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We use a data-driven global stochastic epidemic model to ana-
lyze the spread of the Zika virus (ZIKV) in the Americas. The
model has high spatial and temporal resolution and integrates
real-world demographic, human mobility, socioeconomic, temper-
ature, and vector density data. We estimate that the first intro-
duction of ZIKV to Brazil likely occurred between August 2013
and April 2014 (90% credible interval). We provide simulated epi-
demic profiles of incident ZIKV infections for several countries in
the Americas through February 2017. The ZIKV epidemic is char-
acterized by slow growth and high spatial and seasonal hetero-
geneity, attributable to the dynamics of the mosquito vector and
to the characteristics and mobility of the human populations. We
project the expected timing and number of pregnancies infected
with ZIKV during the first trimester and provide estimates of
microcephaly cases assuming different levels of risk as reported in
empirical retrospective studies. Our approach represents a mod-
eling effort aimed at understanding the potential magnitude and
timing of the ZIKV epidemic and it can be potentially used as a
template for the analysis of future mosquito-borne epidemics.
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The Zika virus (ZIKV) is an RNA virus from the Flaviviridae
family, genus Flavivirus (1, 2), first isolated in the Zika Forest

of Uganda in 1947 (3). It generally results in a mild disease char-
acterized by low-grade fever, rash, and/or conjunctivitis, although
only ∼20% of those infected are symptomatic (4). Although
there have been instances of sexual and perinatal/vertical trans-
mission (5–12) and the potential for transmission by transfusion
is present (13), ZIKV spreads primarily through infected Aedes
mosquitoes (14, 15).

Until recently, ZIKV was considered a neglected tropical dis-
ease with only local outbreaks (4, 16–18). The association of
ZIKV with the reported microcephaly case clusters in Brazil dur-
ing 2015 (19) led the director-general of the WHO to declare on
February 1, 2016, a Public Health Emergency of International
Concern (PHEIC) (20) that lasted for nearly 10 mo. During this
period, ZIKV spread throughout the Americas, with 47 coun-
tries and territories in the region reporting autochthonous trans-
mission (21, 22). Many other countries with ZIKV outbreaks
besides Brazil have reported cases of microcephaly and other
birth defects associated with ZIKV infection during pregnancy
(Zika congenital syndrome) (23), and the epidemic has been
under close scrutiny by all of the major public health agencies
around the world.

Although enhanced surveillance and new data have improved
our understanding of ZIKV (24–29), many unknowns persist.
There is uncertainty surrounding the time of introduction of the
virus to the region, although epidemiological and genetic find-
ings estimate that ZIKV arrived in Brazil between May and
December 2013 (nextstrain.org/zika; ref. 30). Furthermore,
although mathematical and computational models have tackled
the characterization of the transmissibility and potential burden
of ZIKV (31–35), little is known about the global spread of the
virus in 2014 and 2015, before the WHO’s alert in early 2016.

Using a data-driven stochastic and spatial epidemic model, we
present numerical results providing insight into the first introduc-
tion in the region and the epidemic dynamics across the Ameri-
cas. We use the model to analyze the spatiotemporal spread and
magnitude of the epidemic in the Americas through to February
2017, accounting for seasonal environmental factors and detailed
population data. We also provide projections of the number of
pregnancies infected with ZIKV during the first trimester, along
with estimates for the number of microcephaly cases per country
using three different levels of risk based on empirical retrospec-
tive studies (36, 37).

Results
Introduction of ZIKV to the Americas. We identify 12 major trans-
portation hubs in areas related to major events held in Brazil,
such as the Soccer Confederations Cup in June 2013 and the
Soccer World Cup in June 2014 and assumed a prior probability
of introduction proportional to the daily passenger flow to each
hub. We then consider introduction dates between April 2013
and June 2014, including the time frame suggested by phyloge-
netic and molecular clock analyses (nextstrain.org/zika; ref. 30)
through to the 2014 Soccer World Cup. Using Latin square sam-
pling over the two-dimensional space (date–location), we calcu-
lated the likelihood of replicating the observed epidemic peak
in Colombia (±1 wk), as reported by Colombia’s National Insti-
tute of Health (38), and the resulting posterior density of each
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Fig. 1. Posterior distribution for ZIKV introductions in 12 major transportation hubs in Brazil between April 2013 and June 2014, incorporating the
likelihood of replicating the observed epidemic peak in Colombia. (A) Full posterior distribution as a function of location and time of introduction.
(B) Marginal posterior distribution for time (month) of introduction. (C) Marginal posterior distribution for location of introduction.

location and date combination. The Colombian epidemic was
used to calibrate this analysis because of the large number of
cases observed and overall consistency in reporting.

