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A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically
distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when
leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling,
the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of
the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the
activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of
leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies
and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an
ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of
enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate.
Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.

INTRODUCTION

Maize (Zea mays) is now ranked first among cereal crops, ac-
counting for 41% of the total world cereal production. Maize
production has doubled over the last 30 years, with almost
1000million metric tons (38,105 bushels) produced in 2015–2016
(https://corn3blog.wordpress.com/global-comparison/). With
yields of over 10metric tons per ha, maize also ranks first in terms
of grain yield in Europe and the US, although the yield is much
lower in the rest of the world, accounting for ;5 to 6 metric tons
per ha (http://www.agprofessional.com/news/A-comparison-of-
world-maize-yields-227415201.html). Half of the world maize

production consists of silage used for animal feed. The other half
contributes grain for seed propagation and for a wide variety of
commercial products used mostly to feed humans and animals.
Among the products not used for food, bioethanol is one of the
most important (Ranum et al., 2014).
Maize is an annualmonoecious crop,which formost genotypes

cultivated at present, requires a life cycle of around 6 months.
Maize was domesticated in Mexico from teosinte around
7000yearsago (Matsuokaetal., 2002).Maizewas thendistributed
over the American continent and the rest of the world, reaching
Europe around the time of the discovery of the New World at the
end of the 15th century (Rebourg et al., 2003). During this ex-
pansion,maize acquired properties related to climatic adaptation,
such as insensitivity to photoperiod and early flowering, thus
allowing optimal growth under lower temperature conditions in
most temperate countries. Maize serves not only as a major crop,
but also as a model species that is well adapted for fundamental
research. This use ofmaize is particularly important for increasing
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our understandingof the agronomic and thegenetic basesof yield
performance, related to the genomic changes that have occurred
with domestication and breeding (Solomon et al., 2014; Shi and
Lai, 2015).Studiesonmaizecan takeadvantageof itswidegenetic
diversity and the availability of mutant collections, recombinant
inbred lines, and straightforward transformation protocols. In
addition, physiological, biochemical and “omics” data, as well as
genomesequences (Hirel et al., 2007) and,more recently, genome-
scale metabolic models (Simons et al., 2014), have become
accessible.

Due to the complexity of the biological systems involved in the
control of yield and biomass production, several complementary
approaches have been undertaken to improve our understanding
of the genetic and physiological basis of plant productivity as
a function of environmental constraints, at the cellular, organ,
and whole-plant levels (Wuyts et al., 2015). One of these ap-
proaches was based on maize quantitative genetics, including
the development of powerful genome-wide association stud-
ies (GWAS) and the insights they bring to the molecular and
physiological mechanisms underlying complex agronomic traits
(reviewed in Wallace et al., 2014). GWAS use the huge genetic
variety existing in maize, as well as the identification of genes
or loci involved in crop evolution, which may have determined
the genetics of domestication and diversification (Meyer and
Purugganan, 2013).

Somemetabolic pathways, notably those involved in carbon (C)
assimilation, have a direct effect on crop yield. As thesemetabolic
pathways also exhibit wide plasticity, according to the environ-
mental conditions and the genetic background, it is essential to
obtain a better understanding of the underlying molecular and
physiological mechanisms controlling crop productivity (Rossi
et al., 2015). Thus, in parallel to quantitative genetic studies, in-
tegratedapproaches termed “systemsbiology” takeadvantageof
numerous transcriptome, proteome, metabolome, and fluxome
data sets, developed using mathematical, bioinformatic, and
computational tools. Such integrated analyses, combined with
whole-plant physiology and quantitative genetic studies, may
ultimately allow the identification of key elements involved in the
control of complex biological processes and agronomic traits
such as yield and grain quality (Saito and Matsuda, 2010;
Schilmiller et al., 2012).

Among the data sets necessary to develop systems biology,
metabolomic, proteomic, and enzyme activity profiles have been
increasingly used. These profiles establish whether relationships
exist between metabolite and protein accumulation, enzyme
activities, and phenotypic traits related to plant growth and de-
velopment (Fukushima and Kusano, 2013; Stitt, 2013). Until now,
the majority of high-throughput biochemical and metabolic ap-
proaches have been performed using Arabidopsis thaliana. More
recently, these approaches have been extended to a wider range
of plants including cereals such as rice (Oryza sativa) and maize
(Kusano et al., 2011; Lisec et al., 2011; Amiour et al., 2014;
Riedelsheimer et al., 2012a). Thus, interesting perspectives have
arisen concerning the use of metabolome-assisted breeding
techniques to narrow the genotype/phenotype gap of complex
traits, suchasyieldandbiomassproduction (DellaPennaandLast,
2008; Fernie and Shauer, 2009; Lisec et al., 2011; Kusano and
Fukushima, 2013; Wen et al., 2015).

In particular, metabolite-based GWAS have recently been very
useful for dissecting complex traits both in model and crop
species (Luo, 2015). Such GWAS were successfully conducted
using leaves and kernels of maize lines and hybrids. The use of
GWAS identified novel biochemical insights and candidate genes
involved in controlling the agronomic traits of interest, related to
plant productivity or kernel quality (Riedelsheimer et al., 2012a,
2012b; Wen et al., 2014; Zhang et al., 2015).
Although very powerful for examining the genetic and bio-

chemical bases of cropmetabolism, these studies did not provide
detailed interpretationof theunderlyingphysiology, either in terms
of metabolite accumulation or metabolic flux. To fill this gap, we
havedevelopedacombinedmetabolomic, biochemical, fluxomic,
and metabolic modeling approach, taking advantage of the ge-
netic diversity of a core panel of 19 American and Europeanmaize
lines, which have been classified as Maize Belt Dent, European
Flint, Northern Flint, Stiff Stalk, and Tropical lines on the basis of
their genetic relatedness (Camus-Kulandaivelu et al., 2006;
Bouchet et al., 2013). The aim of this work was to determine if
analysesofmetabolites andenzymeactivities at twokey stagesof
plant development can be used as selectionmarkers for breeding
maize with a superior agronomic performance.

RESULTS

Leaf Metabolite and Enzyme Activity Profiles of Genetically
Distant Maize Lines Show Large Variability at Two Stages
of Development

In this study, gas chromatography coupled tomass spectrometry
(GC-MS) analyses of the leaf metabolome were performed on
19 maize lines that had been grown in the field. The plants were
grown under the optimal nitrogen (N) supply currently used in field
experiments to ensure maximal vegetative growth and grain
production of maize under temperate climatic conditions. The
19 lines originated from different northern and southern countries
of both America and Europe, which had been used as a core
collection for genome wide association genetic studies by
Camus-Kulandaivelu et al. (2006) and Bouchet et al. (2013) (for
details, see Methods and Supplemental Table 1). When the
proportionofalleles sharedbetween the19 lineswasanalyzed,we
found that they were not closely related, since their genetic dis-
similarity ranged from ;20% (between line HP301 and line
SA24U) to 42% (between line NYS302 and line CML254). A ge-
netic relatedness study revealed that the 19 lines were spread
within the whole S1P9 genetic diversity panel originally charac-
terized by Camus-Kulandaivelu et al. (2006), thus indicating that
the genetic diversity of S1P9 was well covered (Supplemental
Figure 1).
In the leaf samples taken at the vegetative (V) stage of plant

development and during the grain-filling period 15 d after silking
(DAS), 155 water-soluble leaf metabolites were detected. How-
ever, after ANOVA statistical analysis (P # 0.05) followed by
a Bonferroni post-hoc test and correction, 107 metabolites were
found to be significantly different between the 19 lines at the V
stage and 124 metabolites at 15 DAS (Supplemental Data Set 1).
For most of the metabolites, a quantitative estimation of their
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abundance was performed using standards as described in
Methods. The total leaf soluble metabolite content at the V stage
was 4.2 nmol mg21 leaf fresh weight (FW), whereas at 15 DAS it
was 3.2 nmol mg21 leaf FW.

At the V stage, the average proportion of the leaf soluble me-
tabolite content in the 19 lines was 52% for carbohydrates, 32%
for organic acids, and9%for aminoacids,with the remainder (7%)
being represented by various molecules such as lipids, poly-
amines, vitamins, and secondary metabolites (Supplemental
Figures2Aand2B).Anumberofunidentifiedcompounds (listedas
unk.) were also detected. Their relative proportions in the 19 lines
can be found in Supplemental Data Set 1, taking into account that
their concentration was 30%higher at the V stage compared with
15 DAS. For carbohydrates, sucrose was by far the most abun-
dant, representing 68% of the total, followed by glucose (17%).
Fructose, myo-inositol, and raffinose were less abundant, rep-
resenting 4, 3, and 1%, respectively, of the total leaf soluble
carbohydrate. For the soluble amino acids, alanine at a relative
concentration of 35% of the total, predominated followed by
glutamate (15%) and glycine (14%). Glutamine was present as
only 6% of the total leaf soluble amino acids. As observed in
previous studies, aconitate (65%)was themost abundant organic
acid in the leaf (Brauer and Teel, 1981; Sicher and Barnaby, 2012;
Yesbergenova-Cuny et al., 2016), followed by malate (12%) and
pyruvate (7%).

In the 19 lines, the relative proportions of themost abundant C-
and N-containingmolecules at 15 DASwere very similar to that of
the V stage, except for glycine and raffinose, which were ap-
proximately 3 times lower and higher, respectively, at 15 DAS.
However, differences between the V and the 15 DAS growth
stages were observed in leaf metabolites present in low con-
centrations, such as quinate and 5-caffeoylquinate-trans, re-
spectively (Supplemental Figures 2A and 2B).

The range of variation observed between the leaves of the
19 lines is illustrated in Figure 1. At the V stage, a large variability
was observed for the amino acids asparagine (Asn) and proline
(Pro), with coefficients of variation of 200and70% in their content,
respectively. The range of variation observed for the most
abundant amino acids, such as alanine, glutamate, and aspartate,
was much lower (20230%). When the range of soluble carbo-
hydrates in the 19 lines was examined, the most abundant (su-
crose)was the least variable (16%at theVstageand30%15DAS).
Although glucose and fructose were present in much lower
amounts compared with sucrose, their range of variation was
much higher (40 and 200% at the V stage and 15 DAS, re-
spectively). Almost no differences in total C andN and plant water
content were observed.

Differences between the 19 lines were detected in the activities
of a number of enzymes involved in primary N and C metabolism
(listed in Supplemental Table 2), including C4 photosynthesis for
the latter (Figure 1). The largest variations in these enzyme
activities, ranging from 20 to 30%, were detected for nitrate re-
ductase (NR), glutamate dehydrogenase (GDH), and ferredoxin-
dependent glutamate synthase (Fd-GOGAT), both at the V stage
and 15 DAS. Such variations are likely due to the fact that enzyme
activities were measured in vitro, thus probably reflecting their
maximal activities (Biais et al., 2014). However, almost no dif-
ferences in phosphoenolpyruvate carboxylase (PEPC) activity

were observed. During the grain filling period 15DAS, the range of
variation observed for most of the enzyme activities was com-
parable to that observed at the V stage.

Hierarchical Clustering Analysis Demonstrates That the Leaf
Metabolite and Enzyme Activity Profiles Are Specific to the
Developmental Stage of the Plant

A hierarchical clustering analysis (HCA) showed that metabolites
exhibiting significant differences between the 19 lines and that
were common to the two developmental stages displayed a clear
difference in the level of accumulation between the V stage and
15 DAS (Supplemental Figure 3).
Three main groups of metabolites exhibiting opposing pat-

terns of accumulation between the V stage and 15 DAS were
clearly identified. The first group contained metabolites that
accumulated to a higher degree at 15 DAS in all the lines. The
second group containedmetabolites that were present in higher
amounts at the V stage compared with 15 DAS in most of the
lines. In the third group, the difference in metabolite content
between the two plant developmental stages was less marked
(Supplemental Figure 3).
Specific differences in the activity of the portfolio of enzymes

representative of plant primary and secondary metabolism
(Supplemental Table 2) were observed between the V stage and
15 DAS (Table 1). The same pattern of enzyme activity (higher or
lower) was observed between the V stage and 15 DAS across all
five Tropical lines, irrespective of their physiological function. In
the lines of the four other groups (defined on the basis of their
genetic distance; see Methods and Supplemental Table 1), the
differences in most of the enzyme activities between the two
developmental stages were similar among the lines, when com-
pared within a group.
The changeover from the vegetative to the 15 DAS stage is

representative of the transition from sink to source leaf, since
irrespective of the genetic background, the content of most of the
physiological metabolites in the leaves was strongly modified.

