
A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Shear bands as manifestation of a criticality in
yielding amorphous solids
Giorgio Parisia,1, Itamar Procacciab,1, Corrado Rainoneb, and Murari Singhb
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Amorphous solids increase their stress as a function of an applied
strain until a mechanical yield point whereupon the stress can-
not increase anymore, afterward exhibiting a steady state with a
constant mean stress. In stress-controlled experiments, the sys-
tem simply breaks when pushed beyond this mean stress. The
ubiquity of this phenomenon over a huge variety of amorphous
solids calls for a generic theory that is free of microscopic details.
Here, we offer such a theory: The mechanical yield is a ther-
modynamic phase transition, where yield occurs as a spinodal
phenomenon. At the spinodal point, there exists a divergent cor-
relation length that is associated with the system-spanning insta-
bilities (also known as shear bands), which are typical to the
mechanical yield. The theory, the order parameter used, and the
correlation functions that exhibit the divergent correlation length
are universal in nature and can be applied to any amorphous
solids that undergo mechanical yield.
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A solid, be it crystalline or amorphous, is operatively defined
as any material capable to respond elastically to an exter-

nally applied shear deformation (1). However, any solid mate-
rial, when subject to a large-enough shear strain, finally under-
goes a mechanical yield. Here, we focus on the mechanical yield
of amorphous materials, such as molecular and colloidal glasses,
foams, and granular matter. The phenomenology exhibited by
the yielding point within this vast class of materials, as reported
in countless strain-controlled simulations (2–8) and experiments
(9–11), shows a remarkable degree of universality, despite the
highly varied nature of the model systems involved. Among these
universal features is the presence, at the onset of flow at yield-
ing, of system-spanning excitations referred to as shear bands
(12, 13), wherein the shear strongly localizes, leaving the rest of
the material unperturbed. This phenomenon is of capital impor-
tance for engineering applications, because it is responsible for
the brittleness typical of glassy materials, in particular metallic
glasses (14), whose potential for practical use is stymied by their
tendency to shear band and fracture (13, 15, 16).

In athermal amorphous solids, the phenomenon has universal
features. For strains γ smaller than some critical value denoted
as γY , the stress in the material grows on the average when the
strain is increased. After yield, the stress cannot grow on the
average, no matter how much the strain is increased. The univer-
sality of the basic phenomenology of yielding begs a picture of
its characteristics in terms of a universal theory, in the sense that
such a theory should rely on a statistical–mechanical framework
and be independent of details, such as chemical composition and
production process of the material. This need was addressed in a
recent work (17), wherein building up from ideas first advanced
in ref. 18, there emerged a picture of mechanical yielding as a
first-order phenomenon [i.e., as a discontinuous phase transi-
tion in a suitable overlap order parameter Qab (defined in Eq.
1 below), which jumps from a value of order one to a value of
order zero as strain is increased above the yielding threshold γY ].
The physical meaning of this observation is that, before yielding,

the amorphous system was limited to a small patch in the con-
figuration space, very far from any kind of ergodicity. The yield-
ing transition is an opening of a much larger available configu-
ration space, whereupon the system is ergodized subject to the
constraint of constant mean stress. Within this framework, the
yielding transition is essentially envisioned as a spinodal point
(19) (i.e., the point where the metastable, high-Qab glassy patch
of available configurations becomes unstable with respect to a
new phase with low Qab) associated with an ergodized system in
the presence of disorder (20). A paradigmatic example of such
a spinodal is the mode coupling cross-over (12) characterized
by dynamical slowing down and heterogeneities, with behavior
that is characterized by a dynamical length scale, which can be
extracted from suitable multipoint correlators (12). According to
our picture, this kind of critical behavior should also be found
at the yielding transition, conditional that one is able to derive
the expression of the right correlator to measure. This sugges-
tion seems even more reasonable in light of a recent study (21),
wherein the similarity of shear bands with dynamical hetero-
geneities has been pointed out; also, some oscillatory shear sim-
ulations seem to indicate that a slowdown of the dynamics on
approaching yielding may indeed be present (22, 23). It is impor-
tant to stress here that the reason that a spinodal point can be
exposed and measured is that the glassy timescales and the ather-
mal conditions stabilize the metastable system until the spinodal
point is crossed and the system becomes unstable against con-
strained ergodization.

