario as an
example, when comparing oseltamivir 75 mg vs. no treat-
ment, costs from the payer perspective (which include direct
costs only) were substantially lower (9.2 million US dollars
[USD] vs. 42.6 million USD at baseline). From the societal per-
spective, which includes indirect costs in addition to direct
costs, there was also a large decrease in costs (13 million
USD vs. 107 million USD at baseline). The increase in QALYs
(ΔE) for the 75 mg oseltamivir treatment strategy relative to
no treatment was primarily driven by a reduction in mortal-
ity. As shown in Table 4, again using the low transmissibility
and low severity scenario, a gain in QALYs (ΔQALY) of 430
was seen with the oseltamivir 75 mg intervention relative to
no treatment. This value was driven by the number of deaths
averted downstream in Figure 3 by the 75 mg BID interven-
tion (Δ Death = 412 for this scenario). As shown in Table 4,
the total number of deaths per population of 100 000 was
dependent on the intervention, and ranged from as low as
16 to as high as 1591 deaths, equivalent to mortality rates
of approximately ~0.016% and 1.6% respectively, and is
consistent with the reported range of mortality of known
influenza pandemics [46]. In the base case under no treat-
ment low transmissibility and low severity), death due to
hospitalization with pneumonia constituted the highest
percentage (47%) of total deaths from complications of influ-
enza, followed by ARDS (27%) and sepsis (15.5%).

When compared with oseltamivir 75 mg at 50% drug
uptake (Table 4), the new intervention using 150 mg was
not cost-effective in low transmissibility scenarios; however,
it was cost-saving in the high transmissibility scenarios.

Sensitivity analysis
The simulations from the sensitivity analysis using the 25th

or 75th percentile of viral shedding on the epidemiological
model are presented in Table 3. When the epidemiological
data were linked to the HE model, only minimal changes in

Table 2
(Continued)

Parameters
Base–case
value Source(s)

GW

No complication 7.4 [29, 36]

Pneumonia 8.4 [29, 36]

Sepsis 10.5 [29, 36]

ARDS 13.0 [29, 36]

ICU

Pneumonia 9.7 [31, 36]

Sepsis 14.4 [32, 36]

ARDS 17.0 [30, 36]

Length of stay (days)

GP visit 1.0 NA [22]

Hospitalization

GW

No complication 6.4 [29]

Pneumonia 7.4 [29]

Sepsis 9.5 [29]

ARDS 12.0 [30]

ICU

Pneumonia 8.7 [31]

Sepsis 13.4 [32]

ARDS 16.0 [30]

Utilities (95% CI)

Baseline average
quality of life

0.96 (0.92–1.00) [37–39]

Quality of life
during illness
with influenza

0.81 (0.70–0.90) [37, 40]

Pneumonia 0.63 [41]

Sepsis in hospital
ward

0.59 [42]

Sepsis in ICU 0.10 (0.08–0.15) [39–42]

ARDS in hospital
ward

0.59 [42]

ARDS intubated
in ICU

0.10 (0.08–0.15) [42]

Recovery from
severe influenza,
for patients who
received inpatient
ICU care

0.90 (0.85–0.95) [37]

M. A. Kamal et al.

1588 Br J Clin Pharmacol (2017) 83 1580–1594



the overall HE conclusions were observed. The only signifi-
cant change was with the 75th percentile viral shedding in
the low transmissibility and high severity scenario. All HE
outcomes were the same, except for the 150 mg dose com-
pared to the 75 mg dose in the low transmissibility and high
severity scenario, which now achieved cost-savings from a
payer and societal perspective (data not shown). This demon-
strates that our quantitative framework is robust to possible
intrinsic variability in viral shedding, yet is able to detect
and translate meaningful antiviral exposure response with-
out impacting the health economic conclusions.