Relationship between Plant Physiology and Plant
Genetic Distance

To investigate the possible relationships that may exist between
the genetic distance and plant physiology (metabolite accumu-
lation, enzyme activities, and physiological traits) in the leaves of
the maize lines, a HCA was first performed using the results
presented in Supplemental Data Set 1. The main results from the
clustering analysis are summarized in Figure 2, using the detailed
HCA presented in Supplemental Figure 4.
At the V stage of plant development, it can be seen that the

different lines belonging to the Tropical and Maize Belt Dent
groups did not exhibit a common pattern of metabolite accu-
mulation. By contrast, the European and Northern Flint lines were
grouped in a common cluster, indicating that their metabolite
composition was very similar, while the Stiff Stalk line B73 was
close to the Northern Flint lines in terms of metabolite content
(Figure 2). The metabolite distribution pattern was different be-
tween the five groups of lines 15DAS, comparedwith that at the V
stage. However, all the lines belonging to each of the five groups
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were clustered, which indicates that their leafmetabolite contents
were very similar and, thus, tightly linked to the classification
based on their genetic distance (Figure 2).

Although there was a major genetic variability in the activity of
a number of enzymes involved in C4 photosynthesis, and primary
C and Nmetabolism in the five groups of lines, a clear distribution
pattern for these enzymes either at the V stage or 15DAS could be
seen following HCA (Supplemental Figure 5). At the V stage, in
lines CML245 and C105, most of the enzymes involved in N
metabolism and several enzymes involved in C assimilation were
more active. During the grain filling period (15 DAS), most of the
enzymes were more active in the Tropical line ND36.

A sparse partial least squares-discriminant analysis (sPLS-
DA) was then performed on the 124 metabolites detected at
15DAS (SupplementalDataSet 1) todiscriminate in a supervised
way which metabolites permitted differentiation of the five
groups of lines. The sPLS-DA (Supplemental Figure 7) showed
the similarities and dissimilarities between the lines clustered in
the five groups in score plots corresponding to the four first
components of sPLS. The loading vectors for each dimension
reflected metabolites that can be used as biomarkers for dif-
ferentiating the five groups of lines. The exhaustive list of me-
tabolites belonging to each of the four loading vectors is
presented in Supplemental Data Set 2. Among them, various

Figure 1. Differences in the Metabolite Content, Enzyme Activities, and Biomass-Related Components in the Leaves of 19 Maize Lines Originating from
Europe and America at Two Key Stages of Plant Development.

The top of the figure shows the coefficients of variations (expressed as percentage) of the biomass-related components in red (biomass components are
shown as: C, total carbon; N, total nitrogen), including yield. Enzyme activities are in blue (GS, glutamine synthetase; MDH, NADP-dependent malate
dehydrogenase; GOGAT: ferredoxin-dependent glutamate synthase; AspAT, aspartate aminotransferase). Metabolites and classes of metabolites are in
black (2-OG, 2-oxoglutarate; Cit, citrate; Pyr, pyruvate; AA, total amino acids; Unknown, unidentified metabolites). An overview representation of the
average of the coefficients of variations (from 0 to 80%) for the main classes of metabolites, enzyme activities, and biomass components is shown at the
bottom of the figure. Anions correspond to nitrate and phosphate and biomass components to C, N, and water contents.
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chlorogenates, b-alanine, allantoin, and b-sitosterol, were
representative of component 1. Amino acids, such as glutamine,
histidine, and lysine; carbohydrates, such as mannose, arabi-
nose, and fructose; and chlorogenates different from those
belonging to component 1 were representative of component 2.
Various disaccharides, stigmasterol, and galactonic acid were

representative of component 3. Dopamine, phytol, and organic
acids, such as aconitate, ribonate, and ferulate, were repre-
sentative of component 4. In addition, using the normalized raw
data (Supplemental Data Set 1), the sPLS-DA also allowed
a characterization of the differences in the content of the four
main classes of metabolites that included carbohydrates, amino

Table 1. Changes in the Activity of the Main Enzymes Involved in Central and Secondary Metabolism during Plant Development

Line Origin Tropicala Corn Belt European Northern Stiff Stalk

Developmental Stage V 15 V 15 V 15 V 15 V 15

Classes Enzymes
C4 PPDKb + 2 + 2 + 2 + 2 + 2

NADP-MDHb + 2 + 2 + 2 + 2 + 2

NAD-MEb + 2 + 2 + 2 + 2 + 2

NADP-ME + 2 2 + 0 0 + 2 + 2

PEPCK + 2 2 + 2 + 2 + 2 +
PEPC + 2 + 2 0 0 0 0 0 0

C FK + 2 + 2 + 2 2 + 2 +
N-invertase + 2 + 2 + 2 + 2 + 2

GK + 2 2 + 2 + + 2

SPS + 2 + 2 + 2 + 2 2 +

PFK-PPi (PFP) 2 + 2 + 2 + 2 + 2 +
GL F1,6BP 2 + 0 0 + 2 0 0 2 +

PFK-ATP + 2 + 2 + 2 2 + + 2

Enolase + 2 0 0 0 0 2 + 0 0

N NRmaxb + 2 + 2 + - + 2 + 2

NR-Pb + 2 + 2 + - + 2 + 2

NR%activb + 2 + 2 + - + 2 + 2

AlaATb 2 + 2 + 2 + 2 + 2 +
NAD-GDHb 2 + 2 + 2 + 2 + 2 +
GS + 2 + 2 2 + 2 + + 2

Fd-GOGAT + 2 + 2 0 0 2 + 0 0
AspAT + 2 2 + 0 0 0 0 + 2

PP G6PDH 2 + + 2 + 2 2 + + 2

SM ShikDHb + 2 + 2 + 2 + 2 2 +

TCA Fumaraseb 2 + 2 + 2 + 2 + 2 +
Aconitase 2 + 2 + + 2 2 + 2 +
CS 2 + + 2 2 + + 2 2 +
IDH + 2 0 0 0 0 2 + 2 +
NAD-MDH + 2 + 2 0 0 0 0 + 2

Enzyme activities were measured at the vegetative stage (V) in young fully developed leaves and at the grain filling stage 15 DAS (15). The 19 maize lines
covering European and American maize genetic diversity were classified into five groups of different geographical origin based on the microsatellite
genotyping performed by Camus-Kulandaivelu et al. (2006). The enzymes are involved in C4 = C4 photosynthetic metabolism; C = carbon metabolism;
GL = glycolysis; N = nitrogen metabolism; PP = pentose phosphate pathway; SM = secondary metabolism; TCA = tricarboxylic acid cycle. The “+”
indicates that that the enzyme activity is higher and “2” that it is lower at the vegetative stage (V) or at 15 DAS (15). The “0” indicates that there is no
difference in the enzyme activity between the two developmental stages. NAD-ME, NAD-dependent malic enzyme; PEPCK, phosphoenolpyruvate
carboxykinase; FK, fructokinase; SPS, sucrose phosphate synthase; F1,6BP, fructose 1,6 bisphosphatase; PFK-ATP, phosphofrutokinase ATP-
dependent; AspAT, aspartate amino tranferase; G6PDH, glucose-6-phosphate dehydrogenase; CS, citrate synthase; IDH, isocitrate dehydrogenase;
NAD-MDH, NAD-dependent malate dehydrogenase; GK, glucokinase.
aThe same pattern of enzyme activity (higher or lower) was observed between the vegetative stage and 15 DAS across all five Tropical lines, irrespective
of their physiological function.
bCommon differences between the vegetative stage and 15 DAS within a single group of maize lines or across the five groups of maize lines were
observed for the enzymes PPDK, NADP-MDH, NAD-ME, NRmax, NR-P, NR%activ, AlaAT, NAD-GDH, ShikDH, and fumarase.
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acids, organic acids, and chlorogenates, among the five groups
of lines (Figure 3).

Finally, an attempt wasmade to determine which differences in
metabolites, enzyme activities, and physiological traits resulted
fromthegenetic relatednessof the19 lines.First, itwaschecked to
see if there was any correlation between the genetic distance of
the 19 lines (based on molecular markers) and the Euclidean

phenotypic distance (based on leaf metabolite contents and
enzymeactivities). At both theVstageand15DAS, the amountsof
metabolites and of enzyme activities of the 19 lines were grouped
using thegenetic andphenotypicdistancesas the twoparametersof
the HCA. There was only a slight relationship between the genetic
distance of the 19 lines and their enzyme activities 15DAS (Figure 4).
Such a low correlation could be explained by the fact that maximal
enzyme activities were measured in vitro, thus not necessarily re-
flectingtheiractivity invivo.The lowgeneticrelatednessof the19lines
could also explain why the relationship between their genetic dis-
tance and their enzyme activities was also very low, suggesting that
genetically related lines have similar enzymatic capacities.
AMantel Test was then performed to determine if in the 19 lines

there was any correlation between the two genetic distance
matricesbasedonsinglenucleotidepolymorphism (SNP)markers
(see Methods) and the phenotypic distance matrices (including

Figure 2. Graphic Representation of the Relationships Existing between
the Relative Amounts of Leaf Metabolites in 19 Lines of Maize Originating
from Europe and America.

The metabolite content was measured by GC-MS analysis of young de-
veloping leaves at the vegetative stage (V) and of the leaves below the ear,
15 DAS, during the kernel-filling period. HCA was performed using the
metabolome data presented in Supplemental Data Set 1. For each me-
tabolite exhibiting a significant difference between the 19 lines (P# 0.05),
the ratio (content for each line/mean value of the 19 lines) was calculated
and transformed into a log2 ratio before clustering analysis. The vertical
green, blue, orange, red, and yellow boxes represent the five groups of
maize lines in different countries of Europe and America (Tropical, orange;
European Flint, blue; Northern Flint, red;Maize Belt Dent, green; Stiff Stalk,
yellow). At the right of the panel, the silking dates are indicated (J = July, A =
August, S = September), along with the grain yield (g21 plant). Grain yield
wasdetermined for the19maize linesgrown in thefield (SupplementalData
Set 1). Comparedwith the others lines, the Tropical line Argl256 had a very
low yield. It was also observed that the kernels of the other Tropical line,
CML254, did not reach full maturity at the time of harvest (nm = not
measured). Details of the HCA are presented in Supplemental Figure 3.

Figure3. ExampleofLeafMetabolicSignaturesRepresentativeof theFive
Groups of Maize Lines during the Grain Filling (15 DAS) Period.

sPLS-DAwasused to quantify the relationship between the leafmetabolite
content and the fivegroups ofmaize lines to detect putative leafmetabolite
biomarkers at 15 DAS.
(A) Relative content of four main classes of metabolites, including car-
bohydrates, organic acids, chlorogenates, and amino acids, in the five
groups of maize lines.
(B) Amount of soluble carbohydrates detected in the five groups of maize
lines. From left to right: fructose (dark gray), glucose (pale gray), and su-
crose (gray).
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metabolite contents, enzyme activities, and the metabolic path-
way to which they belong; Supplemental Data Set 3). Variations in
enzyme activities were significantly correlated between the
19 lines for three different pathways, which included the tri-
carboxylic acid (TCA) cycle, carbohydrate biosynthesis, and
glycolysis, the highest correlation being observed for the latter at
15DAS (r=0.28,Pvalue<0.01). Formetabolites, ahighcorrelation
with the genetic distance was observed at 15 DAS only for
a-tocopherol (vitamin E; r = 0.17, P value = 0.013). At this stage of
plant development, such a significant correlation was also

observed for physiological traits such as the leaf N content (%N;
r = 0.19, P value = 0.02) and kernel number (KN; r = 0.18, P value =
0.03; see Supplemental Data Set 4 for details).
To further refine which part of the variation of the enzyme ac-

tivities and themetabolite contents could be explained by genetic
variation between the 19 lines, an ANOVA test was used to
estimate the repeatability of the different biochemical and
physiological traits at the two stages of plant development
(Supplemental Data Set 4). Large variations were observed be-
tween the metabolite contents and enzyme activities involved,

Figure 4. Relationship between the Genetic Distance of the 19 Lines Originating from Europe and America and the Phenotypic Distance of Enzyme Activities.