Within a generic statistical–mechanical theory, formulated in
terms of a suitable Gibbs free energy G[φ] (i.e., the free energy
for fixed order parameter φ), stable phases are identified with
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its points of minimum in φ, and phase transitions happen when
the curvature of these minima goes to zero, inducing a critical
behavior that manifests diverging susceptibilities–fluctuations,
critical slowing down of the dynamics, and growing correlation
lengths (24). At a spinodal point, for example, one such min-
imum becomes unstable and transforms into a saddle. In the
case of the order parameter Qab , the general form of the free
energy s[Qab ] had been already derived and studied (ref. 25 has
a review) in the context of the theory of replicas originally devel-
oped for the study of spin glasses, and its properties, at least at
mean field level, are well-known (we refer to refs. 18 and 26 for
the derivation of s[Qab ] in the specific case of mean field hard
spheres); the matrix of second derivatives (or using a more field-
theoretic terminology, the mass matrix) is not diagonal in the
base of Qab and after diagonalization, is found to have only three
distinct modes or masses (25). Of these masses, the most rele-
vant ones are the so-called replicon mode λR, which for exam-
ple, goes to zero at the newly proposed Gardner transition (27),
and the longitudinal mode λL, which is, instead, related to spin-
odal points (18, 19), such as our yielding transition. In SI Text,
we review briefly the background theory that is at the basis of
this approach.

In this paper, we build up from the results of ref. 17, and fol-
lowing the line of reasoning formulated above, we use the expres-
sion of the correlation function relative to the longitudinal mode
λL as it can be derived from the replicated field theory (25) to
reveal the critical features of the yielding transition. We measure
this correlator in numerical simulation and use it to expose the
critical properties of the yielding transition, showing how shear
bands manifest the diverging correlation length encoded in this
correlator. We show how the order parameter Qab and its asso-
ciated replicated field theory are thereby able to provide a uni-
fied and universal picture of the yielding transition in terms of
a spinodal point in the presence of disorder, with an associated
criticality.

Correlation Functions
The relevant order parameter for the problem at hand is the
overlap function Qab , which measures the distance between two
configurations a and b of the same system. Denoting the position
of the i th particle as rai in configuration a and rbi in configuration
b, we define

Qab ≡
1

N

N∑
i=1

θ(`− |rai − rbi |), [1]

where θ(x ) is the Heaviside step function, and ` is a constant
length, which is taken below to be 1/3 in Lennard–Jones units
(numerical details are given below). Thus, Qab = 1 for two iden-
tical configurations, and Qab = 0 when the distance between the
positions of all of the particles i in the two configurations exceeds
`. Based on the introductory discussion, we now derive an expres-
sion for the correlator associated with the longitudinal mode,
from whence one can extract the correlation length associated
with the onset of criticality at the yielding point and define an
associated susceptibility, which will shoot up as the yielding point
is approached. The first step is to “localize” the overlap function
and define the r -dependent quantity

Qab(r) ≡
N∑
i=1

θ(`− |rai − rbi |)δ(r− rai ). [2]

Next, as mentioned above, the expression for the longitudinal
correlator in terms of four-replica correlation functions can be
found by diagonalization of the correlation matrix Gab;cd , which
is defined as the inverse of the mass matrix Mab;cd of the repli-
cated field theory of the overlap order parameter Qab (25). The
derivation is a matter of standard diagonalization algebra, and

A

B

Fig. 1. The susceptibilities (A) χ
Γ2

and (B) χGR
as a function of γ for three

systems sizes available. Superimposed are the stress versus strain curves for
comparison. The color code is violet for N = 1,000, red for N = 4,000 and
green for N = 10,000.