Discussion
We developed a modular interdisciplinary pharmacometric
platform that was able to show that oseltamivir reduced the
median number of infected individuals, increased QALYs by
preventing deaths, and was cost-saving under most pan-
demic scenarios. The pharmacology–epidemiology modules
aimed to translate variability in the exposure (PK)–response
(PD) effect of oseltamivir on influenza viral shedding and
then demonstrate the indirect benefits achieved by altering
disease transmissibility at a population level. The individual
and population outcomes were translated into improvements
in the QALY and cost-utility (captured by the ICER) allowing
insight into the health economic impact of various interven-
tions under pandemic scenarios.

The positive economic impact of oseltamivir was mostly
driven by reducing the number of infected patients
(per 100 000 population) entering the decision analytic
model (Figure 3), thereby reducing the number of individ-
uals who otherwise may have gone forward to develop influ-
enza complications and hence averting deaths downstream
(increased QALY). From a payer perspective, direct medical
costs were decreased through less health care use
(Figure 3), and from a societal perspective, the decrease in
indirect costs was driven mainly by fewer days lost from

work. As shown in Table 4, increased dose (150 mg) relative
to standard dose (75 mg) may have some economic impact
in high transmissibility scenarios, but not low transmissibil-
ity at 50% drug uptake (drug uptake is a proxy for the ability
to stockpile and distribute drug to susceptible individuals).
The exception is at 25% drug uptake (data not shown) where
the 150 mg dose may have a favourable ICER, suggesting
that in low transmissibility scenarios, treatment of a smaller
portion of infected individuals with a higher dose may have
some economic value.

The integrated platform developed in the current study
may also be used to investigate the health economic impact
of other antivirals under development once a PK/PD readout
has been achieved in early development. This would allow
early consideration of novel antiviral compounds for pan-
demic planning, such as a haemagglutinin monoclonal anti-
body that inhibits viral entry into the host cell [47]. Such a
therapeutic modality is being developed by different organi-
zations to treat severe influenza, and hence may potentially
act on the lower (distal) parts of the decision analytic model
by reducing hospitalization duration once admitted to the
intensive care unit, where oseltamivir acts proximally by
reducing the number of infected individuals that enter the
decision analytic model (Figure 3). As such, combining thera-
peutic modalities may be complementary from a health eco-
nomic and pandemic perspective by addressing both
transmissibility and severity (virulence). Other applications
of the platform include conducting threshold analysis on
drug pricing, which would lead to a desired ICER.

Certain competing factors may have confounded our esti-
mation of the economic impact of oseltamivir. Factors lead-
ing to underestimation include: (i) capturing only treatment
effect of oseltamivir on recovery rate (γ) and not the effect
on the rate of infectivity, β (Figure 2A), via its documented
effects on prophylaxis [48]; and (ii) employing a conservative
assumption of oseltamivir having no effect on reducing influ-
enza complications, despite some evidence suggesting posi-
tive effects [5]. By contrast, factors that may have led to

Table 3
Output of the combined pharmacology–epidemiologymodules. Median number of infected individuals per population of 100 000 by therapeutic
intervention, transmissibility (R0), and % of infected individuals treated with oseltamivira

% treated No treatment 75 mg BID 150 mg BID

Low transmissibility (R0 = 1.9)

37 068

25% -- 7846 (7846–20 354) 5311 (5311–1,6303)

50% -- 2252 (2252–12 279) 1357 (1357–7202)

80% -- 1349 (1349–8504) 741 (741–4891)

High transmissibility (R0 = 2.7)

67 512

25% -- 60 397 (60397–71 149) 53 032 (53032–59 498)

50% -- 41 331 (41331–55 660) 31 700 (31700–37 024)

80% -- 20 941(20941–40 616) 12 881 (12881–14 665)

