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ABSTRACT: Understanding the electronic contact between
molybdenum disulfide (MoS2) and metal electrodes is vital for
the realization of future MoS2-based electronic devices. Natural
MoS2 has the drawback of a high density of both metal and
sulfur defects and impurities. We present evidence that
subsurface metal-like defects with a density of ∼1011 cm−2

induce negative ionization of the outermost S atom complex.
We investigate with high-spatial-resolution surface character-
ization techniques the effect of these defects on the local
conductance of MoS2. Using metal nanocontacts (contact area < 6 nm2), we find that subsurface metal-like defects (and not S-
vacancies) drastically decrease the metal/MoS2 Schottky barrier height as compared to that in the pristine regions. The
magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong
Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect
locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects
provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact
area decreases in size.
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1. INTRODUCTION

Shortly after the isolation of graphene, an sp2 hybridized carbon
layer,1−3 a wealth of other two-dimensional (2D) materials
appeared on stage. One of the most promising and widely used
materials is MoS2.

4,5 MoS2 belongs to the family of materials
known as transition metal dichalcogenides (TMDCs). TMDCs
(and consequently MoS2) consist of a transition metal layer
(e.g., Mo, W) sandwiched between two covalently bonded
chalcogen layers (e.g., S, Se, Te). The trilayers are weakly
bonded to each other via van der Waals forces. TMDCs exhibit
a variety of electronic properties that depend on the
composition (transition metal and chalcogen) of the crystal.5,6

For instance, MoS2 in its bulk form is a semiconductor with an
indirect gap of 1.3 eV. Its band gap is tunable with thickness,
and it has been shown to increase up to 1.8 eV in its monolayer
manifestation due to quantum confinement.7,8 Furthermore, a
transition from an indirect bulk band gap to a direct band gap
occurs for monolayer MoS2.

9 A highly informative and
comprehensive review covering recent developments on
MoS2 and other transition-metal dichalcogenides has been
compiled by McDonnell and Wallace.10

MoS2 is a promising candidate for future (opto-)electronic
devices.8,11−15 Radisavljevic et al.8 demonstrated that a
monolayer MoS2-based field-effect transistor exhibits high
current on/off ratios (108) at room temperature. Interestingly,

they demonstrated that Au contacts on n-type MoS2 can be
considered ohmic, despite the high work function of Au.
Various metal/MoS2 contacts display a low Schottky barrier
height.8,16,17 This is surprising because, in principle, the
Schottky barrier height should strongly depend on the metal
work function. This behavior was attributed to a strong Fermi
level pinning effect.16

Fermi level pinning results from interface states that are
formed at the interface between a metal and a semiconductor.18

The strength of the Fermi level pinning increases as the
number of gap states at the interface increases.18 The observed
strong Fermi level pinning at the MoS2/metal contact was
attributed to the presence of S-vacancies.19−21 This was based
on the lower formation energy of the S-vacancies compared to
that of the Mo-vacancies19 and impurities. S-vacancies are
indeed found to dominate in transition electron microscopy
(TEM) images.22 In addition to S-vacancies, MoS2 has been
shown to contain a substantial amount of other structural and
metal-like defects.23,24

Intrinsic metal-like defects were reported to result in parallel
conduction paths and were held responsible for large variations
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in the contact resistance and doping of MoS2.
20 McDonnell et

al.20 have demonstrated that defects dope the MoS2 surface. n-
Type behavior was associated with sulfur deficiency, whereas p-
type behavior was attributed to a sulfur-rich environment.
Several other studies have used scanning tunneling microscopy
(STM) and TEM to determine the structural and electronic
properties of these defects.19,21−23,25−32 These studies have
provided valuable information on the physical mechanisms that
govern charge transport in MoS2-based junctions and have
pointed toward properties that could impact the underlying
mechanism. In addition to investigations of the metal/MoS2
junction using large metal contacts,8,16,17 nanoscopic metal/
MoS2 contacts have been recently obtained by conductive AFM
(C-AFM) measurements. In C-AFM, the tip can act as the
metal electrode at the MoS2/metal contact.33−35 For instance,
Giannazzo et al.34,35 recorded I(V) characteristics of the (Pt
coated) tip/MoS2 contact and observed local variations in the
Schottky barrier height. By comparing simultaneously recorded
C-AFM images and I(V) curves one can, in principle, obtain
information on the mechanisms that govern charge transport
with high spatial resolution and link this behavior to the
presence of defects and impurities.36 Unfortunately, such a
comparison is still missing from the literature, and C-AFM has
yet to realize its full potential. This is of particular importance
in nanoelectronics because nanoscale variations in the electrical
conductance of MoS2/metal contacts are expected to play a
crucial role in defining device characteristics and perform-
ance.37−40 Therefore, a thorough investigation of the influence
of nanoscopic defects on the behavior of metal/MoS2 contacts
as well as a quantitative understanding of the underlying
physics is highly desirable.
In this work, we perform high-spatial-resolution C-AFM,