In Fig. 1A we plot the posterior distribution as a function of
introduction date and location, and in Fig. 1 B and C we plot

the marginal posterior distributions of introduction date and loca-
tion separately. The largest posterior density is associated with an
introduction in Rio de Janeiro in December 2013. The 90% cred-
ible interval for the most likely date extends from August 2013 to
April 2014, with the mode in December 2013, in agreement with

Zhang et al. PNAS | Published online April 25, 2017 | E4335



phylogenetic and molecular clock analyses (nextstrain.org/zika;
ref. 30). The most likely locations of ZIKV introduction, in
descending order, are Rio de Janeiro (southeast), Brasilia (cen-
tral), Fortaleza (northeast), and Salvador (northeast). Although
Rio de Janeiro experiences the greatest passenger flow, the city
also experiences more seasonality in mosquito density, making its
likelihood to seed an epidemic sensitive to introduction date. The
cities located in the northeast of Brazil have lower passenger flow
compared with Rio de Janeiro but have higher mosquito density
and dengue virus (DENV) transmission all year round. Brasilia, in
comparison, has little seasonality in terms of mosquito density and
high traffic flow, although the area has low DENV transmission.

Spatiotemporal ZIKV Spread. Stochastic realizations reproducing
the observed peak in Colombia define the model output used
to provide the spatiotemporal pattern of ZIKV spread in the
Americas through to February 2017. In Fig. 2 we plot the sim-
ulated epidemic profiles of incident ZIKV infections for several
countries in the region, and in Table 1 we report the associated
infection attack rates (ARs) through to February 1, 2016, when
the WHO declared a PHEIC, and through to February 28, 2017.
In SI Appendix we report maps with the cumulative number of
cases at the scale of 1 km × 1 km. The infection AR is defined as
the ratio between the cumulative number of new infections (both
symptomatic and asymptomatic) during the period of consider-
ation and the total population of a given region. Estimates for
additional countries in the Americas are provided in a publicly

Fig. 2. Estimated daily number of new ZIKV infections (per 1,000 people) in eight affected countries in the Americas between January 2014 and February
2017. The bold line and shaded area refer to the estimated median number of infections and 95% CI of the model projections. Rates include asymptomatic
infections. The median incidence is calculated each week from the stochastic ensemble output of the model and may not be representative of specific
epidemic realizations. Thin lines represent a sample of specific realizations. Note that the scales on the y axes of the subplots vary. *Puerto Rico curves are
constrained under the condition that the peak of incidence curve is after March 1, 2016, based on the surveillance reports (72).

available database (www.zika-model.org). The earliest epidemic
is observed in Brazil, followed by Haiti, Honduras, Venezuela,
and Colombia. The model indicates that the epidemics in most
countries decline after July 2016, a finding supported by epidemi-
ological surveillance in the region. The decline of the epidemic
is mostly due to the fact that large outbreaks greatly deplete the
pool of susceptible individuals who can be exposed to the dis-
ease. In some countries (for instance, Puerto Rico) the seasonal
variation plays a role in the quick decline of the epidemic; how-
ever, the first wave is generally the most important in terms of
magnitude. Although the model projects activity in many places
throughout the Americas in 2017, the incidence is extremely
small compared with the cumulative incidence of 2015/2016.

National infection ARs are projected to be high in Haiti,
Honduras, and Puerto Rico. Countries with larger populations
and more heterogeneity in mosquito density and vector-borne
disease transmission, such as Mexico and Colombia, experience
much lower infection ARs. For example, nearly half of Colom-
bia’s population resides in areas of high altitude where sus-
tained vector-borne ZIKV transmission is not possible. Due to
the model’s fine spatial and temporal resolution, we are able
to observe significant variability in the ZIKV basic reproductive
number R0 across locations, and even within the same location
at different times. These differences are driven by temperature,
the vector distribution, and socioeconomic factors, among other
variables (additional details are provided in Materials and Meth-
ods). In Fig. 3 we plot R0 in a number of areas at different
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Table 1. Projected ZIKV infection ARs through the time of the WHO declaration of a PHEIC on February 1, 2016, and through February
28, 2017, in eight affected countries in the Americas

Infection AR % Cumulative microcephaly cases (median with 95% CI)

(median with 95% CI) First-trimester risk: 0.95% First-trimester risk: 2.19% First-trimester risk: 4.52%

Feb. 1, 2016 Feb. 28, 2017 Feb. 1, 2016 Dec. 10, 2017 Feb. 1, 2016 Dec. 10, 2017 Feb. 1, 2016 Dec. 10, 2017

Brazil 16 [13 to 18] 18 [16 to 19] 839 [138 to 1,140] 1,297 [1,190 to 1,428] 1,934 [318 to 2,628] 2,991 [2,744 to 3,291] 3,992 [656 to 5,424] 6,173 [5,664 to 6,792]
Colombia 4 [3 to 7] 12 [11 to 14] 0 [0 to 4] 219 [194 to 248] 0 [0 to 10] 504 [447 to 572] 1 [0 to 20] 1,041 [922 to 1,180]
Mexico 1 [0 to 2] 5 [4 to 6] 0 [0 to 2] 314 [226 to 367] 0 [0 to 5] 723 [522 to 845] 1 [0 to 11] 1,493 [1,077 to 1,744]
Puerto Rico* 2 [0 to 7] 20 [13 to 28] 0 [0 to 0] 19 [13 to 26] 0 [0 to 0] 43 [29 to 60] 0 [0 to 0] 88 [60 to 124]
El Salvador 1 [0 to 13] 16 [13 to 18] 0 [0 to 0] 39 [32 to 47] 0 [0 to 0] 91 [75 to 108] 0 [0 to 1] 187 [154 to 223]
Honduras 8 [0 to 28] 35 [30 to 39] 0 [0 to 1] 144 [124 to 163] 0 [0 to 3] 332 [286 to 376] 0 [0 to 7] 686 [590 to 775]
Haiti 43 [1 to 54] 49 [43 to 55] 0 [0 to 54] 316 [276 to 357] 0 [0 to 124] 728 [637 to 824] 0 [0 to 256] 1,502 [1,315 to 1,700]
Venezuela 13 [5 to 19] 19 [16 to 21] 2 [0 to 96] 271 [237 to 308] 5 [0 to 221] 624 [546 to 711] 9 [0 to 456] 1,288 [1,127 to 1,468]