BID, twice daily; R0, the basic reproductive number.
amedian (25th and 75th % of viral shed) simulation are reported in this table. Note: 25th and 50th percentile identical given right skewed distribution.
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overestimation include: (i) the univariate nature of our anal-
ysis with respect to intervention, where only the antiviral ef-
fect was considered without incorporation of other pandemic
mitigating factors such as school/airport closure, social dis-
tancing, mask wearing and vaccination; and (ii) use of
inoculation data that involved administration of drug imme-
diately after infection, thereby lacking consideration of the
effect of time to treatment [49] (the effectiveness of
oseltamivir is highest at early treatment times relative to
infection). We sourced PK/PD data from phase II inoculation
studies because they employed the widest range of
oseltamivir doses and had well characterized PK/PD relation-
ships [7], although emerging work [50] is also showing some
PK/PD relationships from phase III data (seasonal influenza),
where significant differences could not be revealed by com-
paring dose groups alone. It is important to also note that dif-
ferent opinions exist on the potential effect of doubling an
oseltamivir dose [7, 51–56]; some have also noted improved
viral shedding in hospitalized adults infected with influenza
B with higher doses [51], whereas others have failed to
identify the superiority of double dosing in avian and severe
influenza [52]

Numerous oseltamivir population PK models have been
developed to evaluate PK for specific purposes including
impact of obesity, pregnancy, end-stage renal dysfunction,
ontogeny in infants younger than 1 year and the impact of
probenecid to incite a drug–drug interaction [11, 57–62].
Whilst fit for their specific purpose, suchmodels were too nar-
row for application in this program. The population PK
model used in this framework had the greatest patient num-
ber, and age, weight, creatinine clearance and dose range.
Thus enabling suitable populations of interest to be robustly
simulated to evaluate OC exposure in this framework.

The situation of administering drug immediately after
infection is an ideal scenario, and is likely to deviate from
the reality of a pandemic. In the current methodological
study, linkage of the pharmacoepidemiology and HEmodules
is demonstrated deterministically, i.e. median predictions of
the number of infected individuals (Table 2) from the
pharmacoepidemiological modules form the input into the
HE module. This approach was undertaken because currently
available epidemiological models are not able to provide the
full variance–covariance matrix between parameters due to
paucity of observational data of influenza seasons to build
such models robustly. Nevertheless, it was reassuring that
our model was able to more than adequately describe the pre-
vious influenza outbreak in the Midwestern USA (2007–2008
seasons) extracted from the Centers for Disease Control.

To address some of these limitations in future work, this
iteration is amenable to improvement due to the modular
nature of the platform. For example, to overcome the limita-
tions of the SEIR model, which is well stirred with regards to
susceptibility and infectiousness of influenza, an agent-based
epidemiology model (ABM) could be used instead. The ABM
would account for the unique contact structures in a popula-
tion [1, 12] allowing for more heterogeneous representation
of infectiousness (β in Figure 2A). Some of the present authors
have begun steps towards the integration of an ABM [63].
Future efforts may also involve exploring the potential health
economic impact of alternate dosing scenarios (e.g. half-dose,
triple dose). It is worth noting that considering adverse

events and disease complications brings the HE model closer
to clinical reality. However, it should be highlighted that the
focus of the current study is the demonstration of proof-
of-concept of linking PK/PD information to the HE model
through the epidemiological model. However, those factors
will be considered in our future work along with the use of
the more sophisticated ABM model.

The model also did not consider emergence of resistance
during an influenza season, which might result in decreased
viral clearance, and therefore potentially reduced impact of
oseltamivir. Neither did it consider the acquisition of resis-
tance mutations that may also result in a cost to infectivity
that may reduce the potential for transmission. There is a
paucity of data to support or describe the rate and extent of
resistance emergence within an influenza season to support
assumptions for such scenarios. The spatial and time aspects
of emergence of resistance (e.g. arising in a specific geography
mid-way through an epidemic) are more appropriately
explored using ABM approaches.