Heat map showing the standardized level of enzyme activities of the 19 maize lines at 15 DAS. Two HCAs were performed to group the lines and the
enzymatic pathways according to their genetic distancesbasedonmolecularmarkers (A_IBD) and according to their Euclideanphenotypic distance based
on enzyme activities, respectively. At the left of the HCA, the vertical bar represents the five groups of maize lines (Tropical, orange; European Flint, blue;
Northern Flint, red; CornBelt Dent, green; Stiff Stalk, yellow). At the top of theHCA, colored bars represent themain classes of enzymes (C4 cycle, red; TCA,
yellow; glycolysis, pale green; N-assimilation, turquoise; pentose-P, pale blue; secondary metabolism, dark blue; carbohydrate metabolism, purple). The
top left scale represents the relative higher (yellow) or lower values (red) for enzyme activities compared with the median.
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irrespective of the plant developmental stage, but theyweremore
consistent 15 DAS.

Genetic Variability of Ammonia Assimilation:
15N-Labeling Experiments

A 15NH4
+ labeling experiment was conducted using detached

leaves collected at the V stage of plant development. Primary
ammonia assimilation was examined in a pulse experiment fol-
lowing8and16h labeling thatquantified theamountofpreexisting
amino acids (14N-amino acids) and the amount of newly syn-
thesized amino acids (15N-amino acids) formed during the pulse
period.Acalculationof the 15Nenrichmentof eachaminoacidwas
performed on a relative basis to identify any differences in the
dynamics of amino acid accumulation.

The 15N-labeling study was only performed at the V stage,
during which time active N assimilation takes place, allowing the
measurementoffluxesusing 15N-labeledmolecules.Suchastudy
was not performed during the remobilization phase 15DAS, since
mostof themetabolitesoriginate fromdegradedproteinsand from
C translocation from source organs (Uhart and Andrade, 1995;
Hirel and Gallais, 2006). Measuring the 15N-enrichment into in-
dividual amino acids originating from 15N-labeled degraded
proteins is much more difficult. Additionally, the genome-scale
metabolic model was analyzed at the V stage to ensure that the
necessary pseudo-steady state assumptions were valid.

Since similar results were obtained after the two labeling
periods, the results are presented only for the 8 h time point
(Supplemental Data Set 5). Graphs showing examples of the
amount of 15N incorporation into glutamine, glutamate, aspara-
gine, and alanine, four amino acids of major importance during
N assimilation and export, are presented in Figure 5. In all the
lines, 15NH4Cl was also incorporated into most of the protein
amino acids and g-aminobutyrate, thus indicating the presence
of a functional ammonia assimilatory pathway. The highest
15N-labeling was detected in alanine, the amino acid that pre-
dominated in the soluble pool of all the lines, although it was
significantly higher in line ND283 and lower in line ND36 and FV2.
Additionally, it was observed that the leaf content of 15N-alanine
was higher than that of its labeled precursors 15N-glutamine and
15N-glutamate. Despite this, the highest 15N-glutamine and
15N-glutamate labelingwasobserved in lineMo17and lineND283,
respectively. The lowest 15N-glutamine and 15N-glutamate la-
beling was observed in line ND36, thus exhibiting a pattern of
accumulation similar to that found for alanine (Figure 5). The three
15N-labeled branched chain amino acids leucine, isoleucine, and
valine, which use pyruvate as a C skeleton, had much lower 15N
accumulation comparedwith alanine. Althoughmaize is aC4plant
that carries out limited photorespiration (Dai et al., 1995), serine
and glycine were among the amino acids that were considerably
labeled in all genotypes. In addition, labeling in asparagine was at
least 2-fold higher in lines HP301 and SA24 (Figure 5) and the
amino acids of the aspartate biosynthetic pathway were all la-
beled. However, the amounts of 15N-methionine and 15N-lysine
were very low compared with that of 15N-threonine and of the
branched chain amino acid 15N-isoleucine, indicating that N was
channeled preferentially through the threonine branch of the as-
partate pathway (Azevedoet al., 2006; Joshi et al., 2010).Cysteine

was labeled with 15N in only eight genotypes (FV252, MBS847,
ND283, Lo3, Lo32, C105, Argl256, and CML254) belonging to dif-
ferentgeographicalorigins.Bycontrast, no 15N-labelingwas found in
arginine in all genotypes, probably due to difficulties in defining the
fragmentation pattern arising from the loss of guanido-N atoms
(Patterson et al., 1993; Allen and Ratcliffe, 2009). Moreover, low or
zero amounts of arginine have generally been detected in maize
leaves (Martin et al., 2005; Amiour et al., 2012; Obata et al., 2015).

Flux Range Comparison Using a Compartmentalized Leaf
Genome-Scale Metabolic Model

The 19 maize lines were modeled by incorporating enzyme activity
data into the published leaf genome-scale metabolic (GSM) model
(Simons et al., 2014). Flux balance analysis (FBA) was used to predict
theflowofmetabolites througheach reaction (i.e., thefluxvalue) at the
maximum rate of sucrose export for each line. FBA assumes that the
production and consumption rates of eachmetabolite are equivalent
at pseudo-steady state, which is justified during vegetative growth.
Biomass production was modeled as the ratio of experimentally
measuredbiomasscomponents (seeMethods).The leafbiomasswas
constrained to 35%of the rate of biomass production for eachmaize
lineestimated fromthegrowth rateat the7- to8-leaf stage,compared
with themaximumgrowth rate among all stages (Bender et al., 2013).
At the maximum rate of sucrose production, reactions with over-
lapping flux ranges are not required to vary among the maize lines;
however, reactions without overlapping flux ranges warrant further
analysis,asthesereactionsdifferbetweenlines.Allfluxrangeanalyses
were completed in a pairwise manner by comparing each individual
maize line to the remainingmaize lines, resulting in 171 total pairwise
combinations.Basedonthechangeinmaximalenzymeactivity levels,
34 reactions (not including duplicates due to compartmentalization)
were constrained. However, the in silico metabolic differences ob-
served can be recapitulated by imposing only the constraints on al-
anine aminotransferase (AlaAT) and pyrophosphate-dependent
phosphofructokinase (PFK-PPi; also known as pyrophosphate-
fructose 6-phosphate 1-phosphotransferase [PFP]). Of the 2561 re-
actions that were active in at least one line at the maximum rate of
biomass production, 249 reactions comprised the differing reaction
set (i.e., those reactions with nonoverlapping flux ranges between at
least two maize lines; Supplemental Data Set 6). The pathways as-
sociated with these 249 differing reactions encompassed 37 Kyoto
Encyclopedia of Gene and Genome (KEGG) pathways, including
amino acid biosynthesis, purine metabolism, photosynthetic CO2

fixation, the TCA cycle, and fatty acid biosynthesis.
The leaf GSM model was used to corroborate the hypotheses

based on the results of the 15N-labeling experiment. In agreement
with the 15N-labeling experiments, the in silico results indicated
that the photorespiratory glycolate pathway and the ammonia
assimilatory pathway may be active in all maize lines with flux
ranges spanning from zero to positive flux values at themaximum
rate of biomass production. Additionally, by analyzing the two
major branch points in the aspartate pathway, the model sup-
ported thehypothesis that theflux fromaspartate ispredominantly
diverted toward threonine compared with lysine and methionine.
At the first branch, the model predicted over a 200-fold higher
maximum possible flux across the bundle sheath and mesophyll
cells in all lines through homoserine dehydrogenase (which yields
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homoserine, the precursor to threonine and methionine) com-
pared with the flux through dihydrodipicolinate synthase (which
produces the lysine precursor). At the second branch point,
O-phosphohomoserine is converted to threonine by threonine
synthase with over a 500-fold higher maximum flux compared
with the conversion to methionine via cystathionine g-synthase
(Azevedo et al., 2006; Joshi et al., 2010). However, in all lines, the

largest flux from aspartate is probably through arginine synthesis
and the urea cycle (Winter et al., 2015).
Further analysis of the reactions that varied revealed that

reaction fluxes could fluctuate in a large proportion of themaize
line combinations or could be specific for a small subset of
maize lines. The reaction catalyzed by PEPC varied in 93 of
171 total pairwise combinations, mainly due to the flux ranges

Figure 5. Example of the Differences in 15N Amino Acid Content in the 19 Maize Lines Originating from Europe and America.

The 15N-labeledglutamine, glutamate, asparagine, andalaninecontentsweremeasuredat theendof the labelingperiodwhen the isotope 15Nwas replaced
by 14N. The data for the 15N-labeling experiment are presented in Supplemental Data Set 5. Young developing leaves at the vegetative stage of plant
developmentwere labeled for 8 hwith 15NH4Cl. Values expressed asmmol g21 FWare themean of three individual leaves of (6SD bars) each harvested from
threedifferentplantsgrown in thefield. Letters a, b, andc represent the result of anANOVAstatistical analysis performedwithaStudent-Newman-Keuls test
and used to identify groups of lines exhibiting a similar pattern of 15N-labeling (P # 0.05).
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associated with the Argl256, FV2, MBS847, ND283, ND36, and
NYS302 lines. While the reaction catalyzed by PEPC had a flux
range that was distinct inmanymaize lines (i.e., the flux range in
the maize line did not overlap with any other maize line), the
variation in fluxes between all lines was small, with only a 0.50-
fold variation in theminimumachievable flux comparedwith the
maximal achievable flux across all maize lines. A tightly con-
trolled distinct range of PEPC is expected, as all C in C4 plants
must be shuttled through PEPC (Chollet et al., 1996; Cousins
et al., 2007; Paulus et al., 2013).

The enolase reaction had a distinct flux range in only
34 pairwise combinations; however, the flux range varied 5.33-
fold among themaize lines. Alongwith the enolase reaction, PEP
can be produced by the pyruvate phosphate dikinase (PPDK)
reaction. The reaction catalyzedbyPPDKhad adistinctive flux in
60 pairwise combinations; however, only four pairwise combi-
nations were shared with the enolase reaction. While all of the
distinct pairwise combinations for the enolase reaction involved
the FV2 and NYS302 lines, many of the distinct pairwise com-
binations for the PPDK reaction involved Argl256, MBS847,
ND283, and ND36.

The similarity matrix (Supplemental Figure 6) displays the ratios
of active reactions at the maximum rate of biomass production
with flux ranges that overlapped between two maize lines. Based
on the additional constraints applied by the enzyme activities and
updated biomass equations, all pairwise combinations displayed
over 89% of reactions with overlapping flux ranges. While other
factors (e.g., regulation and metabolite concentration) can in-
fluence metabolism, this study specifically targeted the influence
of stoichiometric constraints based on varying biomass com-
positions and enzymatic differences between the lines and their
effect on metabolism. The F64 and FV2 lines were the most
disparate from the other maize lines. The overlapping flux ranges
were compared in a pairwise manner to determine the similarities
in their metabolism. These metabolic similarities were compared
with their plant genetic diversity determined using simple se-
quence repeats andSNPs (Supplemental Data Set 3). The genetic
diversity study revealed that the HP301 and SA24 lines were the
most similar. Although these lines were not the most similar from
the GSM model analysis, a relatively high percentage (97.3%) of
their reaction flux ranges were overlapping, ranking 24th most
similar among the 171 pairwise comparisons.