lateral force microscopy (LFM), and STM measurements on
freshly cleaved natural MoS2 to understand the transport
mechanism of the metal/MoS2 junctions and the influence of
defects. We show that subsurface metal-like defects induce a

negative ionization of the outermost S complex and dominate
the charge transport at the MoS2/metal interface. The
conductance of these defective regions is measured to be
orders of magnitude larger than that in the pristine regions.
Note here that the pristine regions should contain S-vacancies
due to their high density.20,24 Spatially resolved maps of the
Schottky barrier height reveal a decrease of the Schottky barrier
height at the defects, where the magnitude of the decrease
depends on the metal contact. We explain these results in terms
of Fermi level pinning. The defects display a much stronger
Fermi level pinning, the pinning factor is at least 3 times smaller
compared to that of the pristine regions. Our results are in line
with a recent theory61,66 on Fermi level pinning and provide
improved insight into the physics governing the charge
transport through MoS2/metal contacts.

2. RESULTS AND DISCUSSION

2.1. Characterization of MoS2 Defects. Topographic
AFM and lateral force images reveal a smooth and defect-free
MoS2 surface, see Figure 1a and its inset. However, this claim
cannot be made for the simultaneously recorded C-AFM
images when a positive sample bias (SB) is applied, using a
boron-doped diamond tip. C-AFM has been previously
demonstrated to be able to provide detailed information on
the nanoscopic conductance of 2D materials.36,41 Figure 1b
reveals an inhomogeneous surface covered with dark circular
depressions (with radii ranging from 3 to 4 nm), where higher
negative currents are recorded as compared to those of the
pristine surroundings. The density of the features varies
between 1010 cm−2 and 1011 cm−2, as measured at different
samples and at different locations. The features display a
contrast reversal when switching from positive to negative SB
(see Figure 1c), wherein both cases higher currents are
measured at these locations. The measured currents are
somewhat smaller when a negative SB is applied. Interestingly,
these features display higher current values at all SBs, indicative

Figure 1. (a) LFM image of the freshly cleaved MoS2 surface (650 × 650 nm2). Inset: the corresponding topography and (b) the simultaneously
recorded C-AFM image, SB is +0.5 V. (c) C-AFM image recorded at −0.5 V. (d) STM topography image (10 × 10 nm2) of a dark circular
depression recorded at −1.8 V and 0.4 nA. A low-pass filter has been applied. (e) STM image (3.6 × 3.6 nm2) of a S-vacancy in the outermost sulfur
layer. Set point −2.2 V, 1.4 nA. (f) C-AFM image (120 × 120 nm2) recorded at −0.9 V.
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of a lower local contact resistance. On the basis of the absence
of contrast in the topographic and LFM images and in line with
STM images recorded on the same sample, we conclude that
the observed features are electronic in nature, and they are
induced by subsurface defects or impurities. A high resolution
STM image is shown in Figure 1d, and it clearly demonstrates
that the features are indeed superimposed on the atomically
resolved MoS2 lattice. We note that large-scale STM images (an
example is shown in the Supporting Information) reveal an
average defect density of (0.8 ± 0.3) × 1011 cm−2, which is
similar to the defect density extracted from C-AFM images.
Additionally, S-vacancies, similar to the one shown in Figure 1e,
are found with a higher density across the surface, (0.7 ± 0.4) ×
1013 cm−2, in line with previous reported values (density of (1.2
± 0.4) × 1013 cm−2).20,26 The S-vacancies show a minor
influence (∼1 nm in radius) on their surroundings and thus
excludes them from being the cause of the dark/bright round
features that extend for over 5 nm, found in both the C-AFM
and STM measurements.
Interestingly, at higher negative SBs (SB < −0.9 V) a dark

ring is observed around the bright defects in the C-AFM
images, as can be seen in Figure 1f. Similar behavior was
previously reported for defects created by Ar ion bombard-
ment: The origin of this behavior was ascribed to a negative
ionization of the S atom complex (the sulfur atoms at the
vicinity of the defect) at the defect site.30 However, in this
study, the MoS2 surface was not irradiated by ions. The defects
that are found must be intrinsic for natural MoS2 because the
samples have not gone through any treatment prior to
scanning. Indeed, as has been previously reported, the surface
of natural MoS2 suffers from a high density of dark defects.23