therefore, we shall not report it here and refer to SI Text for the
details. The expression, used, for example, in refs. 28 and 29 in
the case of a model with spins on a lattice, reads for athermal
systems

GL(r) = 2GR(r)− Γ2(r), [3]

with the definitions

GR(r) ≡ 〈Qab(r)Qab(0)〉 − 2〈Qab(r)Qac(0)〉
+〈Qab(r)〉 〈Qcd(0)〉, [4]

Γ2(r) ≡ 〈Qab(r)Qab(0)〉 − 〈Qab(r)〉 〈Qab(0)〉. [5]

Here, angular brackets denote a thermal average in the thermal
case and an evaluation in an inherent state in the athermal case; an
(•) indicates an average over different samples of the glass. The
quantity GR(r) is the correlation function of the replicon mode
(25), and Γ2(r) is just the garden variety four-point correlator.

Using these definitions and taking Eq. 2 into account, the
quantities that we compute in numerical simulation, before tak-
ing the ensemble average, are (SI Text) (30)

Γ̃2(r) =

∑
i 6=j

(uab
i −Qab)(uab

j −Qab)δ(r− (rai − raj ))∑
i 6=j

δ(r− (rai − raj ))
[6]
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and

G̃R(r) =

∑
i 6=j

[uab
i uab

j − 2uab
i uac

j + Qab Qcd ]δ(r− (rai − raj ))∑
i 6=j

δ(r− (rai − raj ))

[7]

with

uab
i ≡ θ(`− |rai − rbi |). [8]

These four-replica objects can be computed for any quadruplet
of distinct replicas. The ensemble averaged correlation functions
are simply obtained as Γ2≡ Γ̃2 and GR ≡ G̃R (compare with SI
Text for a proof). We stress that one must keep the full space
dependence of the correlators in the definitions above, because
the introduction of shear breaks the rotational symmetry of the
glass samples, and therefore, the correlators are not just func-
tions of a distance r .

Numerics
To measure the quantities defined above, we performed molecu-
lar dynamics simulations of a Kob–Andersen 65–35% Lennard–
Jones Binary Mixture in 2d . We have three system sizes: N =
1,000, N = 4,000, and N = 10,000. We chose Q12 with `= 0.3
in Lennard-Jones units but verified that changes in ` leave the
emerging picture invariant.

Following the procedure reported in ref. 17, as a first step, we
prepared a glass by equilibrating the system at T = 0.4 and then
quenching it (the rate is 10−6) down to T = 1 · 10−6 into a glassy
configuration. The sample is then heated up again to T = 0.2,
and a starting configuration of particle positions is chosen at this
temperature. Note that, whereas at T = 0.4, equilibration is suf-
ficiently fast, at T = 0.2, the computation time is much shorter
than the relaxation time. The configuration is then assigned a
set of velocities randomly drawn from the Maxwell–Boltzmann
distribution at T = 0.2, and these different samples are then
quenched down to T = 0 at a rate of 0.1. This procedure can be
repeated any number of times (say 100 times), and it allows us to
get a sampling of the configurations, or replicas, inside one single
“glassy patch.” We then perform this procedure again, each time
using a different configuration from the parent melt at T = 0.4,
and in doing so, we get an ensemble of these glassy patches, each
of them representing a distinct glass sample. For each of these

Fig. 2. The function GR(x = 0, y;γ) for various values of γ from 5× 10−5 to
0.09405. Note the increase in the overall amplitude of the correlator as well
as the increase in the correlation length. The lines through the data are the
fit function 10.