Additionally, the genetic diversity study identified NYS302 and
CML254 as the most disparate lines, while the GSM model
analysis revealed a relatively low metabolic similarity of 90.1%
compared with all pairwise metabolic similarity comparisons,
ranking 17th most dissimilar among the 171 pairwise compar-
isons. From the genetic diversity analysis (Supplemental Table 1),
several lineswere identifiedwithmore than one origin or structural
group. The C105 line was identified with the Northern Flint and
MaizeBeltDent structural groups, a result thatmirrored theclosely
related metabolism of the C105 line with lines in the Maize Belt
Dent structural groups.Additionally, theP465P line, identifiedwith
the Tropical and Maize Belt Dent structural groups based on
genetic diversity, had a high metabolic similarity to the Maize Belt
Dent lines. Overall, no clear patterns existed between the genetic
diversity and the metabolic similarities determined by GSM
modeling at the V stage.

Correlation Studies between Physiological and
Agronomic Traits

Grain yield (GY) and its components KN and thousand kernel weight
(TKW) were determined for the 19 maize lines grown in the field
(SupplementalDataSet1).Comparedwith theother lines, theTropical
lineArgl256hadavery lowyieldunder theVersaillesfieldexperimental
conditions. In addition, the kernels of the other Tropical line, CML254,
hadnot reached fullmaturityat the timeofharvest.Among the19 lines
examined, except for linesArgl256andCML254, a significant genetic
variabilitywasobserved for the traits related toyield,withuptoa2-fold
variation in GY between the lowest- and the highest-producing lines.
Pearsoncorrelationcoefficientsbetweenagronomictraitsrelatedto

grain yield, the leafphysiological status, and thegeographical originof
the19 lineswerecalculated inorder to identify theirpossible functional
relationships. These included the agronomic traits GY, KN, and TKW,
and key parameters representative directly or indirectly of the leaf
physiological status (kernel and leafC,N,C/N ratio, leafprotein,PEPC
protein, and leaf nitrate contents). Following a Shapiro-Wilk test
(Shapiro et al., 1968), the variables used for the Pearson coefficient
calculationfollowedanormaldistribution.Theresultsarepresentedby
the means of a heat map in Figure 6A and a Cytoscape visual rep-
resentation inFigure6B.Datarelatedtothecompletecorrelationstudy
are presented in Supplemental Data Set 7. The two highest positive
correlationswere foundbetweenGYand the totalCandNcontents in
the kernels (close to 1 and 0.94, respectively). In addition, yield
components (GY,KN,andTKW)and thephysiological traits related to
the C and N contents of the kernels showed significant positive
correlations. This finding is illustrated in Figure 6B, in which it can be
seen that nearly all the traits related to the kernels were positively
interconnected. Interestingly, the C% in the kernels was the trait
exhibiting the highest number of significant correlations (nine corre-
lations) with the other leaf physiological and yield-related traits.
Moreover, there were eight correlations between GY, TKW, and the
kernel N content aswell as the other kernel and leaf traits. Among the
yieldcomponents,GYandKNshowedapositivecorrelation (0.81). At
15 DAS, two leaf traits (total N and N%) were significantly correlated
withGY(0.52)andTKW(0.76),whereastheleafsolubleproteincontent
was correlated only with TKW (0.60). The leaf protein content 15DAS
also exhibited positive correlations with the leaf N content (N%)
15DAS (0.83) andwith the kernel N% (0.50). By contrast, the leafC/N
ratio at 15DASexhibited eight negative correlations,withGY (20.63),
TKW(20.79), thekernelCandNcontents (20.55withC%,20.60with
total C,20.55with N%, and20.62 with total N), the leaf N%15DAS
(20.97), and the leaf protein content 15DAS (20.80). Notably, the leaf
Ccontentat theVstageandthe leafNcontent15DASexhibitedahigh
positive correlation of 0.51. A positive correlation was found with the
leafproteincontentat theVstageandthe leafC%(0.53)andN%(0.56)
at theVstage.At theVstage,onlynegativecorrelationswereobtained
with the leaf nitrate content andanumberof traits suchas thekernel
C/N ratio (20.50), the kernel C% (20.53), and the leaf C% (20.52).
Only the leafCcontent exhibited ahighnegativecorrelationof20.6
with the geographical origin of the lines.

Network Analysis of Physiological Traits

To uncover the putative mechanisms underlying the leaf physi-
ology of the different maize lines, network analyses were
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employed. At the V stage, the first step of the network analysis
allowed the generation of eight modules (encompassing cor-
egulated metabolites or enzymes as module components). Each
of these eight modules was represented by a different color (pink,

red, brown, green, turquoise, yellow, black, and blue). An addi-
tional module component that did not meet the threshold criteria
(gray module) was also identified (Supplemental Data Set 8). At
15 DAS, 11 modules and a gray module were obtained from the

Figure 6. Pearson Correlations between Agronomic and Physiological Traits Representative of the Leaf Physiological and Kernel Physiological Status of
the 19 Maize Lines.

(A) Heat map showing the significant correlations (adjusted P values <0.05) found between kernel yield traits (GY, KN, and TKW) and key parameters
representative of the kernel and leaf physiological status (C = carbon, N = nitrogen, C/N ratio, leaf soluble protein, PEPC protein, and nitrate contents). The
negative and positive correlation coefficient values are indicated in each colored box of the heat map using the scale on the left side of the panel.
(B) Network diagram illustrating the most significant correlations found between agronomic and physiological traits. Traits with a higher number of
correlations are represented by larger and darker red dots. Thicker and red lines represent the highest positive correlations. Thicker and blue lines represent
the highest negative correlations.
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metabolite and enzyme activity data set (Supplemental Data Set
9). Modules obtained for the V stage contained 10 to 27 compo-
nents, while for 15 DAS there was a range from 5 to 44 compo-
nents. The module component annotations are presented in the
Supplemental Data Sets 8 and 9 for the V stage and 15 DAS,
respectively. In these twodata sets, themodule colors are specific
to each of the two developmental stages.

Pearson correlationswere then calculated to establish possible
relationships between the different modules identified at the V
stage and 15 DAS, yield-related traits (GY, KN, and TKW), and
physiological parameters (kernel and leaf C, N, C/N ratio and leaf
protein, PEPCprotein, andnitrate contents). Correlations foundat
the V stage and 15 DAS are shown in Supplemental Data Set 10.
For clarity, only those with a Bonferroni adjusted P value lower
than 0.05 have been considered (Supplemental Figure 8 for the V
stage and Figure 7 for 15 DAS). At the V stage, there was no
significant correlation between GY and any of the identified
modules.

One of the main characteristics of the brown vegetative (V)
module was the presence of metabolites (such as succinate,
2-oxoglutarate, pyruvate, and alanine) and enzymes (such as
NADP-andNAD-malic enzyme) directly or indirectly involved inC4

metabolism. The rest of the components in this module were
metabolites (e.g., inositol) andenzymes, suchasneutral-invertase
(N-invertase), involved inCmetabolism.Onlya fewcomponentsof
the brownmodule were related to Nmetabolism (e.g., methionine
or NR activity).

The turquoise V-module contained precursors in the bio-
synthesis of aromatic amino acids and secondary metabolites
(e.g., shikimate and quinate) and carbohydrates and their deriv-
atives (e.g., arabitol, raffinose, and galactonate). Addition-
ally, there were three metabolites related to N metabolism
(g-aminobutyrate, proline, and urea), two main intermediates of
the C assimilatory pathway (phosphoenolpyruvate and glycerate-
3-phosphate) and threeenzymes involved incentralCmetabolism
(PEPCK, PFP, and CS).
The red V-module was mainly composed by carbohydrates

(e.g., glucose, fructose,or arabinose) andby twoenzymeactivities
related to C metabolism (e.g., sucrose-phosphate synthase and
isocitrate dehydrogenase).
For the physiological traits, the highest positive correlation was

found between the brown V-module and the leaf protein content
(0.66). For this module, there was also a good correlation with the
leaf PEPC protein (0.5) and C contents (0.46). A negative corre-
lation was also found between the brown V-module and the origin
of the lines corresponding to the five structural groups defined on
the basis of genetic relatedness (20.51). The turquoise and red
V-modules had good positive correlations with the C/N ratio (0.52
and 0.5, respectively) and negative correlations with the leaf N
content (20.51 and 20.47, respectively).
At 15 DAS, the highest positive correlations were found be-

tween the blue 15DAS-module and the leaf protein content (0.9)
and the leaf N content (0.84). Conversely, there was a high neg-
ative correlation between the blue 15DAS-module and the C/N

Figure 7. HeatMap andPearsonCorrelationswith theModules andAgronomic Traits (GY, KN, and TKW) andPhysiological Parameters Representative of
the Kernel and Leaf Physiological Status 15 DAS.

Correlationswith themodulescontaining thegenericphysiological traits15DAS.Thecolornamescorrespond to the12modules thatwereobtained fromthe
15 DASmetabolite and enzyme activity data set network analyses (Supplemental Data Set 10). Heat map and Pearson correlations betweenmodules and
kernel yield traits (GY, KN, and TKW) and key parameters representative of the kernel and leaf physiological status (C = carbon, N = nitrogen, C/N ratio, leaf
solubleprotein,PEPCprotein, andnitratecontents).CorrelationswereconsideredsignificantwithBonferroni adjustedPvalues<0.05.AdjustedPvaluesare
shown in parentheses. Only significant negative and positive correlation coefficient values are indicated in each colored box. For clarity, only those with
a correlation higher than 0.4 have been considered. The box of the heat map using the scale on the right side of the panel. e = exponent base 10. The same
analysis was performed at the V stage (Supplemental Figure 8).
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ratio (20.83). Although less marked, similar correlation profiles
were found between the purple 15DAS-module and these three
physiological traits. The blue 15DAS-module showed a positive
correlation between GY (0.49) and its component TKW (0.6) and
with the leaf PEPC protein content (0.48). Negative correlations
within the turquoise 15DAS-module included GY (20.51) and KN
(20.52). In this module, only the correlation with the C/N ratio was
positive (0.55). Among the components of the blue 15DAS-
module, therewere15enzymes, including sevenenzymesdirectly
involved in C4 metabolism, five enzymes related to central C
metabolism, and the two enzymes involved in N assimilation (GS
and Fd-GOGAT). With the exception of glutamate, the rest of the
components were metabolites related to secondary C metabo-
lism. In the red 15DAS-module, there was an abundance of me-
tabolites involved in lipid metabolism (e.g., campesterol and
linoleic acid) and metabolites related to the TCA cycle (e.g.,
citrate and alanine). Glucokinase activity was found only in the
red 15DAS-module. The purple 15DAS-module contained dif-
ferent metabolites, including unidentified carbohydrates, chlor-
ogenates, and lipids such as a-tocopherol and stigmasterol.
Finally, the turquoise 15DAS-module containedmost of the amino
acids (e.g., glutamine and phenylalanine), different carbohydrates
and derivative metabolites (e.g., sucrose, glucose, and glycerate-
3-phosphate), and several secondary metabolites (e.g., caffeate,
chlorogenate, and coumarate). In this module, four enzyme ac-
tivities related to C and N metabolism (PEPC, AlaAT, GDH, and
N-invertase) were also identified.