The electron-depleted zone (dark ring) observed in both the
STM and AFM images is caused by Coulomb repulsion around
the negatively ionized S atoms or impurities. The electron-
depleted region appears dark in both the STM and AFM
images owing to local band bending or a screening effect.30,42

Therefore, based on Figure 1d−f, we argue that the ionization
of the S complex occurs due to metal-like defects or impurities
located below the outermost S layer. Both Mo-vacancies and
antisite (Mo-substitutional) defects occur subsurface without a
structural modification of the top S-layer.22,26,27,43 These

defects can act as donors or acceptors at different locations
near the surface. The dark defects measured in both C-AFM
and STM show strong similarities to structures observed in
other TMDCs when impurity atoms, such as Re, Na, and Li, are
present in the crystal.23,44,45 It has also been suggested that the
presence of dark defects could be induced by subsurface S
vacancies.46 This is at variance with our measurements because
of the 2 orders of magnitude difference in density between S-
vacancies and dark defects. In addition, a previous study on
WSe2 showed that one can map subsurface Se-vacancies by dI/
dV mapping of the surface. Their results revealed a clear
difference between subsurface Se-vacancies and dark defects.47

This suggests that subsurface Se-vacancies (or S-vacancies in
the case of MoS2) cannot be the cause of the large dark
features. Therefore, we suggest that the dark features are
induced most probably from Mo-vacancies or antisites. These
defects will hereby be referred to as metal-like defects.
Supporting evidence that the defects located in the Mo-plane

are obtained by C-AFM. First, from images similar to Figures
1b,c, we can see that even though the defects are dark
depressions at positive SB and bright protrusions at negative
SB, they have distinct current values that fall into two
categories. For example, when a SB of 0.5 V is applied, the
vast majority of defects fall into two categories: defects with
current amplitudes of ∼−100 pA, and defects with current
amplitudes of ∼−65 pA, see Figure 2a. We interpret this result
as follows: The first category reflects defects in the first MoS2
trilayer, whereas the second category is caused by defects in the
second MoS2 trilayer. These results suggest that the
conductance of MoS2 can be influenced by defects located in
the first two trilayers. Subsurface defects and impurities
corresponding to different surface layers have also been
identified and characterized in conventional semiconduc-
tors.48−51 Additional information regarding the nature of the
defects has been obtained by measuring the separation distance
between neighboring defects that fall in the same subcategory,
that is, the first trilayer. The histograms of the probability
distribution of the nearest neighbor and the next nearest
neighbor separation distance, as measured from Figure 1b,
show skewed distributions (as shown in Figure 2b). The
separation distance between the nearest neighboring defects is

Figure 2. (a) Current cross sections recorded with C-AFM at dark depressions induced by defects within the first (red) and second (black) trilayer,
respectively. Inset: C-AFM image indicating the defects where the cross sections were taken (40 × 40 nm2), SB is 0.5 V. (b) A histogram of the
probability distribution of the separation distance between nearest neighbor defects measured from Figure 1b. The median is ∼19 nm, and the
minimum separation distance is ∼8 nm. (c) The FFT spectra is created from Figure 1b by only considering the centers of the darker circular
depressions. The FFT reveals a hexagonal symmetry (red circles) with a periodicity of ∼19 nm. Besides, two somewhat stronger features are
observed (white circles) indicative of a linear arrangement of the defects.
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measured to be larger than 8 nm, hinting at a repulsive
interaction between defects. The histogram of the next-nearest
neighbor shows a shift of the peak of the distribution equal to
√3 × nn, where nn refers to the peak of the nearest neighbor
distribution probability. This is an indication of a dominant
sixfold symmetry. FFT performed on Figure 1b by only
considering the center of each defect reveal a hexagonal
symmetry (shown by the red circles in Figure 2c), with a
periodicity equal to the median (∼19 nm) of the nearest
neighbor distance of the probability distribution. This behavior
suggests that the defects are formed in the same plane and
strongly repel each other, resulting in the formation of a close-
packed arrangement. Because the MoS2 surface is not fully
packed by defects, our conclusion is only applicable to regions
with a high defect density. The FFT reveals also two strong
peaks with a larger periodicity (∼38 nm), marked with white
circles in Figure 2c. The observation of the two additional
strong spots within the hexagonal FFT pattern is indicative of
the presence of a one-dimensional striped phase that is
superimposed on the hexagonal ordering of the defects, see
Supporting Information. To summarize, the above observations
indicate that defects (or impurities) of the same charge located
in Mo planes (hereby referred to as metal-like defects) of the
first and second (and possibly deeper) MoS2 trilayers strongly
influence the conductance of MoS2.
2.2. Spatially Resolved Schottky Barrier Height of the