A

B

C

Fig. 3. The γ dependence of the correlation length ξ(γ) (A), the ampli-
tude A(γ) (B), and the constant C(γ) (C) in the best fit to the function
GR(x = 0, y; γ) (compare with 10).

patches, we measure the four-replica correlators defined above
for any distinct quadruplet of replicas, averaging the result over
any possible permutations of the quadruplet to gain statistics
(29). The ensemble average is then performed by averaging the
result over all of the glass samples. To perform these measure-
ment, below, we use 100 patches for N = 1,000 (each with 100
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Fig. 4. Example of the spontaneous plastic event exhibiting a concatena-
tion of a series of Eshelby quadrupoles resulting in a correlated displace-
ment field with shear localization over a thin region, which is system-
spanning. (A) Direct numerical simulations. (B) Inserted line of Eshelby
quadrupoles.

configurations), 100 patches for N = 4,000 (each with 50 con-
figurations), and 50 patches for N = 10,000 (each with 50 con-
figurations). A strain γxy (denoted below as γ) is then applied
quasistatically to all configurations in all patches. In this proto-
col, after every step of increased strain, the system undergoes
energy gradient minimization to return to mechanical equilib-
rium. This procedure creates an ensemble of strained patches for
every value of the strain parameter γ, from whence we measure
again the above defined correlators, which then become func-
tions of the strain γ. This behavior is simply a consequence of the
response of the configurations [i.e., each position ri in the defini-
tions above becomes ri(γ)]. Thus, for example, GR(r) becomes
GR(r ; γ), etc. We are interested in the behavior of the correla-
tors as the yielding point γY is approached.

Results
We consider first the susceptibilities χGL

, χGR
and χΓ2

that can
be obtained from the correlators; for example,

χGL
(γ) ≡

∫
d2x GL(x , y ; γ). [9]

In Fig. 1, Upper, we show the susceptibility χΓ2
as a function

of γ for three system sizes at our disposal. Superimposed are
the stress versus strain curves obtained by averaging the indi-
vidual curves over all of the available configurations and glass
samples. One sees very clearly the singularity that develops near
the yield point as a function of the system size. In Fig. 1, Lower,
we show the susceptibility χGR

as a function of the strain γ, again
with the stress–strain curve superimposed for comparison. As we
expected, the susceptibilities show a distinct peak at the spinodal
point γY , wherein yielding occurs. Because χΓ2

is much smaller
in amplitude than χGR

, there is not much new information in
χGL

, which is ∼2χGR
.

More detailed information is provided by the full depen-
dence of the correlators on their arguments. To see most
clearly the change in the correlators as the spinodal point is
approached, it is best to consider, for example, the 1D func-
tion GR(x = 0, y ; γ), shown for N = 4,000 in Fig. 2. Similar
results for the other systems sizes are available in SI Text.
We note that the correlator changes in both amplitude and
extent when we approach the critical point. To quantify these
changes, we fit a three-parameter function to GR(x = 0, y) in
the form

GR(x = 0, y ; γ) ≈ C + A exp

(
−y

ξ

)
, [10]

where all of the fitting coefficients are functions of γ. In Fig. 3,
we present the γ dependence of the amplitude A(γ), the constant
C (γ), and the correlation length ξ(γ).

Fig. 5. (Upper) The order parameter Qab as a function of the strain γ super-
imposed on the stress versus strain curve. (Lower) The probability distribu-
tion function P(Qab) for different values of γ in the vicinity of the mechanical
yield value γY .
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It is interesting to notice that the constant C decreases with
the system size, presumably becoming irrelevant in the thermo-
dynamic limit. The amplitude A is still increasing with the sys-
tem size, and it is difficult to assert whether it converges or not.
However, we can safely conclude that the data present a strong
evidence for the increase in the correlation length; it is very likely
that it should diverge in the thermodynamic limit.

Relevant questions are whether one can define critical expo-
nents that can also be measured in experimental situations and
whether such exponents can be computed from theory, even on
the mean field level. Clearly, the standard thermal mean field
approach cannot be used, because averages here are computed
over replicas at T = 0, and fluctuations caused by quenched dis-
order are expected to dominate the thermal fluctuations that
stem only from the mother supercooled liquid from which the
replicas at T = 0 are created. Considerations of the effect of such
fluctuations are beyond the scope of this paper and will be dis-
cussed elsewhere.