Median estimates and 95% CIs are provided. ZIKV ARs include asymptomatic infections. The denominator is the entire population of the country, including regions not exposed to the vector.
Cumulative microcephaly cases due to ZIKV infection during the first trimester of pregnancy through the time of the WHO declaration of a PHEIC on February 1, 2016, and through December 10,
2017, in eight affected countries in the Americas. We consider three different risks of microcephaly associated with ZIKV infection during the first trimester: 0.95% first-trimester risk based on a study
of the 2013–2014 French Polynesian outbreak (36) and 2.19% (100% overreporting) and 4.52% (no overreporting) first-trimester risks, based on a study of Bahia, Brazil (37), given a model-estimated
31% infection AR in Bahia.
*Puerto Rico curves constrained under the condition that the peak of ZIKV incidence curve is after March 1, 2016, based on surveillance data (72).

times throughout the year. Equatorial regions experience less
seasonality than nonequatorial regions, where changes in tem-
perature have a strong impact on the mosquito population, and
thus R0. Large areas with unexposed populations are visible,
such as in high-altitude regions of Colombia. It is also worth
remarking that maximum R0 is not the sole determinant of the
epidemic magnitude, because seasonality patterns and a small
fraction of exposed individuals may not allow large outbreaks to
occur.

Projected ZIKV Infections in Childbearing Women and Microcephaly
Cases. Using the epidemic profiles generated by the model
we project the number of ZIKV infections in childbearing
women following the model proposed in the study of ZIKV–
microcephaly association for the 2013–2014 French Polynesia

Fig. 3. Monthly seasonality for the time- and
location-dependent basic reproductive number, R0.
The equatorial regions display less seasonality than
the nonequatorial regions, where the changes of
the season have a strong impact on the temper-
ature and consequently on the basic reproductive
number, R0.

outbreak (36). In Fig. 4 we plot the daily number of births
through December 2017 from women infected with ZIKV dur-
ing their first trimester of pregnancy in several countries. Indeed,
the first trimester of pregnancy is when the risk of microcephaly
is the highest (36, 37, 39). The curves closely resemble the epi-
demic profiles in Fig. 2 but shifted forward in time by about
40 wk. We construct our estimates using country-specific birth
rates, as detailed in SI Appendix, section 4.

To estimate the number of microcephaly cases we adopt three
different probabilities, as reported in two empirical retrospec-
tives studies (36, 37). The first estimate of microcephaly risk for
ZIKV infected pregnancies is 0.95% (95% confidence interval
(CI) [0.34 to 1.91%]), from a study in French Polynesia (36). The
remaining two estimates come from a study performed in Bahia,
Brazil (37). Given an overall ZIKV infection AR of 31% (95%
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Fig. 4. Estimated daily number of births
between October 2014 and December 2017
from women infected with ZIKV during the first
trimester of pregnancy in eight affected coun-
tries in the Americas. The bold line and shaded
area refer to the estimated median number of
births and 95% CI of the model projections,
respectively. Note that Brazil is plotted on a dif-
ferent scale. The median curve is calculated each
week from the stochastic ensemble output of
the model and may not be representative of spe-
cific epidemic realizations. Thin lines represent a
sample of specific realizations.

CI [26 to 36%]) in Bahia through February 2016, as determined
by our model, the estimated first trimester microcephaly risks
are 2.19% (95% CI [1.98 to 2.41%]), assuming 100% overreport-
ing of microcephaly cases, and 4.52% (95% CI [4.10 to 4.96%]),
assuming no overreporting. These estimates do not account
for miscarriages or other complications that may occur during
pregnancy.

In Table 1 we report the projected cumulative number of
microcephaly cases up to February 1, 2016, and December 10,
2017. By the time the WHO declared a PHEIC, Brazil was
the only country with a substantial (>100) number of ZIKV-
attributable microcephaly cases, with cases expected to appear
through July 2017. For Colombia, the model projects a consider-
able number of new microcephaly cases until March–April 2017.
In Venezuela, the peak in microcephaly cases was projected to
start in September/October 2016, continuing through February
2017. In Puerto Rico, microcephaly cases were expected to occur
mostly from December 2016 to April 2017. It is important to
remark, however, that the microcephaly incidence tail extends
for most of the countries up to July/August 2017. Along with the
microcephaly risk, other birth defects and pregnancy complica-
tions are associated with ZIKV infection during pregnancy (36,
37, 39). Although we do not explicitly tabulate here specific pro-
jections, they can be calculated from our model by applying the
estimated risk for any other complication to our daily number of
births from women infected with ZIKV.