MoS2 Surface. To obtain quantitative information on the
electron transport at the metal/MoS2 interface, we have
performed C-AFM measurements using a highly doped
diamond tip with a work function of ∼5.1 eV and an electron
affinity of ∼0.02 eV.52 In contrast to STM measurements,
where a tunneling gap exists between the tip and the sample, in

C-AFM measurements, the tip is always in physical contact with
the sample. When the metal tip is in physical contact with the
2D semiconductor, a Schottky barrier (ϕB) is formed.
According to the Schottky−Mott rule, the Schottky barrier
height is given by the difference between the work function of
the metal (ϕM) and the electron affinity of the semiconductor
(χ)

ϕ ϕ χ= −B M (1)

The measured conductance depends on the contact between
the tip and the substrate. I(V) curves recorded on the MoS2
surface, see Figure 3a, exhibit nonlinear behavior, which is
characteristic for a metal/semiconductor junction. A clear
difference is observed between the I(V) curves recorded on a
pristine region and a defect. Especially at the forward bias
regime (SB > 0) of the spectrum, a much higher current is
measured at the same voltage for the defects compared to that
of the pristine MoS2 surface. This is in line with the C-AFM
images shown in Figure 1. The advantage of using a sharp AFM
tip as the metal electrode in the metal-semiconductor junction
is the ability to record individual I(V) curves at every point of
the surface with high spatial resolution. We have recorded I(V)
curves in a 128 × 128 grid. From these I(V) curves, it is
possible to make a current map at any voltage. Figure 3b shows
an example of a spatially resolved current map at 0.6 V (200 ×
200 nm2). A clear difference is observed between the subsurface
metal-like defects and the pristine MoS2 regions. The defects
occur as dark features, that is, higher negative currents are
measured corresponding to a higher conductance. To explain
the observed differences in the current map, the Schottky
barrier height is extracted from all of the individual I(V) curves.
Carrier transport across a Schottky barrier can be described by

Figure 3. (a) I(V) curves recorded with a doped diamond tip on the pristine MoS2 surface (red) and on a defect (black). The different symbols
represent different measurements. Inset: The corresponding semi logarithmic I(V) curves. (b) A spatially resolved current map (200 × 200 nm2)
obtained via 128 × 128 grid I(V) curves, recorded from −1.2 to 1.2 V. The map corresponds to a voltage of 0.6 V. The white arrow indicates a metal-
like defect located at the first trilayer, whereas the black arrow a metal-like defect located at the second trilayer. (c) The extracted Schottky barrier
height (ϕB) map of the surface obtained by the I(V) curves in (a). Significant variations are observed that are induced by subsurface defects. (d)
Cross sections of the ϕB taken above subsurface defects of the first (red) and second (black) MoS2 trilayers indicated with dashed white and black
circles in the inset. Inset: the corresponding ϕB map.
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using the thermionic emission model, wherein the thermionic
emission current I and the saturation current I0 are given by

η
= −

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥I I

qV
k T

exp 10
B (2)
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ϕ
= * −

⎛
⎝⎜

⎞
⎠⎟I AA T

q

k T
exp0

2 B

B (3)

where V is the applied bias voltage, T is the temperature (in this
study equal to room temperature), q is the electron charge, kB is
the Boltzmann constant, A* is the Richardson constant