Despite these limitations, we have successfully demon-
strated proof of concept that relevant endpoints can be
linked across adjacent disciplines (in this case drug AUC, viral
shedding, and their respective variabilities, R0 and ICER).
Many have, through use of meta-analysis of randomized clin-
ical trial data or retrospective analysis of pandemic data,
advocated use of neuraminidase inhibitors as one of several
strategies to contain a pandemic [5, 64], and this is reflected
in current guidelines [3]. While we recognize that further
work is needed to quantify the health economic impact of
oseltamivir more rigorously in a given pandemic scenario,
the potential utility of interdisciplinary pharmacometric
methodology in beginning to solve multilayered problems
should not be understated. Given the growing need to justify
pricing of medicines to society and payer, the authors favour
greater application of interdisciplinary techniques across all
disease areas where the PK/PD, clinical, or epidemiological
endpoints of interest can eventually be linked to health
economic value. We advocate that this approach will bring
together the developer, payer and regulator earlier in the drug
development process to facilitate accelerated access to afford-
able medicines.

Conclusion
Oseltamivir 75 mg relative to no treatment reduced the
median number of infected patients, increased ΔQALY by
deaths averted, and was cost-saving under all simulated
pandemic scenarios, while 150 mg relative to 75 mg was not
cost effective in low transmissibility scenarios but was cost
saving in high transmissibility scenarios. This methodologi-
cal study demonstrates proof of concept that the disciplines
of pharmacology, disease epidemiology and health econom-
ics can be linked in a single quantitative framework.

Competing Interests
All authors have completed the Unified Competing Interest
form at www.icmje.org/coi_disclosure.pdf (available on

Linking pharmacology to influenza epidemiology and health economics

Br J Clin Pharmacol (2017) 83 1580–1594 1591

http://www.icmje.org/coi_disclosure.pdf


request from the corresponding author) and declare: M.A.K.,
P.F.S., K.N., G.D., S.T. and C.R.R. all had support from Roche
for the submitted work; M.A.K. was an employee of Roche in
the previous 3 years; P.S., K.N., G.D., S.T. and C.R. are
employees of d3 Medicine, which is a strategic advisory
company in drug development and advised multiple
pharmaceutical and biotechnology companies, including
Roche in the previous 3 years; no other relationships or
activities that could appear to have influenced the submitted
work.

This work was supported by funding from F. Hoffmann-La
Roche Ltd. Support for third-party writing assistance for this
manuscript was provided by F. Hoffmann-La Roche Ltd.

References
1 Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC,

Burke DS. Strategies for mitigating an influenza pandemic. Nature
2006; 442: 448–52.

2 Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W,
Cummings DA, et al. Containing pandemic influenza at the
source. Science 2005; 309: 1083–7.

3 WHO Guidelines for Pharmacological Management of Pandemic
Influenza A(H1N1) 2009 and other Influenza Viruses. 2010.
Available at http://www.who.int/csr/resources/publications/
swineflu/h1n1_guidelines_pharmaceutical_mngt.pdf (last
accessed 2 October 2016).

4 Tamiflu Summary of Product Characteristics (SmPC). 2011.
Available at http://www.medicines.org.uk/emc/ (last accessed
2 October 2016).

5 Dobson J, Whitley RJ, Pocock S, Monto AS. Oseltamivir treatment
for influenza in adults: a meta-analysis of randomised controlled
trials. Lancet 2015; 385: 1729–37.

6 Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan
CJ. Oseltamivir for influenza in adults and children: A systematic
review of clinical study reports and summary of regulatory
comments. BMJ 2014; 348: g2545.

7 Rayner CR, Bulik CC, Kamal MA, Reynolds DK, Toovey S, Hammel
JP, et al. Pharmacokinetic-pharmacodynamic determinants of
oseltamivir efficacy using data from phase 2 inoculation studies.
Antimicrob Agents Chemother 2013; 57: 3478–87.

8 Dietz K. The estimation of the basic reproduction number for
infectious diseases. Stat Methods Med Res 1993; 2: 23–41.

9 Kermack WO, McKendrick AG. A contribution to the mathematical
theory of epidemics. Proc R Soc Lond A 1927; 115: 700–21.