Sensitivity to Mosquito Vector. Simulations reported here con-
sider both Aedes aegypti and Aedes albopictus as competent ZIKV
vectors, although less is known about the vectorial capacity of
A. albopictus. A sensitivity analysis considering A. aegypti as the
only competent vector is provided in SI Appendix with all figures
and tables replicated for this scenario. Overall, results are simi-
lar because transmission due to A. aegypti increases to compen-
sate for the absence of the other vector. Differences in the infec-
tion ARs, however, are observed in areas where A. albopictus
is the most common or the only vector. For example, the infec-
tion AR in Brazil up to February 28, 2017, decreases from 18%
(95% CI [16 to 19%]) to 16% (95% CI [14 to 17%]) if we con-
sider only A. aegypti. During the same time period, the infec-
tion AR in Mexico decreases from 5% (95% CI [4 to 6%]) to
4% (95% CI [2 to 5%]). A more thorough analysis of the differ-
ences between the two scenarios is reported in SI Appendix. At
the country scale, in Brazil and other key countries those differ-
ences seem small because A. aegypti and A. albopictus have very
similar presence. However, we see noticeable differences in the

infection AR as soon as the country extends to north and south of
the equator and we look at specific geographical areas where only
A. albopictus are present.

Model Validation. Our results have been validated comparing our
projections with surveillance data that were not directly used
to calibrate the model: the number of ZIKV infections by states
in Colombia, the weekly counts of microcephaly cases reported
in Brazil, and the number of importations of ZIKV infections in
the continental United States (USA), as shown in Fig. 5. In Fig.
5A we compare model-based projections of the number of ZIKV
infections for states in Colombia with observed surveillance
data through October 1, 2016 (38). As expected for a typically
asymptomatic or mild disease, the model projects a much larger
number of infections than that captured by surveillance, suggest-
ing a reporting and detection rate of 1.02%± 0.93% (from lin-
ear regression analysis). However, the observed data and model
estimates are well-correlated (Pearson’s r =0.68, P < 0.0001),
replicating the often several-orders-of-magnitude difference in
infection burden across states within the same country.

In Fig. 5B we compare observed data on weekly counts of
microcephaly cases reported in Brazil through April 30, 2016
(40) with estimates from the model for each projected level of
microcephaly risk given first-trimester ZIKV infection. The three
model projection curves vary in magnitude but replicate peaks
consistent with the observed data. Because the fraction of cases
confirmed in Brazil is relatively low, it is not possible to identify
the most likely level of risk, although the figure suggests that the
risk might exceed the lowest estimate of 0.95% (36).

Because the computational approach explicitly simulates
the number of daily airline passengers traveling globally, the
microsimulations allow us to track ZIKV infections imported
into countries with no autochthonous transmission. In Fig. 5C
we plot the number of importations into states in the USA
through October 5, 2016, as reported by the CDC (41) and com-
pare these results with model projections. Because the detec-
tion rate of ZIKV infections is very low, there are significantly
fewer reported cases than projected; we estimate through a lin-
ear regression fit that 5.74%± 1.46% of both symptomatic and
asymptomatic imported infections are detected. Nonetheless,
model projections are highly correlated with the observed data
(Pearson’s r =0.93, P < 0.0001), as shown in Fig. 5C, Inset. A
further validation of the model is provided by the reported num-
ber of ZIKV cases of pregnant women in the USA. A high
detection rate is expected in this closely monitored population.
As of September 29, 2016, 837 pregnant women in the USA
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Fig. 5. (A) Correlation between the number of ZIKV cases by state in Colombia as reported by surveillance data through October 1, 2016 (38), compared
with state-level model projections of infections (median with 95% CI). Pearson’s r correlation coefficient is reported for the linear association on the log
scale. The outlier (in dark green) excluded from the statistical analysis corresponds to the Arauca region. (B) Timeline of microcephaly cases in Brazil through
April 30, 2016. Bar plots show weekly definite (or highly probable cases) and moderately (or somewhat probable cases) from surveillance data (40). Line plots
indicate estimated weekly new microcephaly cases given three levels of first trimester risk: 4.52% (circles) (37), 2.19% (squares) (37), and 0.95% (diamonds)
(36). (C) Bar plot of ZIKV infections imported into the USA by state(s) as reported by CDC surveillance through October 5, 2016 (41), and compared to
model projections (median with 95% CI) for the same period assuming 5.74% reporting/detection. (Inset) The correlation between CDC surveillance data
and model projections (median with 95% CI).

were laboratory-confirmed for ZIKV, all of whom were imported
cases. Because pregnant women comprise ∼1% of incoming air-
line traffic flow from the rest of the Americas (42), one can
roughly estimate 83,700 infections. Although this is a rough
estimate, because of fluctuations in pregnant women traffic flow
and testing rates, it is in the ballpark of our modeling results pro-
jecting 57,910 (95% CI [50, 138 to 66, 608]) infections imported
into the USA by early October 2016. These results are relevant
for ZIKV risk assessment in the USA (43, 44). In SI Appendix we
provide additional validation tests by looking at case reporting in
Brazil at the state level, and the detection of travel related cases
in European countries.