* = π( )A emk
h

4 B
3 , and η is the ideality factor. A is the junction

area, that is, the tip contact area, calculated to be ∼3 nm2 for
the diamond tip under a load of ∼20 nN. The calculation is
based on the method described in ref 40. We note here that a
careful selection of the tip load is essential to establish a stable
and constant contact area across different regions of the
scanning area. The induced pressure should be kept at a
minimum to avoid any strain induced effects53−55 or even
irreversibly damaging the surface. High-resolution LFM images
recorded before and after such measurements reveal no
apparent differences, suggesting that the surface remains
undamaged (see Supporting Information). The ideality factor
is obtained from

η =
q

k T
V

I
d

d(ln )B (4)

and the Schottky barrier height (ϕB) is given by

ϕ = *⎛
⎝⎜

⎞
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k T
q

A AT
I

lnB
B

2

0 (5)

By applying the above mentioned equations on the recorded
I(V) curves, we find that the Schottky barrier height for
electron injection (hereby referred to as Schottky barrier
height) of the pristine regions is ∼0.53 eV. The ideality factor,
η, which is typically used to assess the deviation of the current
transport from ideal thermal emission, has a value that varies
between 2 and 4. We note that the fitting of the curves was
performed within the range 0.5−1.1 V, to avoid a contribution
from the MoS2 substrate resistance.56 Furthermore, in our
experimental structure, we have used a second large electrode
(see Supporting Information) to close the electrical circuit. The
large contact (graphite electrode) and the nanocontact (AFM
tip) to the MoS2 are typically described as two Schottky diodes
connected (reversely) in series.57 Because the tip-MoS2 contact
area is much smaller than the macroscopic contact (7−8 orders
of magnitude), the current blocked by the macroscopic contact
is negligible35,58 for the forward bias regime, and the tip/MoS2
contact dominates the charge transport. Therefore, even though
our setup is, in principle, a metal−semiconductor−metal
system, it can effectively be described as a metal−semi-
conductor junction, justifying the use of the above equations.
Figure 3c shows a spatially resolved ϕB map, in which every

point represents the measured Schottky barrier height. Large
inhomogeneities in the barrier height are observed. Interest-
ingly, the ϕB remains approximately constant at the pristine
locations, whereas directly above the metal-like defects (bright

Figure 4. (a) Schematic of a metal−semiconductor junction with a Schottky barrier including Fermi level pinning. (b) Cross section of the spatially
resolved ϕB map above a first trilayer subsurface defect, recorded with a PtSi tip. Inset: the corresponding ϕB map. (c) Cross section of the ϕB map
for a subsurface defect recorded with a n-doped Si tip. Inset: the corresponding ϕB map. (d) Schottky barrier height for the pristine MoS2 (blue) and
the defects (red) for various work functions of the tip (ϕM). The pinning factor S and the charge neutrality level (ϕCNL) are extracted using eq 6. The
dotted line is the standard Schottky−Mott rule (see eq 1).
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features in Figure 3b), a decrease of the barrier height of
approximately 30−50% is measured. A cross section of the
spatially resolved ϕB map is shown in Figure 3d. The cross
section (red curve) on top of a defect (see the inset of Figure
3d) shows a decrease of the Schottky barrier height by almost
40%. The corresponding ideality factor at the defects is
measured to be slightly larger at ∼5−6.
A closer look at Figure 3b,c reveals features showing up as a

third contrast with respect to the environment, which is
indicated by the black arrow in Figure 3b and marked with a
black dashed circle in Figure 3c. In line with the C-AFM images
of Figure 1, we attribute this faint contrast to Mo-plane based
defects located in the second MoS2 trilayer. The cross section
in Figure 3d (black curve) shows that the Schottky barrier
height decreases by approximately 10−15%, a value much lower
than the decrease (∼40%) induced by defects located in the
outermost trilayer. Therefore, defects located in the second
trilayer have a smaller influence on the Schottky barrier height
created between the metal tip and the MoS2 surface. The effect
is expected to vanish for defects located in deeper trilayers.
2.3. Fermi Level Pinning and the Role of Defects. The

predicted Schottky barrier height based on the Schottky−Mott
rule (eq 1) is 1 eV (based on ϕM = 5.1 eV52 and χMoS2 = 4.1
eV59,60), whereas the measured Schottky barrier height is ∼0.53
eV at the pristine MoS2 surface. Recent experimental20,61 and
theoretical studies60,62,63 have found a similar discrepancy.
According to these studies, the Fermi level is partly pinned as a
result of two interface effects: first, due to a metal work function
modification resulting from a dipole formation at the interface,
and second, by the introduction of gap states due to the weaker
Mo−S bonding induced by interface metal−S interactions at
the interface.62 To introduce Fermi level pinning into the
Schottky−Mott rule, a pinning factor (S) and a charge
neutrality level (ϕCNL) are added to eq 161,64,65