10 Pradas-Velasco R, Antonanzas-Villar F, Martinez-Zarate MP.
Dynamic modelling of infectious diseases: an application to the
economic evaluation of influenza vaccination.
Pharmacoeconomics 2008; 26: 45–56.

11 Kamal MA, Van Wart SA, Rayner CR, Subramoney V, Reynolds
DK, Bulik CC, et al. Population pharmacokinetics of oseltamivir:
pediatrics through geriatrics. Antimicrob Agents Chemother
2013; 57: 3470–7.

12 Murillo LN, Murillo MS, Perelson AS. Towards multiscale
modeling of influenza infection. J Theor Biol 2013; 332: 267–90.

13 Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach
S, et al. Timelines of infection and disease in human influenza: a

review of volunteer challenge studies. Am J Epidemiol 2008; 167:
775–85.

14 Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A.
Modeling the worldwide spread of pandemic influenza: baseline
case and containment interventions. PLoS Med 2007; 4: e13.

15 Ubel PA, Hirth RA, Chernew ME, Fendrick AM. What is the price
of life and why doesn’t it increase at the rate of inflation? Arch
Intern Med 2013; 163: 1637–41.

16 Jain S, Benoit SR, Skarbinski J, Bramley AM, Finelli L. Influenza-
associated pneumonia among hospitalized patients with 2009
pandemic influenza A (H1N1) virus – United States, 2009. Clin
Infect Dis 2012; 54: 1221–9.

17 Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J,
et al. Hospitalized patients with 2009 H1N1 influenza in the
United States, April–June 2009. N Engl J Med 2009; 361: 1935–44.

18 Skarbinski J, Jain S, Bramley A, Lee EJ, Huang J, Kirschke D, et al.
Hospitalized patients with 2009 pandemic influenza A (H1N1)
virus infection in the United States – September–October 2009.
Clin Infect Dis 2011; 52: S50–S59.

19 Muthuri SG, Venkatesan S, Myles PR, Leonardi-Bee J, Al Khuwaitir
TS, Al Mamun A, et al. Effectiveness of neuraminidase inhibitors
in reducing mortality in patients admitted to hospital with
influenza A H1N1pdm09virus infection: a meta-analysis of
individual participant data. Lancet Respir Med 2014; 2: 395–404.

20 Burch J, Paulden M, Conti S, Stock C, Corbett M, Welton NJ, et al.
Antiviral drugs for the treatment of influenza: a systematic
review and economic evaluation. Health Technol Assess 2009;
13: 15–265, iii–iv.

21 Hsu J, Santesso N, Mustafa R, Brozek J, Chen YL, Hopkins JP, et al.
Antivirals for treatment of influenza: a systematic review and
meta-analysis of observational studies. Ann Intern Med 2012;
156: 512–24.

22 Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson
WW, Wortley PM, Weintraub E, et al. The annual impact of
seasonal influenza in the US: measuring disease burden and costs.
Vaccine 2007; 25: 5086–96.

23 Gonzalez M K, Bauhoff S C, Blanchard J, Abir M, Iyer N, Smith
A, et al. The evolving role of emergency departments in the
United States. 2013. Available at http://www.rand.org/content/
dam/rand/pubs/research_reports/RR200/ RR280/RAND_RR280.
pdf.

24 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J,
Pinsky MR. Epidemiology of severe sepsis in the United States:
analysis of incidence, outcome, and associated costs of care. Crit
Care Med 2001; 29: 1303–10.

25 Presanis AM, Lipsitch M, De Angelis D, Swine Flu Investigation
Team, New York City Department of Health and Mental Hygiene,
Hagy A, et al. The severity of pandemic H1N1 influenza in the
United States, from April to July 2009: a Bayesian analysis. PLoS
Med 2009; 6: e1000207.