Discussion
We use computational modeling to reconstruct the past and
project the future spatiotemporal spread of ZIKV in the Amer-
icas. To identify the likely date and location of ZIKV’s first
introduction to the Americas, posterior densities are estimated
for 12 major travel hubs in Brazil over a range of dates. The
marginal posterior distributions suggest an introduction between
August 2013 and April 2014 in a number of potential locations,
including Rio de Janeiro, Brasilia, Fortaleza, and Salvador. This
date range overlaps with that suggested by a recent phyloge-
netic analysis (nextstrain.org/zika; ref. 30), although our estimate
also includes later potential introductions. The model seems to

rule out an introduction concurrent to the Soccer World Cup in
June 2014.

The model is able to generate epidemic curves in time for inci-
dent ZIKV cases for about two dozen countries in the Americas.
Although for the sake of space we report on only eight countries,
the full database is publicly available (www.zika-model.org). The
results obtained are in good agreement with model-based projec-
tions achieved with a different approach developed by Perkins
et al. (32) using location-specific epidemic ARs on highly spa-
tially resolved human demographic projections. Although the
approach of Perkins et al. (32) does not provide information on
the dynamic of the epidemic, it estimates ZIKV infections in the
first-wave epidemic in the most-affected countries such as Brazil
and Colombia, where the approach projects a median infection
AR of 19 and 14%, respectively, which falls within the CI of the
results provided here.

Although the initial introduction of ZIKV could date back to
August 2013, most countries did not experience the first wave of
the epidemic until the early months of 2016. Brazil is the only
country that seems to have a well-defined first peak in March
2015, consistent with reports from the northeast region (45). The
model suggests two epidemic waves in Brazil. The first wave,
occurring between January and July 2015, corresponds to early
outbreaks in the northeast region (Maranhao, Bahia, and Rio
Grande do Norte) and later on in the rest of the country. This

Zhang et al. PNAS | Published online April 25, 2017 | E4339

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1620161114/-/DCSupplemental/pnas.1620161114.sapp.pdf
http://nextstrain.org/zika
http://www.zika-model.org


first wave was not recognized as ZIKV until early 2016. The sec-
ond wave, between January and May 2016, affected mostly south-
ern states in Brazil (46). This progression of the epidemic is in
agreement with the reconstruction of the movement of ZIKV in
Brazil using confirmed cases at the municipal level (33).

The virus also circulated early on in the Caribbean, with ZIKV
samples isolated in Haiti at the end of 2014, and a possible
first peak occurred in October 2015 (47). Colombia first isolated
ZIKV in October 2015, at which time it spread rapidly from the
Caribbean coast to cities infested with A. aegypti (48). The model
suggests an introduction to Colombia as early as March–April
2015, potentially overlapping with the Easter holiday, which is
a period of high mobility within and between countries in the
region. ZIKV transmission in Venezuela follows a similar trajec-
tory, first isolated in November 2015 and present in all states by
July 2016 (49). Since March 2016, reported cases have declined
in both countries, consistent with our model estimates.

Our model estimates ZIKV transmission in El Salvador and
Honduras increasing around July 2015. ZIKV was first detected
in El Salvador in November 2015 and in Honduras in December
2015 (50, 51). Although the first ZIKV infection was confirmed in
Puerto Rico in the last week of December 2015 (52), the model
estimates ZIKV transmission in Puerto Rico beginning around
August 2015. In Mexico, the first infection was reported to the
surveillance system at the end of November 2015 (53), although
circulation may have begun in September 2015.

The epidemic has moved slowly and is mostly constrained by
seasonality in ZIKV transmissibility. Seasonal drivers and time
of introduction result in multiple waves (54) across several coun-
tries, as projected for Brazil, Honduras, and Mexico. To show the
importance of the seasonal drivers in shaping the epidemic, we
report in SI Appendix the analysis of two counterfactual scenar-
ios in which we eliminate the differences in the seasonal drivers
across the region. This analysis clearly shows that ignoring the
spatial variation of seasonal drivers gives rise to unrealistic pat-
terns incompatible with the observed data.

Another relevant result of the model is that incidence rates
dramatically decrease in all considered countries by the end
of 2016. The drop in incidence in the model is largely due to
the epidemic’s depleting the susceptible pool. This implies that
ZIKV epidemics could settle into the typical seasonal pattern
of mosquito-borne diseases such as DENV. Transmission may
be low for several years with a gradual buildup in susceptibil-
ity due to births (55). In the real world, however, other factors
such as vector control and/or specific local weather conditions
could have contributed to the drop of incidence along with herd
immunity. Because these factors might change in the future, sub-
sequent epidemic waves may occur. Precise projection of long-

Fig. 6. Schematic representation of the integration of data layers and the computational flow chart defining the GLEAM model for ZIKV.

term ZIKV transmission is crucial to plan for future Zika control
activities and for finding sites for phase-III Zika vaccine trials.
This is a topic for future research.