Weighted Gene Co-Expression Network Analysis (WGCNA)
software was used to perform correlation studies between ag-
ronomic traits and physiological traits (Supplemental Data Set 1).
The relationships between agronomic traits and physiological
traits were analyzed using weighted correlations that take into
account the module membership and amplify correlations of the
members of outcome-related modules (Langfelder and Horvath,
2008). Themain results of these correlation studies are presented
in Table 2, and their detailed analysis is shown in Supplemental

Data Sets 11 (V stage) and 12 (15 DAS). At the V stage, 12 sig-
nificant correlations were found between GY and physiological
traits. One of the most important results was the finding of
strong positive correlations between GY and the amounts of
2-oxoglutarate (0.73) and succinate (0.66). Although lower than
that found for GY, 2-oxoglutarate also exhibited a positive cor-
relationwithTKW(0.38). Interestingly,both the2-oxoglutarateand
succinate contents were positively correlated with the total C and
Ncontent of the kernels and the leaf protein content at the V stage.
Erythritol exhibited a positive correlation with both GY (0.51) and
TKW (0.42). The leaf a-tocopherol content was strongly and
positively correlatedwithTKW(0.85) and toa lesser extentwith the
leafCcontentbothat theVstageand15DAS,and to the leafNand
protein contents but only at 15 DAS. When the enzyme activities
were considered, the highest correlation at the V stage was found
between KN and AlaAT in the direction of glutamate synthesis
(0.69). Such a positive correlation between AlaAT activity, GY
(0.59), andKN (0.48)wasalso found15DAS. Interestingly, the total
activities of three enzymes involved in central C metabolism
aconitase, enolase, and fructokinase were positively correlated
(correlation coefficient around 0.50) with KN at the V stage. During
the grain filling period 15 DAS, enolase and fructokinase activities
were also positively correlated with GY, whereas for aconitase it
was with KN.
At 15 DAS, there was a clear match between most of the blue

and turquoise module physiological components and their cor-
relations foundwith GY (Figure 8, Table 2; Supplemental Data Set
12). For the blue module components (notably, enzymes of C4

metabolismandammoniaassimilation), correlationswithGYwere
positive, whereas for the turquoise module components (mostly
enzymes involved in amino acid and carbohydrate metabolism),
most of the correlations were negative. In the turquoise 15DAS-
module, only the activities of four enzymes, AlaAT, NAD-GDH
(deaminating activity), PEPC, and N-invertase, were positively
correlated with GY (Figure 8, Table 2; Supplemental Data Set 12).
In addition, it is worth stressing that most of the members of the

Table 2. The Most Representative Correlations between Leaf Metabolite Content, Enzyme Activities, and Yield-Related Traits

Correlations V Stage 15 DAS

Negative 3-Coumaroylquinate 2974.6/345 (GY) 3-Coumaroylquinate 2974.6/345 (GY, KN, TKW)
Ethanolamine 3-Caffeoylquinate-trans (GY, KN)
3-Hydroxybutyrate Feruloylquinate 3088.4/249 (GY, KN)

Ethanolamine (GY, KN)
Amino acids (GY, KN)
Carbohydrates (GY, KN)

Positive 2-Oxoglutarate (GY, TKW) N-invertase (GY, KN, TKW)
a-Tocopherol (TKW) NAD-GDH (GY, KN, TKW)
AlaAT (KN) AspAT (GY, TKW)

AlaAT (GY, KN)
GS/GOGAT (GY, TKW)
C4 enzymes (GY, TKW)

Yield and its components were measured on plants grown in the field under optimal N feeding conditions. Leaf metabolites were quantified and
enzymes activities were measured at the vegetative stage (V) on a young fully developed leaf and at the grain filling stage (15 DAS) on the leaf below the
ear. Weighted correlation studies were performed using the physiological trait data set and yield data set with a q-value#0.05. Details of the correlation
study are presented in Supplemental Data Sets 8 and 9. Yield components exhibiting a positive or a negative correlation with the various physiological
traits are indicated in parentheses. The number 2974.6/345 corresponds to the metabolic signature of the identified 3-coumaroylquinate.
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bluemodule showed positive correlations with the kernel C andN
contents, the leaf N and protein contents, both at the V stage and
15 DAS. Furthermore, the components of the blue module ex-
hibited negative correlations with the leaf nitrate content at the V
stage. For a number of traits belonging to the blue module (kernel
total C and N contents) and for leaf N content at 15 DAS, it was
found that instead of being positive, they were negative in the
turquoisemodule. Irrespective of the composition of themodules,
other enzyme activities such as NAD-GDH and N-invertase were
also positively correlated with KN and TKW. The finding that
a number of secondary metabolites involved in the lignin bio-
syntheticpathwaywerepositivelyornegatively correlatedwithGY
and its components is another noteworthy result that arose from
this correlation study (Table 2).

DISCUSSION

Is There a Link between Maize Genetic Diversity and
Leaf Physiology?

The relative amounts of metabolites present in the leaves of the
19 maize lines representative of American and European maize
genetic diversity were quantified in order to determine if they were

different according to their genetic background. In addition,
physiological markers representative of the leaf physiological
status including totalC, totalN, leafnitrate, and leafwatercontents
werealsomeasured. Irrespectiveof theplantdevelopmental stage
and of the genetic background, carbohydrates were the most
abundant soluble organic molecules in the leaf (57%), with su-
crose notably representing almost 70% of the total carbohy-
drates. Organic acids, mainly represented by aconitate, were the
second most abundant class of metabolites, representing;27%
of the total. Soluble amino acids were present in lower concen-
trations in the leaves, representing around 9% of the total me-
tabolites. Alanine was by far the most abundant soluble N
containing molecule (Supplemental Figures 1A and 1B), repre-
senting35%of the total soluble leaf aminoacid content.However,
as previously observed (Amiour et al., 2012), the leaf metabolic
profiles of the 19 maize lines were different at the V stage and
15 DAS. In all lines, three main groups of metabolites exhibiting
opposing patterns of accumulation between the V stage and
15 DAS were clearly identified, reflecting the transition from sink
leaves (accumulating C and N assimilates) to source leaves (ex-
porting C and N assimilates to the grain) (Supplemental Figure 3).
When examining the portfolio of enzymes selected for their key

role in primary N and C metabolism and in the C4 photosynthetic

Figure 8. Network Diagram for Relationships between Leaf Metabolites and Enzyme Activities 15 DAS.

Diamonds represent enzymes, and circles represent metabolites. Colors of the circles and diamonds correspond to the different components within
amodule. ThenamesofmetabolitesandenzymespositivelyornegativelycorrelatedwithGYarehighlighted inboldblackand in redcharacters, respectively.
Only thenetworkconnections thathavea topological overlapabove the thresholdof0.1areshown.The redcircle in thecentercorresponds toametaboliteof
unknown function (unk. Fer-quin 3088.4/249) with a structure similar to a feruloylquinate that exhibits a significant negative correlation with GY. Lines
represent asignificant correlationbetween two traits. Thicker lines represent thehighestpositiveor negative correlations. Thesameanalysiswasperformed
at 15 DAS for correlations with TKW (Supplemental Figure 9).
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pathway, it canbeseen thatmostof theenzymesweremoreactive
at the V stage compared with 15 DAS, except PEPCK, PFK-PPi
(PFP), aconitase, AlaAT, AspAT, NAD-GDH, and fumarase (mi-
tochondrial and cytoplasmic), which were more active during the
15DASgrainfillingperiod (Table1). It hasbeengenerally observed
that NAD-GDH activity increases during leaf senescence and N
remobilization and that such an increase can be variable de-
pending on the genetic background (Dubois et al., 2003; Girondé
et al., 2015). Such changes between the two stages of plant
development also reflect the transition from sink leaves to source
leaves in which C and N assimilatory enzymes are downregulated
and replaced by another set of enzymes involved in the remobi-
lization process (Hirel et al., 2005).

Further analyses revealed that there was a wide range of
variation for both leaf metabolite composition and leaf enzyme
activities. For example, the asparagine contents varied by up to
200% (Figure 1), while differences in PEPC activity were low
(10% at the V stage and 25% 15 DAS). It is well established that
due to its central role in plant N assimilation and management,
the asparagine content can vary considerably from one plant
species to another and can be greatly affected by environmental
conditions (Lea et al., 2007). PEPC is an enzyme that plays
amajor role in C4 photosynthetic CO2 assimilation (Maroco et al.,
1998; Cousins et al., 2007; Paulus et al., 2013). While themodel-
predicted flux range of the reaction catalyzed by PEPC was
comparable for many maize lines, the variation in the non-
overlapping flux ranges among all maize lines was small. This
indicated that the metabolic differences between maize lines
were reflected in small changes in the flux through the PEPC-
catalyzed reaction.

When examining further the leafmetabolite composition at the
V stage and 15 DAS, the most interesting results were obtained
following hierarchical clustering analysis. The leaf metabolite
profile 15DASwas similar within each of the five groups ofmaize
lines defined on the basis of their genetic distance. In addition,
neither the silking date nor GY production had any direct re-
lationship with themetabolite-clustering pattern (Figure 2). Such
observations indicate that leaf metabolite accumulation in
source leaves (15 DAS) mostly depends on the genetic back-
ground, whatever the sink capacity of the kernels. It is therefore
attractive to propose that the metabolite accumulation pattern
during the grain filling period could be used as a marker for
assessing the genetic dissimilarity of maize lines both in Europe
and America.

To identifywhichmetabolitesorclustersofmetaboliteswere the
most representative of the leafmetabolic signature 15DAS, sPLS-
DA was performed (Supplemental Figure 7; Figure 3). Northern
Flint and Tropical lines were characterized by high contents of
amino acids and chlorogenates. However, the amount of car-
bohydrates in the Tropical lines was much higher compared with
the other lines. As therewas also a good correlationwith the leaf C
content 15 DAS and the origin of five genetic groups (Figure 6), it
would appear that the Tropical lines are more efficient in terms of
carbohydrate biosynthesis, thus providing more C skeletons for
amino acid production. In addition, the content of three unknown
chlorogenates (Unk.Chlorogenate 3105.5/2, Unk.Chlorogenate
2981.0/2, and Unk.Chlorogenate 3118.9) allowed a clear sepa-
ration of the lines classified as Northern Flint and Tropical, the

three secondary metabolites being high in the former and much
lower in the latter. The Stiff Stalk line B73 was characterized by
lower amounts of chlorogenates and of most of the amino acids.
Maize Belt lines and European Flint lines were both characterized
by a low accumulation of carbohydrates. In the European Flint
lines, the amount of caffeic acidwas similar comparedwith that of
the Maize Belt lines, whereas the amounts of ferulic acid were
extremely low in theEuropeanFlint lines; thus, chlorogenatesmay
be key molecules for differentiating the five groups of lines. De-
spite the identification of ametabolic signature specific for eachof
the five groups of lines, its use could be limited by the fact that
individual variationshaveoccurredduringbreeding.Thus, itwill be
interesting to verify in a larger panel of genotypes which of the
components of the leaf metabolic signature are representative of
the grain filling period. Such a metabolic signature could also be
useful in a study on maize domestication (Riedelsheimer et al.,
2012a), with respect to the accumulation and transport of as-
similates to the kernels (Sosso et al., 2015).
By contrast, activities of the main enzymes involved in central

C andNmetabolism did not allow the differentiation of any of the
five groups of maize lines except the Maize Belt Dent lines
15 DAS, for which they were grouped in a single cluster
(Supplemental Figure 5). Additionally, using genome-scale
modeling, the fluxes through metabolic reactions during the V
stage could not be clearly differentiated based on the five groups
ofmaize lines. However, the differences in themeasured enzyme
activities occurring between the V stage and 15 DAS were the
same in all Tropical lines (Table 1). The activity of three enzymes
related to the C4 photosynthetic pathway (PPDK, NADP-MDH,
and NAD-ME), of four enzymes involved in N assimilation (NR,
GS, Fd-GOGAT, and AlaAT), and of ShiDH (shikimate de-
hydrogenase, an enzyme involved in aromatic amino acid bio-
synthesis and secondary metabolism) were lower 15 DAS
compared with that measured at the V stage in the Tropical lines
(Table 1). These enzymes probably correspond to a core set of
enzymeswhose activity needs to be higher during the vegetative
stage before silking in genetically distant maize lines. It will be
interesting to test if the activities of the enzymes involved in C4

photosynthesis and N assimilatory pathways are, like those
involved in starch biosynthesis (Doebley et al., 2006), repre-
sentative of maize domestication and potentially useful for
breeding.
A preliminary studywas conducted to determine if therewere

any relationships between the genetic distances of the 19 lines
and the various leaf biochemical and physiological traits. Al-
though low (r = 0.28), the genetic distances of the 19 lines were
significantly correlated with the glycolytic pathway at 15 DAS
representedby the enzymesF1,6BP, PFK-PPi (PFP), PFK-ATP,
andenolase (Figure 4). Formetabolites, a significant correlation
was observed only with the a-tocopherol content during grain
filling, which also exhibited a positive correlation with TKW at
the V stage (Table 2). At the V stage of plant development, a low
but significant correlation was also observed for physiological
traits such as the leaf N content (%N) and KN (r = 0.19;
Supplemental Data Set 3). It is therefore likely that the three
types of phenotypic traits, TKW,%N, andKN, could be putative
markers representative of European and American genetic
diversity of maize.
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Is There a Link between the Genetic Variability of Metabolic
Fluxes and Maize Genetic Diversity?