26 PDR Red Book: Pharmacy’s Fundamental Reference. Montvale,
New Jersey: Thompson Healthcare Inc., 2013.

27 Lee BY, Bacon KM, Donohue JM, Wiringa AE, Bailey RR,
Zimmerman RK. From the patient perspective: the economic
value of seasonal and H1N1 influenza vaccination. Vaccine 2011;
29: 2149–58.

28 Caldwell N, Srebotnjak T, Wang T, Hsia R. "How much will I get
charged for this?" Patient charges for top ten diagnoses in the
emergency department. PLoS One 2013; 8: e55491.

M. A. Kamal et al.

1592 Br J Clin Pharmacol (2017) 83 1580–1594

http://www.who.int/csr/resources/publications/swineflu/h1n1_guidelines_pharmaceutical_mngt.pdf
http://www.who.int/csr/resources/publications/swineflu/h1n1_guidelines_pharmaceutical_mngt.pdf
http://www.medicines.org.uk/emc/%3e
http://www.rand.org/content/dam/rand/pubs/research_reports/RR200/%20RR280/RAND_RR280.pdf
http://www.rand.org/content/dam/rand/pubs/research_reports/RR200/%20RR280/RAND_RR280.pdf
http://www.rand.org/content/dam/rand/pubs/research_reports/RR200/%20RR280/RAND_RR280.pdf


29 The National (Nationwide) Inpatient Sample (NIS) Healthcare
Cost and Utilization Project (HCUP). 2009. Available at www.hcup-
us.ahrq.gov/nisoverview.jsp (last accessed 12 September 2013).

30 Wiesen J, Komara JJ, Walker E, Wiedemann HP, Guzman JA.
Relative cost and outcomes in the intensive care unit of acute
lung injury (ALI) due to pandemic influenza compared with
other etiologies: a single-center study. Ann Intensive Care 2012;
2: 41.

31 Yu H, Rubin J, Dunning S, Li S, Sato R. Clinical and economic
burden of community-acquired pneumonia in the Medicare fee-
for-service population. J Am Geriatr Soc 2012; 2137–43.

32 MacLaren R, Bond CA, Martin SJ, Fike D. Clinical and
economic outcomes of involving pharmacists in the direct
care of critically ill patients with infections. Crit Care Med
2008; 36: 3184–9.

33 Internal Revenue Service – StandardMileage Rates for 2013. 2013.
Available at http://www.irs.gov/uac/Newsroom/2013-Standard-
Mileage-Rates-Up-1-Cent-per-Mile-for-Business,-Medical-and-
Moving (last accessed 24 September 2013).

34 Center of Disease Prevention – Distance to Nearest Hospital Files,
NAMCS and NHAMCS. 2009. Available at http://www.cdc.gov/
nchs/data/ahcd/distance_to_nearest_hospital_file.pdf (last
accessed 24 September 2013).

35 United States Bureau of Labor Statistics –Median weekly earnings
by age, sex, race and Hispanic or Latino ethnicity, first quarter
2013. 2013. Available at http://www.bls.gov/opub/ted/2013/
ted_20130419.htm (last accessed 23 September 2013).

36 Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic
influenza in the United States: priorities for intervention. Emerg
Infect Dis 1999; 5: 659–71.

37 Khazeni N, Hutton DW, Garber AM, Owens DK. Effectiveness and
cost-effectiveness of expanded antiviral prophylaxis and
adjuvanted vaccination strategies for an influenza A (H5N1)
pandemic. Ann Intern Med 2009; 151: 840–53.

38 Fryback DG, Dasbach EJ, Klein R, Klein BE, Dorn N, Peterson K,
et al. The Beaver Dam Health Outcomes Study: initial catalog of
health-state quality factors. Med Decis Making 1993; 13: 89–102.

39 The U.S. Census Bureau. 2007. Available at http://www.census.
gov/ (last accessed 27 September 2013).

40 Turner DA, Wailoo AJ, Cooper NJ, Sutton AJ, Abrams KR,
Nicholson KG. The cost-effectiveness of influenza vaccination of
healthy adults 50-64 years of age. Vaccine 2006; 24: 1035–43.