Another prominent feature emerging from the numerical
results is the extreme heterogeneity in the infection ARs across
countries. We find more than a sevenfold difference between
Honduras and Mexico, exhibiting infection ARs of 35% (95%
CI [30 to 39%]) and 5% (95% CI [4 to 6%]), respectively. These
large differences in infection ARs, which are also observable at
finer geographical resolutions, stem from variation in climatic
factors, mosquito densities, and socioeconomic factors.

We project the numbers of births from women who were
infected with ZIKV during the first trimester of their pregnancy.
There is a well-defined time lag between the epidemic curve and
this birth curve. Brazil, which likely experienced its first ZIKV
epidemic peak in March 2015, had a sharp rise in microcephaly
cases in September 2015, consistent with what was observed in
the field (40). In Colombia 132 confirmed cases of congenital
Zika syndrome had been observed as of March 11, 2017 (56).
However, at the same date, 538 additional cases are under study,
thus not yet allowing a risk factor estimate from the model.
Note that the projected number of microcephaly cases estimated
by the model varies considerably depending on the assumed
first-trimester risk, for which only retrospective estimates are
available (36, 37). We also note that with as many as 80% of
ZIKV infections being asymptomatic (4, 39), most of ZIKV-
infected pregnant women giving birth may not have experienced
symptoms during pregnancy. Thus, clinicians should be cautious
before ruling out ZIKV as the cause of birth defects. The results
presented here, however, could be used as a baseline to uncover
possible disagreement with the observed data and highlight the
need for additional key evidence to enhance our understanding
of the link between ZIKV and birth defects (57).

Available data on the ZIKV epidemic suffer from several
limitations. Although the disease has likely been spreading in
the Americas since late 2013, infection detection and report-
ing began much later and likely increased after the WHO’s
declaration of a PHEIC in February 2016. Case reporting is
inconsistent across countries. Furthermore, comparatively few
infections are laboratory-confirmed; this presents an additional
challenge because symptomatic cases with other etiologies
may be misdiagnosed, and asymptomatic infections are almost
entirely missed. Once a reliable ZIKV antibody test is avail-
able, seroprevalence studies can help determine the full extent of
these outbreaks. For external validation, we compare modeling
results with data from Brazil, Colombia, and the USA that were
not used to calibrate the model. We are able to replicate rel-
ative trends, although we estimate significantly higher absolute
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numbers, suggesting reporting and detection rates ranging from
1% to about 6% depending on the country.

The modeling approach presented here is motivated by the
need for a rapid assessment of the ZIKV epidemic, and it con-
tains assumptions and approximations unavoidable due to the
sparsity of available data. As a result, transmission is modeled
assuming ZIKV behaves similarly to DENV and other mosquito-
borne diseases. This includes the use of some expressions for
temperature dependence of transmissibility that are modeled on
DENV data. Although this assumption is plausible, more data
specific to ZIKV are certainly needed. The model has been cal-
ibrated by using data from French Polynesia and the observed
epidemic peak in Colombia (± 1 wk), as reported by Colombia’s
National Institute of Health (38); further research is needed to
provide ZIKV-specific parameter estimates and more accurate
local calibrations. Mosquito presence/absence maps are available
from published data but have limitations as detailed in the litera-
ture (32, 34, 58). Sexual and other modes of transmission are not
incorporated in the model. The sexual component of the trans-
mission, however, might acquire relevance in areas where the
mosquito-borne transmission has a small reproductive number
and low incidence (9–12, 59). The specific socioeconomic fea-
tures of airline travelers are also not included. Finally, we do not
model public health interventions to control the vector popula-
tion or behavioral changes due to increased awareness. These
results may change as more information becomes available from
ZIKV-affected regions to refine the calibration of the model.

Conclusions
The model presented here provides a methodological frame-
work for the analysis of the global spread of ZIKV. The model
captures the slow dynamic of the epidemic characterized by
heterogeneity in the infection AR as well as the temporal
pattern resulting from local weather, population-level character-
istics, and human mobility:

• The model yields a probability distribution for the time and
place of introduction of ZIKV in Brazil, generating a compre-
hensive picture of the past dynamics of the epidemic.

• The numerical simulations allow estimates of the spatiotem-
poral spread of ZIKV in the Americas through February 2017.
In particular, it provides estimates for the infection ARs and
epidemic timing in ZIKV affected countries.

• The integration of airline travel data allows the explicit esti-
mation of the number of travel-related cases into the USA
and other countries.

• The model allows estimation of the number of newborns
from women infected by ZIKV during the first trimester of
pregnancy and the potential number of microcephaly cases
through 2017 assuming different levels of risk. These projec-
tions could be checked against observed data in the future.

Although the modeling results should be interpreted cau-
tiously in light of the assumptions and limitations inherent to the
approach, the framework emerging from the numerical results
may help in the interpretation of observed surveillance data and
provide indications for the magnitude and timing of the epi-
demic, as well as aid in planning for international and local out-
break response, and for the planning of phase-III ZIKV vaccine
trial sites. The study presented here also provides a computa-
tional modeling framework that can potentially be generalized
to other Aedes-transmitted vector-borne diseases, such as dengue
and chikungunya.