It is generally agreed that compared with fluxomic studies,
metabolomic and enzyme activity profiling only provide a narrow
and static picture of the physiological status of a given organ, at
a particular stage of plant development (Fernie and Stitt, 2012).
Therefore, a 15NH4Cl-labeling experiment was performed and the
metabolic fluxes were analyzed using a compartmentalized leaf
genome-scalemetabolicmodel. The aimof the experimentwas to
determine if there was any relationship between the genetic
variability of the metabolic fluxes (in particular those involved in
amino acid biosynthetic pathways) and the five groups of lines.

Irrespective of the classification of the lines into five groups, the
highest labeling with the 15N tracer (mmol 15N-amino acid g21 FW)
wasdetected in themostabundant leafaminoacid, alanine (Figure
5D). Such a result is consistent with the fact that the rate of
turnover of both glutamine and glutamate is higher than that of
alanine, as they act as amino donors for the synthesis of most
other amino acids. On a relative basis, the highest 15N-labeling
was in glutamine (44.9% as a mean value of %15N-glutamine for
the 19 lines) due to the small size of the soluble pool coupled to
a high turnover, while alanine had a lower relative 15N-labeling
(18.3% as a mean value of 15N-alanine for the 19 lines). In-
terestingly, asparagine had the lowest 15N-labeling (4.9% as
a mean value of %15N-asparagine for the 19 lines) due to a large
sizeof thepool anda low turnover. Alaninewas themost abundant
newly synthesized amino acid, probably due to the dual role of this
amino acid as a N storage compound (McAllister et al., 2012;
Limami et al., 2014) and as an intermediate in theCO2 assimilatory
pathway in C4 plants (Wang et al., 2014). Overall, the Maize Belt
Dent lines exhibited thehighest 15N-labeling in all the amino acids,
suggesting that thefluxof ammoniumgoing through thesynthesis
of glutamine was much higher in these lines.

Glycine and serine were among the amino acids that were highly
labeled in all lines, despite the fact that their accuratemeasurement is
oftendifficult (Novitskayaetal.,2002).Glycineandserinehaverecently
been shown to accumulate in maize leaves under drought stress
conditions (Obata et al., 2015). Low rates of photorespiration have
been detected in maize by gas exchange measurements (Dai et al.,
1995), and the enzymes required for the photorespiratory glycolate
pathway have recently been identified in Sorghum bicolor leaves
predominantly in the bundle sheath cells (Döring et al., 2016). In ad-
dition, studies with mutants of Amaranthus edulis (Lacuesta et al.,
1997;Wingler et al., 1999) andmore recentlywithmaize (Zelitch et al.,
2009) havealso indicated that there canbeanactivephotorespiratory
glycolate pathway operating in C4 plants. Therefore, it is likely that
glycine and serine can be generated from glycolate through the
processofphotorespiration.However, incorporationof15Nwashigher
in serine than in glycine,with a 4-fold higher labeling in linesSA24and
C105. Furthermore, the mean values for the 19 lines showed higher
values for serine (14.6%) compared with glycine (9.6%). This may be
due to the rapid metabolism of glycine to serine in photorespiration
(Novitskaya et al., 2002) or the synthesis of serine via the non-
photorespiratory 3-phosphoglycerate pathway (Ros et al., 2013). The
elevated labeling in serine may reflect the fact that there are multiple
pools of glycine, only one of which is highly labeled and in-
volved in photorespiration. The other glycine pools, containing low or

zero15N-label,wouldbeabletodiluteoutthephotorespiratoryglycine,
giving the appearance of glycine that is less labeled than serine.
On some occasions, connections can be drawn between the

metabolicsimilaritiesof twomaize linesand thefivegeneticgroups to
which they belong. However, there was no observable link between
their genetic relatedness and the metabolism predicted through
genome-scale models that account for varying biomass composi-
tionsandthechangeinmaximalenzymeactivitiesamongmaize lines.
Nevertheless, themetabolism of the FV2 andNYS302 lineswere the
most disparate,whichmaybe related to the lowenzymatic activity of
AlaAT observed in these lines.

Predictive Value of Physiological Markers for Yield and
Its Components

To assess the predictive value of leaf physiological traits for grain
yield and its components, we performed correlation studies and
network analyses. Such an approach has already beendeveloped
to identify single or multiple metabolites as potential markers for
the breeding of abiotic stress-tolerant maize grown in the field
(Obata et al., 2015). Pearson correlations were first analyzed
between the yield-related traits andmarkers representative of the
leaf physiological status, including the C, N, C/N ratio, the soluble
protein, the PEPC protein, and the nitrate contents. Across the
19 lines, therewasasexpectedahighpositivecorrelationbetween
GY and both KN and TKW. Such a finding indicates that despite
the large genetic variability of KN and TKW (Bertin and Gallais,
2000), both traits can be further used for identifying predictive
physiological traits for yield in maize (Figure 6).
The positive relationship observed between the leaf N content,

the leaf protein, the kernelNcontent, andbothGYandTKWduring
the grain filling period was one of the most notable results of the
correlation study. Such a finding indicates that when the protein N
accumulated in source leaves is high, it will have a goodpredictive
value for selecting high yielding maize lines containing more N
both from Europe and America. This conclusion is in agreement
with the strong correlation generally observed between plant N
uptake at silking and kernel yield in ancient and recent maize
hybrids (Ciampitti andVyn, 2012). Conversely, an accumulation of
C in leavesduring thegrainfillingperiodwill bedetrimental to yield,
as revealed by the negative relationship found between KN and
totalCcontent, but alsobetweenGY, TKW, and theC/N ratio. This
could be related to evidence that carbohydrate accumulation
occurs when sink capacity is limited, for example, when there are
less or smaller kernels (Uhart and Andrade, 1995). As for C, nitrate
accumulation in young leaves can also be considered as a neg-
ative marker for maize GY, probably resulting from an inefficient
metabolic activity in terms of N utilization.
We performed additional correlation studies to identify rela-

tionships between GY and its components, the leaf metabolite
content, and theactivitiesof themainenzymes involved inCandN
assimilation (Table 2).
At both the V and 15 DAS stages, there were negative corre-

lations of the three yield components with 3-coumaroylquinate
(metabolic signature 274.6/345) and apositive correlationwith the
enzyme activity of AlaAT. We therefore propose that these two
physiological markers can be measured either before or after
silking for theselectionofhighyieldingmaize lines.Of theenzymes
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constrained in themetabolicmodel with experimental data, AlaAT
was observed to be one of two main enzymes responsible for the
in silico differences inmetabolism. Additionally, it hasbeen shown
that increasing the activity of the enzyme AlaAT enhanced the
productivity of several crops (Good and Beatty, 2011; Han et al.,
2016). The direct effect of the leaf chlorogenate content on crop
yield is not well documented. However, it has been reported that
chlorogenates are key molecules involved in pest resistance
(Dhillon et al., 2013; Ferruz et al., 2016). They can also be used as
marker molecules for maize improvement (Butrón et al., 2001;
Sood et al., 2014). In line with this proposal, the accumulation of
chlorogenates was also negatively correlated with GY and KN
15 DAS. Taken together, these results indicate that the most
productive lines in terms of yield components contain lower
amounts of secondary metabolites in the leaves.

Other molecules, such as a-tocopherol (vitamin E) and
2-oxoglutarate, couldalso representgoodmarkers forTKW,when
they accumulate at the V stage. Vitamin E has been found to be of
importance for the quality ofmaize kernels (Wong et al., 2003). It is
thereforenotsurprising tofind that the2-oxoglutaratecontentwas
positively correlatedwith bothGY and TKWat the V stage, since it
is a key molecule involved in ammonia assimilation, trans-
amination, and the TCA cycle. The activities of several enzymes,
notably AlaAT and GDH, two enzymes that metabolize or syn-
thesize 2-oxoglutarate (Good and Beatty, 2011; Fontaine et al.,
2012), were correlated with TKW.

Another of the key results obtained through these correlation
studies was the number of positive correlations found at 15 DAS
between yield-related traits such as GY and TKW and enzyme
activities involved in C4 metabolism and ammonia assimilation,
notably PEPC for the former andGS and Fd-GOGAT for the latter.
Moreover, our correlation-based network analyses enabled the
identification of a hub of coregulations containing the activities of
most of the enzymes involved in the C4 pathway and the two
enzymes GS and Fd-GOGAT involved in the assimilation of am-
monia (blue 15DAS-module in Figure 8). In maize, the importance
of the genes encoding GS in controlling GY and TKW has been
previously demonstrated using both forward and reverse genetic
approaches (Martin et al., 2006). It has also been shown that in C3

cereals the enzyme NADH-GOGAT is important for yield perfor-
mance (Tamura et al., 2011). The C4 photosynthetic pathway is
considered a key biotechnological target for crop improvement
(Covshoff and Hibberd, 2012; Kandoi et al. 2016).

Another network module (turquoise-15DAS module) compris-
ing most of the major amino acids and essential carbohydrates
was identified during the grain filling period 15 DAS. All compo-
nents of this module were negatively correlated with both GY and
TKW, except the activity of four enzymes, AlaAT, NAD-GDH,
PEPC, and N-invertase. PEPC plays a major role in C4 CO2 as-
similation (Maroco et al., 1998; Cousins et al., 2007; Paulus et al.,
2013) and invertase in sucrose metabolism in sink organs (Sturm
and Tang, 1999). However, the negative correlations observed
between the yield-related traits with most soluble carbohydrates
andaminoacidssuggests that evenwhen there is efficientCandN
assimilation, an accumulation of the resulting products in the
leaves will be detrimental for both kernel set and kernel filling. In
line with this hypothesis, it has been shown that whatever the sink
capacity of the developing ear, an accumulation of C and N

metabolites in source organs such as leaves, negatively affects
GY (Cliquet et al., 1990; Yang et al., 2004). In turn, it is likely that
most of themetabolites and enzyme activities that exhibit positive
or negative relationships with kernel yield and its components
could be used as representative markers for the metabolic or
physiological status of the plant. Such an idea is further supported
by the fact that for most of the components found in the blue and
turquoise 15DAS-modules, there were positive or negative cor-
relations between yield-related traits and both leaf and kernel
physiological traits (Supplemental Data Set 12).
Although NAD-GDH activity 15 DAS is not shown in the

graphical representations of the network (due to the selected
threshold of significance over 0.1), it was found to belong to the
turquoise 15DAS-module, thus being positively correlated with
the three yield components GY, KN, and TKW (notably TKW with
a correlation higher than 0.8). It has been proposed that NAD-
GDH, by virtue of its role in replenishing a shortage of carbohy-
drates through the synthesis of 2-oxoglutarate is a key enzyme
involved in the control of plant productivity (Dubois et al., 2003,
Tercé-Laforgue et al., 2015).
As well as providing putative physiological markers for maize

grain production, our network analyses allowed the identification
of regulatory modules in which metabolite accumulation and
enzyme activities were coregulated during grain filling (15 DAS),
irrespective of thegenetic background (Figure 8). In addition to the
two main network modules (blue 15DAS and turquoise 15DAS)
exhibiting densely connected regions and correlations with GY
and its components, a number of other minor modules were also
identified, although these will not be described in detail. In the
green 15DAS-module, there were strong relationships between
NR activity and a number of organic acids involved in the TCA
cycle, in linewith the finding that the accumulation of nitrate andC
skeletons used for amino acid transamination are coregulated
(Scheible et al., 1997). The occurrence of a strong relationship
between different chlorogenates of known or unknown structure
both in the magenta 15DAS-module and in the brown 15DAS-
module was in agreement with the previous finding that there are
modules of coexpressed genes that determine their accumulation
(Joët et al., 2010). The network analysis approach is also con-
sistentwith the occurrence of interactions existing betweenCand
N metabolism (Nunes-Nesi et al., 2010), highlighted in the blue
15DAS- and turquoise 15DAS-modules.