41 Song Y, Tai JH, Bartsch SM, Zimmerman RK, Muder RR, Lee BY.
The potential economic value of a Staphylococcus aureus vaccine
among hemodialysis patients. Vaccine 2012; 30: 3675–82.

42 Angus DC, Musthafa AA, Clermont G, Griffin MF, Linde-Zwirble
WT, Dremsizov TT, et al.Quality-adjusted survival in the first year
after the acute respiratory distress syndrome. Am J Respir Crit
Care Med 2001; 163: 1389–94.

43 United States Bureau of Labor Statistics – CPI Inflation Calculator.
2013. Available at http://www.bls.gov/data/inflation_calculator.
htm (last accessed 23 September 2013).

44 Girard MP, Tam JS, Assossou OM, Kieny MP. The 2009 A
(H1N1) influenza virus pandemic: a review. Vaccine 2010; 28:
4895–902.

45 Lee BY, McGlone SM, Bailey RR, Wiringa AE, Zimmer SM, Smith
KJ, et al. To test or to treat? An analysis of influenza testing and
antiviral treatment strategies using economic computer
modelling. PLoS One 2010; 5: e11284.

46 Potter CW. A History of Influenza. J Appl Microbiol 2001; 91:
572–9.

47 Chen Z, Wang J, Bao L, Guo L, Zhang W, Xue Y, et al. Human
monoclonal antibodies targeting the haemagglutinin
glycoprotein can neutralize H7N9 influenza virus. Nat Commun
2015; 6: 6714.

48 Jackson RJ, Cooper KL, Tappenden P, Rees A, Simpson EL, Read
RC, et al. Oseltamivir, zanamivir and amantadine in the
prevention of influenza: a systematic review. J Infect 2011; 62:
14–25.

49 Aoki FY, Macleod MD, Paggiaro P, Carewicz O, El Sawy A, Wat C,
et al. Early administration of oral oseltamivir increases the
benefits of influenza treatment. J Antimicrob Chemother 2003;
51: 123–9.

50 Bulik C, Rayner C, Hammel J, Smith PF, Forrest A, Van Wart SA,
et al. Pharmacokinetic-pharmacodynamic (PK-PD) evaluation of
the impact of oseltamivir on influenza viral endpoints. Abstr. A-
010. 54th Interscience Conference on Antimicrobial Agents and
Chemotherapy (ICAAC), Washington DC, USA. 2014. Available
at http://www.icaaconline.com/php/icaac2014abstracts/data/in-
dex.htm (last accessed 23 May 2014).

51 Lee N, Hui DS, Zuo Z, Ngai KL, Lui GC, Wo SK, et al. A prospective
intervention study on higher-dose oseltamivir treatment in
adults hospitalized with influenza A and B infections. Clin Infect
Dis 2013; 57: 1511–9.

52 South East Asia Infectious Disease Clinical Research Network. Ef-
fect of double dose oseltamivir on clinical and virological out-
comes in children and adults admitted to hospital with severe
influenza: double blind randomised controlled trial. BMJ 2013;
346: f3039.

53 Jefferson T, Jones M, Doshi P, Del Mar CB, Hama R, Thompson
MJ, et al. Regulatory information on trials of oseltamivir (Tamiflu)
and zanamivir (Relenza) for influenza in adults and children
updated. Cochrane Summaries (2014).

54 Influenza antiviral medications: Summary for clinicians. CDC.
Centers for Disease Control and Prevention 2014.

55 WHO guidelines for pharmacological management of
pandemic (H1N1) 2009 influenza and other influenza viruses.
WHO, 2010.

56 Roos R.WHOdirector replies to BMJ critique of pandemic actions.
CIDRAP. University of Minnesota 2010.

57 Kamal MA, Brennan BJ, Subramoney V, Lien YT, Morcos PN, Frey
N, et al. Identification of new oral dosing regimens for the
neuraminidase inhibitor oseltamivir in patients with moderate
and severe renal impairment. Clin Pharmacol Drug Dev 2015; 4:
326–36.