ϕ ϕ ϕ ϕ χ ϕ= − + − = +S S b( ) ( )B M CNL CNL M (6)

S is defined as S = dϕB/dϕM and can vary from 1 for an
unpinned interface to 0 for a strongly pinned interface. b is the
y-intercept of the ϕB versus ϕM graph, which is related to the
ϕCNL as

ϕ χ= +
−

b
S1CNL (7)

here, ϕCNL is the energy at which the interface is electroneutral
(see Figure 4a). In the case of S = 1, the Schottky−Mott limit is
recovered (see eq 1), whereas for S = 0, the Schottky barrier
height is independent of the metal work function, that is, ϕB =
ϕCNL − χ.
To experimentally characterize the pinning factor, S, and the

charge neutrality level, (ϕCNL), the dependence of the Schottky
barrier height on the work function of the metal tip should be
defined. Therefore, the measurements were repeated with two
other AFM tips, a PtSi (ϕM ≈ 4.9 eV, contact area 5.7 nm2) and
a highly n-type doped Si (ϕM ≈ 4.1−4.2 eV, contact area 1.5
nm2). For the PtSi tips, we have obtained similar results as with
the diamond tips. Figure 4b shows a cross section of a spatially
resolved work function map, wherein the map is shown in the
inset. The measured ϕB on the pristine MoS2 surface is ∼0.45
eV, which is lower than the barrier found with the doped
diamond tip this is attributed to the lower ϕM of the PtSi tip. A
decrease of approximately 25−35% is observed at the locations
of the defects. However, when the same experiment is repeated

with n-doped silicon tips (ϕM ≈ 4.1 eV), only a very small
difference is observed between the Schottky barrier heights of
the pristine MoS2 and the defects, see for example, the cross
section of Figure 4c and the spatially resolved Schottky barrier
height map (see inset of Figure 4c). Moreover, in both cases,
defects corresponding to the second trilayer do not show any
visible change of the Schottky barrier height, in contrast to the
observations made with the diamond tips. The latter is expected
because even the defects that are located in the first trilayer
display a smaller decrease of the Schottky barrier height.
The Schottky barrier heights extracted from the different

experiments are plotted as a function of the metal tip work
function in Figure 4d. The pinning factor and charge neutrality
level are extracted using eqs 6 and 7. The obtained values for S
are ∼0.3 and ∼0.1 for the pristine MoS2 surface and the metal-
like defects, respectively, whereas the ϕCNL is equal to 4.34 and
4.4 eV. The observed pinning factor of the pristine surface is
equal to the theoretically predicted value61,63,66 but is
significantly larger than the pinning factor found in other
experimental works (S ∼ 0.1).16,61,67 However, the measured
pinning factor that corresponds to defect sites matches well
with previous experimentally obtained values.16,61,67 We argue
that the strong Fermi level pinning and the unexpectedly low
Schottky barrier height observed in previous studies,16,20,61,68

wherein large metal contacts are used are a direct consequence
of the presence of metal-like defects and in particular of
subsurface defects located in the outermost Mo-plane of the
MoS2 trilayer. The fact that the pinning factor of the pristine
MoS2 surface matches very well with the expected theoretical
value, despite the presence of S-vacancies that are found at a
high density in our MoS2 samples (as well as in the literature),
is surprising. In these theoretical studies S-vacancies are
neglected, whereas our samples suffer from a high density of
S-vacancies. As we have shown, these vacancies do not induce
any significant changes in their surroundings, which is in sharp
contrast to the subsurface metal-like defects.
Initially, the low Schottky barrier height and the strong Fermi