Physical Interpretation
To conclude this paper, we present a physical interpretation
to these insights, connecting them to what is known about
the mechanical yield in athermal amorphous solids. The most
important characteristic of the mechanical yield in athermal
amorphous solids is the change from plastic responses that are
localized, typically in the form of Eshelby quadrupoles, to subex-
tensive plastic events that are system-spanning (31, 32). The
energy drops associated with the localized Eshelby quadrupoles
are system size-independent, scaling like N 0, where N is the total
number of particles in the system. Mechanical yield is associ-
ated with the spontaneous appearance of concatenated lines of
quadrupoles [in two dimensions or planes in three dimensions
(13, 15, 16)]. The latter are associated with energy drops that
are subextensive, scaling like N 1/3 in two dimensions. Impor-
tantly, the concatenated lines of quadrupoles change drastically
the displacement field associated with the plastic events. Each
quadrupole has an arm with a displacement field pointing out-
ward and an arm with the displacement field pointing inward.
When the quadrupole is isolated, the displacement field decays
algebraically to infinity. In contrast, when the quadrupoles are
organized in the line, there is a global connection between the
outgoing direction of one quadrupole and the incoming direc-
tion of the next, making the displacement field strongly local-
ized around the line of quadrupoles (or around a plane in three
dimensions), and all of the shear is there. This excitation is a
microscopic shear band. An example of the displacement field
associated with such a system-spanning event is shown in Fig.
4 (details are in ref. 13). The main point of this paper is that
the highly correlated phenomenon of such a shear band can only
occur when there exists a correlation length that approaches the
system size in magnitude. This length is the correlation length ξ
that is identified in this paper (compare with Fig. 3, Top).

To understand the relevance of the spinodal point for this sce-
nario, we provide two figures that were obtained in ref. 17. In
Fig. 5, Upper, one sees the order parameter Qab as a function of
γ superimposed on the stress versus strain curve of the system
under study. The point “yield” was obtained with the help of the
results shown in Fig. 5, Lower, in which the probability of observ-
ing Qab is plotted for values of γ around the mechanical yield
point γY . The yield itself is identified when the probability distri-
bution function has two peaks of the same height. The spinodal
point is at a slightly higher value of γ, where the peak occurring
around high values of Qab is about to disappear, with a charac-
teristic spinodal vanishing of the slope. This spinodal is occurring
in this system around γ= 0.1. Of course, in the thermodynamic
limit, the whole range of γ values where the exchange of stability
is occurring is becoming very narrow.

It is important to stress again that the ability to observe the
divergence of the susceptibility and the correlation length caused
by the spinodal phenomenon stems from the fact that we deal
with an athermal glassy system with typical relaxation times that
are immense. In a liquid system, the fluctuations would have
caused the system to make the transition before the spinodal
point is reached.

Conclusions
In conclusion, we have presented evidence that the yielding tran-
sition is a spinodal point with disorder characterized by a criti-
cality with features that can be picked up by suitable multipoint
correlators, with expression that can be obtained from replica
theory. The treatment presented here pertains to an athermal
setting, but an obvious direction for future research will be the
application of these ideas to thermal glasses under shear (21); in
the finite temperature case, the system will generally be able to
escape through thermal activation from the high-Qab minimum
before this has a chance to flatten and the relative susceptibility
to diverge. However, because the nucleation time will anyway be
fairly long, one should anyway be able to observe transient shear
bands/heterogeneities as long as the temperature is low enough
that nucleation does not take place until the system is close to the
spinodal, which interestingly, is precisely the behavior of tran-
sient shear bands as reported in ref. 21. In this thermal setting,
we expect that the study of the ideas presented in this paper will
have to proceed much as it does in the case of dynamical het-
erogeneities around the mode coupling cross-over, entailing, for
example, the definition and study of time-dependent multipoint
susceptibilities and correlators.
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