Conclusion: Toward a Maize Ideotype for Optimal
Grain Production

A combinedmetabolomic and enzyme activity profiling approach
has stimulated correlation studies and network analyses to
identify regulatory modules depicting the interaction occurring
between a large set of leaf physiological traits. Members of these
regulatory modules exhibit positive or negative correlations with
yield-related traits over all lines, irrespective of which of the five
structural groups they belong. Such a finding allows the con-
struction of a maize ideotype exhibiting optimal high yielding
characteristics in maize lines of European and American origin,
having a wide genetic diversity. The beginning of the grain filling
period (15 DAS) appears to be the best time to define such an
ideotype. This period must be characterized by at least two
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features. First, there must be little accumulation of the major
soluble amino acids and carbohydrates in the leaves, indicating
that these two main classes of organic molecules are being ef-
ficiently assimilated and exported to the developing kernels.
Second, theremust behighactivity of the leaf enzymes involved in
the C4 photosynthetic pathway and in glutamate, glutamine, and
alanine biosynthesis. These three amino acids are the most im-
portant for transport andmanagement of N inmaize (Weiner et al.,
1991;Martin et al., 2006). Both a low chlorogenate content and an
accumulation of sterols in the leaves appear to be important
marker traits that can be used to select maize lines producing
larger kernels. The use of enzyme activities and the genes con-
trolling their biosynthesiscouldconstitute interestingnewtools for
future breeding strategies.

Wepropose that a number ofmetabolites and enzymeactivities
could be used as physiological markers for breeding purposes.
However, modulation of the expression levels of these markers
individually or simultaneously, using, for example, genetic ma-
nipulation techniques and genome-wide association genetics
studies, will be required to fully validate their predictive value.
Another alternative will be to develop user-friendly and affordable
high-throughput tools aimed atmonitoring thenutritional status of
the plant in relation to its genetic origin. However, considering the
decreasingcosts of analyses, genetic screensbasedon theuseof
genotyping arrays can be used in parallel as they increase the
ability to performgeneticmapping andmarker-assisted breeding.
In any case, integrated systems biology approaches like those
described in this study will help in deciphering the physiological
and regulatory mechanisms underlying genetic variability and
exploiting them to improve maize productivity.

METHODS

Plant Material for Agronomic and Physiological Studies

Nineteen selected maize (Zea mays) inbred lines including races that
are representative of American and European plant genetic diversity
(Supplemental Table 1) have been used previously as a core collection for
association genetic studies (Camus-Kulandaivelu et al., 2006; Bouchet
et al., 2013). Seeds of the 19 maize lines were obtained from INRA (Saint-
Martin-de-Hinx, France). These lines were classified into five main maize
groups named Maize Belt Dent (six lines), European Flint (four lines),
Northern Flint (three lines), Stiff Stalk (one line), and Tropical (five lines), by
Camus-Kulandaivelu et al. (2006) and Bouchet et al. (2013). This original
classificationwasorganizedon thebasisof thegenetic diversityof the lines
using simple sequence repeat microsatellite markers and later using SNP
markers as presented in Supplemental Table 1. The group named Tropical
contained lines fromArgentina,Mexico, andSpain,whereas theMaizeBelt
Dent lines, which mostly originated from North America, contained two
Popcorn lines. In the European Flint lines, there was also one line from
Argentina, whereas all the Northern Flint lines came from North America.

The plants were grown in the field at INRA, Versailles, France (N
48°48.133’, E 2°04.942’) in deep silt loamwithout any stone. The level of N
fertilization was 175 kg/ha and N provided by the soil was estimated at
60 kg/ha. Both phosphorus (P205) and potassium (K20) were also applied at
100 kg/ha.

The19 lineswere grownsideby side in twoseparate rowsof 25plants in
three separate blocks of 253 25mwith an outside boarder area of 3m (line
MBS857) included in each block. The plants were sown on May 15, 2011.
To measure yield traits in each block at plant maturity, the ears from

10 individualplants fromeach linewereharvested,making30 replicatesper
sample point and year. In this study, agronomic traits used for correlation
studies were GY and its components: KN/plant and TKW. For more details
about the procedure used tomeasure the agronomic traits, see Bertin and
Gallais (2000, 2001).

For all biochemical analyses at the V stage and 15 DAS, three halves of
leaves cut vertically were harvested from three individual plants in each of
the three blocks, making nine replicates in total. For the metabolite
analyses, the sampling procedure was the same as for the biochemical
analyses, except that the three leaf samples from each block were pooled
making three replicates in total. At the vegetative (V) stage, half of the 6th
fully emerged leafwithout themaincentralmidribwasharvestedat the7- to
8-leaf stage between 9 AM and noon on July 2, 2011. For the grain filling
stage, half of the leaf below the ear of each individual plant was harvested
15 DAS, each plant being harvested at the same developmental stage and
the harvesting date for each plant is indicated in Figure 2. The plant de-
velopmental stage at 15 DAS has been shown to provide a good indication
of the transition occurring when both C and N metabolites start to be
actively translocated to the developing kernels (Martin et al., 2005; Amiour
et al., 2012).Moreover, the leaf below the earwasselectedsince it provides
a good indication of the sink-to-source transition during grain filling (Prioul
and Schwebel-Dugué, 1992). The delay in the silking date between the
19 lines was ;4 weeks, starting from the 5th of August, 2011. However,
a metabolite profiling study revealed that from 15 DAS and onwards, there
were nomajor differences in themetabolites of the leaf below the earwithin
this period (L. Brulé and B. Hirel, unpublished data). Leaf samples were
harvested from three different plants, exhibiting a similar pattern of de-
velopment in each of the three blocks andpooled. The samples of the three
replicates for each metabolite and enzyme activity were immediately
placed in liquid N2 and stored at 280°C until further analysis.

Protein Extraction, Enzyme Assays, Metabolite Extraction,
and Analyses

Frozen leaf tissues were reduced to a homogenous powder and stored at
280°C until required for the metabolite and enzyme activity measure-
ments. Each sample contained the equivalent of 500 mg FW of the 6th
emerged leaf (V) or the 7- to 8-leaf stage of the leaf below the ear (15 DAS),
as described above for biochemical analyses. Proteins for enzyme activity
measurements were extracted from 25 mg aliquots of frozen leaf material
stored at 280°C using the protocol described by Gibon et al. (2004). The
extraction buffer consisted of 500mMHEPES, pH 7.5, containing 100mM
MgCl2, 10mMEDTA, 10mMEGTA, 2mM leupeptin, 0.5mMDTT,0.1% (v/v)
Triton, and 1% (w/v) polyvinylpolypyrrolidone. All extractions were per-
formed at 4°C. The soluble protein concentration was determined using
a commercially available kit (Coomassie protein assay reagent; Bio-Rad),
with BSAas a standard (Bradford, 1976). A robot-based platformwas used
to measure the activity of 29 enzymes that are involved in C4 photosyn-
thetic, central C, and N metabolism, using the protocols described by
Gibon et al. (2004). In addition the following enzymes measurement
methods were employed: PEP carboxykinase, NADP-MDH, NAD-ME,
NADP-ME, and enolase (Biais et al., 2014), N-Invertase (Desnoues et al.,
2014), SPS (Lunn and Hatch, 1997), PFK-PPi (PFP) and PFK-ATP
(Keurentjes et al., 2008), aconitase (Piques et al., 2009), CS (Nunes-Nesi
et al., 2007), NAD-IDH (Zhang et al., 2010), and NAD-MDH (Jenner et al.,
2001). NRmax corresponds to maximal NR activity, NR-P to phosphory-
lated NR, and NR% to the percentage of active NR. The list of enzymes
analyzed for their activity in soluble protein leaf extracts are presented in
Supplemental Table 2.

Soluble leaf proteins were separated by SDS-PAGE (Laemmli, 1970).
Thepercentageof polyacrylamide in the runninggelswas8%.At theendof
the electrophoresis period, proteins were stained with SYPRO Ruby
protein gel stain (Bio-Rad). Gels were then destained with a solution
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containing 10%ethanol (v/v) and 7%acetic acid (v/v). Stained proteinswere
visualized using a Typhoon FLA 9500 laser scanner (GE Healthcare Life
Sciences) with the following settings (excitation, 450 nm; emission, 640 nm;
photo multiplication = 600, and pixel size = 100 mm). Total leaf and PEPC
proteins were quantified using ImageQuant TL software (GE Healthcare Life
Sciences). The total C andN content of 25mg of frozen leafmaterial and dry
kernels was determined in an elemental analyzer using the combustion
methodofDumas (Flash2000;ThermoScientific).Fornitratemeasurements,
500mg of frozen leaf powderwas extracted in 1mL of 80%ethanol at room
temperature for an hour. The samples were continuously agitated during
extraction and centrifuged at 12,000g for 5 min. The supernatant was re-
moved and the pellet subjected to further extractions in 60% ethanol and
finally in water. All supernatants were combined to form the water/ethanol
extract. Nitrate was determined by the method of Cataldo et al. (1975).

For the leafmetabolomeanalyses,allstepswereadaptedfromtheoriginal
protocol described by Fiehn (2006), following the procedure described by
Amiour et al. (2012). The ground frozen leaf samples (25 mg fresh weight)
were resuspended in 1 mL of frozen (220°C) water:chloroform:methanol
(1:1:2.5) and extracted for 10 min at 4°C with shaking at 1400 rpm in an
Eppendorf Thermomixer. Insoluble material was removed by centrifugation,
and 900 mL of the supernatant was mixed with 20 mL of 200 mg/mL ribitol in
methanol. Water (360 mL) was added, and after mixing and centrifugation,
50mLof theupperpolarphasewascollectedanddried for3h inaSpeed-Vac
andstoredat280°C.For derivatization, sampleswere removed from280°C
storage, warmed for 15 min before opening, and SpeedVac dried for 1 h
before the addition of 10 mL of 20 mg/mL methoxyamine in pyridine. The
reactions with the individual samples, blanks, and amino acid standards
were performed for 90 min at 28°C with continuous shaking. N-methyl-N-
trimethylsilyl-trifluoroacetamide (90 mL) was then added and the reaction
continued for 30minat37°C.After cooling, 50mLof the reactionmixturewas
transferred to an Agilent vial for injection. For the analyses, 3 h and 20 min
after derivatization, 1mL each of the derivatized samples was injected in the
splitless mode onto an Agilent 7890A gas chromatograph coupled to an
Agilent 5975C mass spectrometer. The column used was an Rxi-5Sil MS
from Restek (30 m with 10m Integra-Guard column). The oven temperature
rampwas 70°C for 7min, then 10°C/min up to325°C,whichwasmaintained
for 4 min. For data processing, Raw Agilent data files were converted into
the NetCDF format and analyzed with AMDIS (http://chemdata.nist.gov/
dokuwiki/doku.php?id=chemdata:amdis). Peakareaswere thendetermined
using quanlynx software (Waters) after conversion of theNetCDF file into the
masslynxformat.StatisticalanalyseswereperformedwithTMEV(http://mev.
tm4.org/#/welcome).Univariateanalysesbypermutation (one- and two-way
ANOVA) were first used to select the metabolites exhibiting significant
changes in their concentration (P # 0.05). Amino acid standards were in-
jected at the beginning and end of the analyses, for the monitoring of de-
rivatization stability. An alkanemixture (C10, C12,C15, C19,C22,C28, C32,
and C36) was injected in the middle of the run for external retention index
calibration. For the analysis of the leaf samples, metabolite standards were
injected at the beginning and end of each analysis. The metabolite con-
centration is expressed as nmol mg21 leaf FW.