level pinning observed in previous studies were attributed to
the presence of such S-vacancies. If this was true, we should
have observed a pinning factor equal to ∼0.1 across the whole
surface because of the high density of S-vacancies ((0.8 ± 0.3)
× 1013 cm−2). In contrast, however, the pinning factor is
measured to be ∼0.3 on the surface away from the bright/dark
subsurface defects. It is clear that the low pinning factor found
in previous studies originates from the presence of subsurface
defects. As we have shown in the previous section, these defects
are located at the Mo-plane of the first (and to some extent the
second) trilayer. It is therefore apparent that not S-vacancies of
the top S-layer but rather subsurface (Mo-plane located)
defects dominate the charge transport and are responsible for
the measured low Schottky barriers. Note also that even though
a clear difference is observed between the Fermi level pinning
strength of the pristine and the defected MoS2, the charge
neutrality levels are almost equal. In both cases, the Fermi level
pinning occurs just below the conduction band (<0.25 eV from
the conduction band). This suggests that the pinning energy
level is only slightly affected by the defect, despite the expected
different band structure. The precise origin of the observed
subsurface defects is currently unknown, and further studies
need to be undertaken. It is known that a Mo-vacancy, or a Mo-
replacement, or other intrinsic structural defects and impurities
in MoS2, can act as donors or acceptors at different locations at
or near the surface.22−24,27,32,69
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The low Schottky barrier height induced by the subsurface
defects can have a tremendous impact even at junctions with
large contact areas because the junction current will be
dominated by the current going through the defects, owing
to the lower contact resistance. Indeed, McDonnell et al.20

found in their calculations that the currents of defected MoS2
surfaces were several orders of magnitude higher than those for
pristine surfaces. The effect was sizable even when considering
very low (0.3%) defect concentrations.20 Furthermore, we
would like to stress that these findings could also be of
particular interest in nanoscale electronics, wherein the junction
contact area is of the order of a few nanometers. Large
conductance variations induced by metal-like subsurface MoS2
defects must be expected to play a prominent role in device
characteristics and predictability, in addition to the known
impact of surface reactions with the contact metal.70,71

3. CONCLUSIONS

In summary, we have studied, at the nanometer scale, the
underlying mechanisms that dominate the charge transport at
the MoS2/metal interface using C-AFM and STM. We have
explained the charge transport in terms of thermionic emission.
Spatially resolved Schottky barrier height maps reveal a
substantial conductivity difference between MoS2 with and
without subsurface metal-like defects that depend on the tip’s
work function. High work function tips show large spatial
variations that amount to ∼40%, whereas for low work function
tips the differences vanish. These observations are attributed to
Fermi level pinning, which is the strongest at defect locations.
We have also been able to determine the pinning factors and
the charge neutrality levels for both the pristine surface and
defects. The pinning factor is measured to be ∼0.3 for the
pristine surface and ∼0.1 for locations where metal-like defects
are found. The pristine surface pinning factor is equal to the
theoretically predicted value.61,63,66 Subsurface defects have a
lower pinning factor of ∼0.1 (thus stronger Fermi level
pinning), which concurs well with experimental values obtained
in previous studies wherein large metal contacts where
used.16,61,67 Our findings show that the charge transport at
the MoS2/metal interface is dominated by subsurface defects
that provide alternative low resistance conduction paths.
Therefore, considerable attention needs to be paid to control
the concentration and nature of defects. This provides
alternative routes for surface functionalization for device
applications.

4. METHODS
In this study, we use natural MoS2 samples obtained from HQ
graphene (Groningen, The Netherlands). The MoS2 samples were
mechanically cleaved and subsequently inserted into the AFM
environmental chamber. To avoid any discrepancies in the data
induced by water contamination, the AFM measurements were
performed in a N2 environment by continuously purging with N2 gas.
The samples were imaged in contact mode with an Agilent 5100
(Agilent) AFM using conductive AFM probes. LFM images can be
obtained simultaneously with topographic images by recording the
lateral torsion/deflection of the cantilever. For current imaging, the
conductive tip is grounded and a bias voltage is applied at the MoS2
substrate. We have performed experiments with highly boron-doped
diamond tips (AD-E-0.5-SS; Adama Innovations Ltd., resistivity:
0.003−0.005 Ω cm), PtSi tips (PtSi-Cont, Nanosensors), and highly n-
doped silicon tips (Hi’Res-C14/Cr-Au, MikroMasch, resistivity: 0.01−
0.025 Ω cm). The nominal spring constant of the diamond tips is 0.5
N/m, for the PtSi tips it is 0.3 N/m, and it is 5 N/m for the n-type Si

tips. The resonance frequency is 30, 15, and 160 kHz for the diamond,
PtSi, and n-type Si tips, respectively. STM and scanning tunneling
spectroscopy investigations were performed with an ultra-high vacuum
scanning tunneling microscope (Omicron) with chemically etched W
tips. The base pressure of the ultrahigh vacuum system was maintained
below 10−10 mbar.
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