Materials and Methods
Model Summary. To study spatiotemporal ZIKV spread, we use the Global
Epidemic and Mobility Model (GLEAM), a previously described individual-
based, stochastic, and spatial epidemic model (60–65). This model integrates
high-resolution demographic, human mobility, socioeconomic (gecon.yale.
edu), and temperature data (climate.geog.udel.edu/∼climate/html pages/
Global2011/GlobalTsT2011.html); because no human subject research/analy-
sis was performed, IRB approval was not required. Here we expanded

to incorporate data on Aedes mosquito density (58) and the association
between socioeconomic factors and population risk of exposure (32, 66).
Similar to previous arbovirus modeling approaches (18), we use a compart-
mental classification of the disease stages in the human and mosquito pop-
ulations, assigning plausible parameter ranges based on the available ZIKV
literature and assumed similarities between ZIKV and DENV.

Global Model for the Spread of Vector-Borne Diseases. The GLEAM model
is a fully stochastic epidemic modeling platform that uses real-world data
to perform in silico simulations of the spatial spread of infectious dis-
eases at the global level. GLEAM uses population information obtained
from the high-resolution population database of the Gridded Population
of the World project from the Socioeconomic Data and Application Cen-
ter at Columbia University (sedac.ciesin.columbia.edu). The model consid-
ers geographical cells of 0.25◦× 0.25◦, corresponding to an approximately
25-km× 25-km square for cells along Earth’s equator. GLEAM groups cells
into subpopulations defined by a Voronoi-like tessellation of the Earth’s sur-
face centered around major transportation hubs in different urban areas.
The model includes over 3,200 subpopulations in roughly 230 different
countries (numbers vary by year).

Within each subpopulation, a compartmental model is used to sim-
ulate the disease of interest. The model uses an individual dynamic
where discrete, stochastic transitions are mathematically defined by chain
binomial and multinomial processes. Subpopulations interact through the

A

B

Fig. 7. (A) Compartmental classification for ZIKV infection. Humans can
occupy one of the four top compartments: susceptible, which can acquire
the infection through contacts (bites) with infectious mosquitoes; exposed,
where individuals are infected but are not able yet to transmit the virus;
infectious, where individuals are infected and can transmit the disease to
susceptible mosquitoes; and recovered or removed, where individuals are
no longer infectious. The compartmental model for the mosquito vector is
shown below. (B) Summary of the parameters of the model. Tdep denotes
parameters that are temperature-dependent. T, Gdep denotes parameters
that are temperature- and geolocation-dependent. Specific values for the
parameters can be found in refs. 2, 4, 18, 55, and 68–70.
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mechanistically simulated mobility and commuting patterns of disease car-
riers. Mobility includes global air travel (www.oag.com), and GLEAM sim-
ulates the number of passengers traveling daily worldwide using available
data on origin–destination flows among indexed subpopulations.

The transmissibility of vector-borne diseases is associated with strong spa-
tial heterogeneity, driven by variability and seasonality in vector abundance,
the temperature dependence modulating the vector competence, and the
characteristics of the exposed populations. Many locations, such as those at
high elevation, are not at risk for autochthonous ZIKV transmission simply
because the vector is absent. In other locations the vector may be present
but sustained transmission is not possible because of environmental factors
that affect the vector’s population dynamics, such as temperature or pre-
cipitation. Housing conditions, availability of air conditioning, and socio-
economic factors also contribute significantly to determining the fraction
of the population likely exposed to the vector. To extend the GLEAM model
to simulate vector-borne diseases, a number of new datasets with high spa-
tial resolution are integrated, including the following:

• Global terrestrial air temperature data: The global air temper-
ature dataset (climate.geog.udel.edu/∼climate/html pages/Global2011/
GlobalTsT2011.html) contains monthly mean temperatures at a spatial
resolution of 0.5◦× 0.5◦. To match the spatial resolution of GLEAM’s
gridded population density map, the temperature for each population
cell is extracted from the nearest available point in the temperature
dataset. Daily average temperatures are linearly interpolated from each
population’s monthly averages.

• Global A. aegypti and A. albopictus distribution: The global A. aegypti
and A. albopictus distribution database provides uncertainty estimates
for the vector’s distribution at a spatial resolution of 5 km× 5 km (58).

• Geolocalized economic data: The geophysically scaled economic dataset
(G-Econ), developed by Nordhaus et al. (67), maps the per capita Gross
Domestic Product [GDP, computed at purchasing power parity (PPP)
exchange rates] at a 1◦× 1◦ resolution. To estimate the per capita gross
cell product at PPP rates, the amount is distributed across GLEAM cells
proportionally to each cell’s population size. The data have also been
rescaled to reflect 2015 GDP per capita (PPP) estimates.

These databases are combined to model the key drivers of ZIKV trans-
mission, as illustrated in combination with necessary parameters in Fig.
6. Temperature affects many important disease parameters, including the
time- and cell-specific values of R0, whose variation induces seasonality
and spatial heterogeneity in the model. Temperature data are also used
together with the mosquito presence distribution data to define the daily
mosquito abundance (number of mosquitoes per human) in each cell, as
detailed in SI Appendix, section 2. Data on mosquito abundance and tem-
perature are used to identify cells where ZIKV outbreaks are not possi-
ble because of environmental factors. The human populations in these
cells are thus considered unexposed to ZIKV and susceptible individuals are
assigned an environmental rescaling factor, ren, as described SI Appendix,
section 3. Finally, we use historical data and G-Econ to provide a socio-
economic rescaling factor, rse, reflecting how exposure to the vector is
impacted by socioeconomic variables such as availability of air condition-
ing. The derivation of these rescaling factors is provided in SI Appendix,
section 3.