58 Chairat K, Jittamala P, Hanpithakpong W, Day NP, White NJ,
Pukrittayakamee S, et al. Population pharmacokinetics of
oseltamivir and oseltamivir carboxylate in obese and non-obese
volunteers. Br J Clin Pharmacol 2016; 81: 1103–12.

59 Kamal MA, Lien KY, Robson R, Subramoney V, Clinch B,
Rayner CR, et al. Investigating clinically adequate
concentrations of oseltamivir carboxylate in end-stage renal
disease patients undergoing hemodialysis using a population
pharmacokinetic approach. Antimicrob Agents Chemother
2015; 59: 6774–81.

60 Pillai VC, Han K, Beigi RH, Hankins GD, Clark S, Hebert MF,
et al. Population pharmacokinetics of oseltamivir in non-
pregnant and pregnant women. Br J Clin Pharmacol 2015; 80:
1042–50.

Linking pharmacology to influenza epidemiology and health economics

Br J Clin Pharmacol (2017) 83 1580–1594 1593

http://www.hcup-us.ahrq.gov/nisoverview.jsp
http://www.hcup-us.ahrq.gov/nisoverview.jsp
http://www.irs.gov/uac/Newsroom/2013-Standard-Mileage-Rates-Up-1-Cent-per-Mile-for-Business,-Medical-and-Moving
http://www.irs.gov/uac/Newsroom/2013-Standard-Mileage-Rates-Up-1-Cent-per-Mile-for-Business,-Medical-and-Moving
http://www.irs.gov/uac/Newsroom/2013-Standard-Mileage-Rates-Up-1-Cent-per-Mile-for-Business,-Medical-and-Moving
http://www.cdc.gov/nchs/data/ahcd/distance_to_nearest_hospital_file.pdf
http://www.cdc.gov/nchs/data/ahcd/distance_to_nearest_hospital_file.pdf
http://www.bls.gov/opub/ted/2013/ted_20130419.htm
http://www.bls.gov/opub/ted/2013/ted_20130419.htm
http://www.census.gov/
http://www.census.gov/
http://www.bls.gov/data/inflation_calculator.htm%3e
http://www.bls.gov/data/inflation_calculator.htm%3e
http://www.icaaconline.com/php/icaac2014abstracts/data/index.htm%3e
http://www.icaaconline.com/php/icaac2014abstracts/data/index.htm%3e


61 Kamal MA, Acosta EP, Kimberlin DW, Gibiansky L, Jester P,
Niranjan V, et al. The posology of oseltamivir in infants with
influenza infection using a population pharmacokinetic
approach. Clin Pharmacol Ther 2014; 96: 380–9.

62 Rayner CR, Chanu P, Gieschke R, Boak LM, Jonsson EN. Population
pharmacokinetics of oseltamivir when coadministered with
probenecid. J Clin Pharmacol 2008; 48: 935–47.

63 Fidler M, Murillo M, Rayner C, Kamal MA, Smith PF. Abstr.
Modeling the Spread of Pandemic Influenza in the United States:
Impact of Antiviral Interventions, Pharmacology, and Resistance.
Fifth American Conference on Pharmacometrics 2014.

64 Michiels B, Van Puyenbroeck K, Verhoeven V, Vermeire E,
Coenen S. The value of neuraminidase inhibitors for the
prevention and treatment of seasonal influenza: a systematic
review of systematic reviews. PLoS One 2013; 8: e60348.

[Correction note: This article was first published online on the
20th of February 2017. Minor grammatical corrections were made
in the abstract, Introduction and Methods sections on the 22nd
of March 2017 prior to issue publication.]

M. A. Kamal et al.

1594 Br J Clin Pharmacol (2017) 83 1580–1594