Once the data layers and parameters have been defined, the model
runs using discrete time steps of one full day to simulate the transmission
dynamic model (described in detail below), incorporating human mobil-
ity between subpopulations, and partially aggregating the results at the
desired level of geographic resolution. The model is fully stochastic and from
any nominally identical initialization (initial conditions and disease model)
generates an ensemble of possible epidemics, as described by newly gener-
ated infections, time of arrival of the infection in each subpopulation, and
the number of traveling carriers. The Latin square sampling of the initial
introduction of ZIKV in Latin America and the ensuing statistical analysis is
performed on 150,000 stochastic epidemic realizations. From those realiza-
tions we find the probability p(x) and p(x|θ), defined as the probability of
the evidence (the epidemic peak in Colombia as from surveillance data) and
the likelihood of the evidence given the parameters θ specifying the date
and location of introduction of ZIKV in Brazil. From those distributions we

can calculate the posterior probabilities of interest. The sensitivity analysis
for the others scenarios considers an additional 200,000 simulations in total.

ZIKV Transmission Dynamics. Fig. 7A describes the compartmental classifi-
cations used to simulate ZIKV transmission dynamics. Humans can occupy
one of four compartments: susceptible individuals SH who lack immunity
against the infection, exposed individuals EH who have acquired the infec-
tion but are not yet infectious, infected individuals IH who can transmit
the infection (and may or may not display symptoms), and removed indi-
viduals RH who no longer have the infection and are immune to further
ZIKV infection. We consider the human population size to be constant, that
is, SH + EH + IH + RH = NH. The mosquito vector population is described by
the number of susceptible SV , exposed EV , and infectious mosquitoes IV . The
transmission model is fully stochastic. Transitions across compartments, the
human-to-mosquito force of infection, and the mosquito-to-human force
of infection are described by parameters that take into account the specific
abundance of mosquitoes and temperature dependence at the cell level.
Exposed individuals become infectious at a rate εH, which is inversely pro-
portional to the mean intrinsic latent period of the infection (68). These
infectious individuals then recover from the disease at a rate µH (18), which
is inversely proportional to the mean infectious period. The mosquito-to-
human force of infection follows the usual mass-action law and is the prod-
uct of the number of mosquitoes per person, the daily mosquito biting rate,
and specific ZIKV infection transmissibility per day, the mosquito-to-human
probability of transmission (69), and the number IV of infected mosquitoes.
Exposed mosquitoes transition to the infectious class at a rate εV , which is
inversely proportional to the mean extrinsic latent period in the mosquito
population (2). Susceptible, exposed, and infectious mosquitoes all die at a
rate that is inversely proportional to the mosquito lifespan, µV (70). The
mosquito-to-human force of infection follows the usual mass-action law
in each subpopulation whose linear extension varies from a few miles to
about 50 miles depending on the population density and specific area of
the world. A full description of the stochastic model and the equations is
provided in SI Appendix.

A summary of the parameters defining the disease dynamics is reported
in Fig. 7B. The empirical evidence related to the ZIKV infection in both
human and mosquito populations is fairly limited at the moment. We have
performed a review of the current studies of ZIKV and collected plausible
ranges for these parameters. As in other studies, we have assumed that the
drivers of ZIKV transmission are analogous to those of DENV. In particular,
we have considered that mosquito lifespan, mosquito abundance, and the
transmission probability per bite depend on the temperature level.

Model Calibration. The calibration of the disease dynamic model is per-
formed by a Markov chain Monte Carlo analysis of data reported from
the 2013 ZIKV epidemic in French Polynesia (18). Setting the extrinsic and
intrinsic latent periods and the human infectious period to reference val-
ues and using average daily temperatures of French Polynesia, we estimate
a basic reproduction number at the temperature T = 25◦C for French Poly-
nesia RFP

0 = 2.75 (95% CI [2.53 to 2.98]), which is consistent with other ZIKV
outbreak analyses (18, 31). Because the reproduction number depends on
the disease serial interval, we report a sensitivity analysis in SI Appendix con-
sidering the upper and lower extremes of plausible serial intervals. Briefly,
the estimated RFP

0 values are 2.06 (95% CI [1.91 to 2.22]) and 3.31 (95%
CI [3.03 to 3.6]) for the shortest and longest serial intervals, respectively.
The R0 values are in the range of those estimated from local outbreaks in
San Andres Island (R0 = 1.41) and Girardot, Colombia (R0 = 4.61) (71); how-
ever, it is worth recalling that the reproductive number depends on the
location and on time through seasonal temperature changes. The calibra-
tion in French Polynesia provides the basic transmissibility of ZIKV. However,
variations in temperature and mosquito abundance yield varying R0 in each
subpopulation tracked by the model as discussed in SI Appendix.
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