15N-Labeling Experiment, Gas Chromatography, and
Mass Spectrometry

Three entire 6th emerged leaves were harvested from individual plants
grown in the field in 2011 and then incubated for 8 and 16 h in glass tubes
containing 50 mL of a nutrient solution containing 4 mM NH4Cl, enriched
with 50% 15NH4Cl (Euriso-top; Les Algorithmes). The nutrient solution also
contained 1.25 mM K+, 0.25 mM Ca2+, 0.25 mM Mg2+, 1.25 mM H2PO4

2,
0.75mMSO4

22, 21.5 mMFe2+ (Sequestrene; Ciba-Geigy), 23 mMB3+, 9 mM
Mn2+, 0.3 mMMo2+, 0.95 mMCu2+, and 3.5 mMZn2+. Leaves in the nutrient
tubes were placed in a controlled environment growth chamber (16 h light,
350–400mmolphotonsm22 s21at 26°C).During the labelingperiod, thepH

of the nutrient solution remained stable from 5.6 to 5.8. After the labeling
period, leaf samples were stored at 280°C for further analysis.

Both the changes in the amino acid content and their respective 15N-
enrichmentweredeterminedat thedifferent timepointsof the labelingperiod
by GC-MS. Amino acids were extracted using the following proce-
dure: frozen leaf samples (100 mg fresh weight) were ground in liquid
nitrogen and extracted at 4°C in 2.7 mL of methanol-chloroform-distilled
water (1/2.5/1 [v/v]) for 30 min. Prior to the extraction, 1.25 mL of 2.5 mM
2-aminobutyric acid (internal standard)wasadded to theextractionmedium.
Thehomogenatewascentrifugedat27,000g for20minand0.6mLofdistilled
water was added to the recovered supernatant. The upper methanol-water
fractionwascollected, freeze-dried,andredissolved in1mLofdistilledwater.
The resulting samples were then filtered with a 0.20-mm filter (Pall Life
Science).Distilledwater (550mL)was added to450mLof the filtered solution
andacidifiedwith27mLof1MHCL.Theacidifiedsolutionwasthenapplied to
a5.030.5-cmsyringecontaining2mLofDowex-50WX8-200 ion-exchange
resin (Sigma-Aldrich). Prior to the loading of the acidified solution onto the
column, the resin was rinsed three timeswith 4mLof distilled water, 2mL of
10 mM HCl, and then 8 mL of distilled water. Amino acids were eluted with
7mLof6MNH4OH.Theaminoacid fractionwas lyophylizedandredissolved
in a suitable buffer for either quantification of total amino acids or GC-MS
analysis. Amino acid quantities were determined as described earlier. For
GC-MSanalysis, lyophylizedamino acid sampleswere resuspended in 0.1 N

HCl, dried under N2, and derivatized withN-methyl-N-(tert-butyldimethylsilyl)-
trifluoroacetamid (Pierce) as described by Rhodes et al. (1989). The atom
%15N of each amino acid was then determined by GC-MS analysis
(MD800; Fisons). ANOVA statistical analysis performed with a Student-
Newman-Keuls test and used to identify groups of lines exhibiting a similar
pattern of 15N-labeling (P # 0.05) (Supplemental Data Set 5).

Determining the Metabolic Changes through Modeling

The previously published genome-scale maize leaf model of Simons et al.
(2014) was combined with the vegetative enzyme activity and metabolite
data to evaluate the metabolic differences between the maize lines. The
model is composed of the stoichiometric constraints of all knownmetabolic
reactions within the maize leaf, as well as thermodynamic constraints rep-
resentedbythedirectionalityof the reactions.FBAwasused todetermine the
conversion of reactants to products by assuming that every metabolite is
equally producedandconsumedat apseudo-steadystate (Orthet al., 2010).
Torepresentmaximumcellgrowth,biomasscomponentsweremaximized in
a defined proportion based on metabolite amounts specific to each line or
experimental evidence based on line B73 (Simons et al., 2014). Flux
boundaries were modified for reactions with corresponding enzyme
activity data to represent the regulation for each maize line. The fold
change for each enzyme in eachmaize linewas calculated by dividing the
rate of enzyme activity in the maize line by the maximum enzyme activity
observed over all maize lines. These fold changeswere incorporated into
the model by constraining the allowed maximum and minimum flux
ranges calculated with only stoichiometric and thermodynamic con-
straints (Colijn et al., 2009; Dash et al., 2014). For each maize line, the
maximum rateof sucrose exportwas calculatedby incorporating thenew
reaction boundaries based on the enzyme activity, as described in the
following equation:

2
66666664

Max vsucrose
subject to
∑M

j¼1Sijlvjl ¼ 0; ∀ i e Metabolites
cjlvmin

jl #vjl#cjlvmax
jl ; ∀ j e ReactionsEA

vmin
jl #vjl#vmax

jl ; ∀ j e Reactions
vbiomass 5 0:35 � vmax

biomass

3
77777775
; ∀ l ∈Maize Lines

where Sijl represents the stoichiometric coefficient of metabolite i in re-
action j in maize line l, and vjl represents the flux through reaction j in maize
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line l. Here, vjl
max and vjl

min are the largest and smallest flux values for the
maize line l resulting from the flux variability analysis performed on the
model with only stoichiometric and thermodynamic constraints. The en-
zyme level fold change of reaction j in maize line l is represented by cjl for
reactions corresponding to measured enzymes (ReactionsEA). The upper
and lower boundaries were calculated when only stoichiometric and
thermodynamic constraints are enforced by vj

max and vj
min, respectively. The

model was constrained to require production of at least 35%of the in silico
maximum biomass. This biomass production was determined using the
growth rates approximated from the change in dry weight over a growing
degree day (GDD) at the V sample collection stage (V7/V8) and the max-
imum leaf blade growth rate, which occurs during the V12 stage (Bender
et al., 2013). Thechange inGDDover timewascalculated from the reported
daily temperatures (Bender et al., 2013) and was found to be relatively
stablebetween theV7/V8 stage and theV12 stage, so the ratio of theV7/V8
stage to the V12 stage is approximated as the change in dry weight over
GDD. The similarity between twomaize lineswas determined based on the
number of overlapping flux ranges compared with the total number of
reactions that areactive in eithermaize line. Theflux range for each reaction
in each maize line was calculated with stoichiometric, thermodynamic,
maximum biomass, and the adjusted flux range constraints.

Statistical and Hierarchical Clustering Analysis

The results presented in the Supplemental Data Set 1 were analyzed using
the ANOVA function of theMulti Experiment Viewer (MeV) software version
4.9 (http://mev.tm4.org/#/welcome). The ANOVA statistical analyses (P#

0.05) were performed using metabolite (three replicates, each containing
three pooled leaf samples) and enzyme activity measurements (three
replicates, each containing threepooled leaf samples), alongwith yield and
its components (GY, GN, and TKW: 30 replicates per line) in the 19 maize
lines. When the ANOVA tests returned an overall level of significance at
a P value# 0.05, the data were further submitted to the Bonferroni post-hoc
test. To establish if the classification of themaize lines into five groupswas
correlated with the different agronomic and biochemical traits, HCA was
performed using the MeV software, version 4.9. Correlation studies were
performed using the XLStat-Pro 7.5 software (Addinsoft). Pearson cor-
relations between agronomic and physiological traits were calculated
and the P valueswere submitted to theBonferroni correction. For studying
the correlation between agronomic traits and physiological traits related
to the leaf physiological status at the V stage and 15 DAS, a heat map of
the Pearson correlation matrix was obtained using Excel software with the
results presented in Supplemental Data Set 1. Network diagrams of the
Pearson correlation matrix were obtained using Cytoscape 3.2.1 software
(Smoot et al., 2011)with thenetworkanalyzer plug-in (Assenovet al., 2008).

Analysis of the Relationship between Plant Genetic Distance and
Plant Physiological Characteristics

Pairwise relationshipcoefficients between the 19 lineswerecalculatedusing
the27,681PanzeaSNPmarkersfroma50K IlluminaArray (Ganaletal., 2011).
The calculations were performed using two genomic relationship matrices
obtained (1) by averaging the proportion of shared alleles over all the SNP
markers (Identity-By-State, A_IBS) and (2) byusing themethoddescribed by
Astle and Balding (2009), in which the weight of each locus is inversely
proportional to the genetic diversity of the locus in the population (A_IBD).
Suchmethodsgivemoreweight to the rarestSNPfor calculating relationship
coefficients in a relationshipmatrix calledA_Freq (Supplemental Data Set 3).
For studying the relationshipbetween thegeneticdistanceof the19 linesand
thedifferentphysiological traits, the19lineswereorderedonthebasisof their
genetic distance (distance = 1-A_Freq) using the unweighted pair group
method with arithmetic mean hierarchical clustering method. Enzyme ac-
tivities andmetaboliteswere ordered byhierarchical clustering usingWard’s

method (Ward, 1963). This method is based on the calculation of the phe-
notypicEuclideandistanceof the twophysiological traits usingcenteredand
scaled values for leaf enzyme activities and leaf metabolite contents both at
the V stage and 15 DAS.

The repeatability of the different physiological traits was calculated at
the two stages of plant development using the R-Package heritability test
(Kruijer et al., 2015). In this R-package, the repeatability ĥ2 was estimated
using a classical ANOVA model in which the phenotype P was fitted to
estimate the genotype effect (G) and environmental effect (Env) using the
followingmodel: Pij =Gi+eij,whereeij is the residual error for thegenotype i
and the replicate j. Repeatability ĥ2 was calculated using the following
formula: ĥ2 = Vg/(Vg +Ve), where the genetic variance Vg were estimated
usingVg= (MS(G)-MS(Env))/r andVe=MS(Env) =meansum (MS)of square
for residual errors and MS(G) = mean sum of square for the genotype
obtained from the ANOVA.

Metabolite Biomarker Analysis for Genetic Relatedness

sPLS-DA was used to quantify the relationship between the leaf metabolite
content and the genetic relatedness of the lines in order to detect putative
metabolite biomarkers. The mixOmics library (version 5.1.2) in R was used to
carry out sPLS-DA (Lê Cao et al., 2011) for themetabolite data set at the grain
filling stage 15DAS (Supplemental Data Set 1). For sPLS-DA, twoparameters
were adjusted: the total number of components onto which the data were
projected, and the number of variables selected for each component. In the
analysis, G-1 was considered, G being the number of classes necessary for
determiningwhichoptimal numberof componentsneeded tobeused (LêCao
et al., 2011). Since the five groups of lines (Maize Belt Dent, European Flint,
Northern Flint, Stiff Stalk, and Tropical) corresponded to five G classes, the
analysis was focused on four main components identified following sPLS-DA
analysis.For theparameter tuning, theoriginaldatasetwasdividedintotraining
and testing sets from the initial individuals. Tenplantswere randomly selected
to constitute the training set. A sPLS-DA classifier was then built using the
metabolite trainingsetsandtestedontheremaining individuals.Thenumberof
variables for a parsimoniousmodel was selected for the first (smallest) model.
The average classification error rate fell to within one SE of the average of the
different computed minima. The classification error rate based on 100 times
5-fold cross validation was run on the training data. To identify the four main
components, 6, 12, 44, and 58 metabolites, respectively, were selected.

Network Analysis Using the WGCNA Software

Relationships between metabolite content, enzyme activities, and traits
related to yield and the leaf physiological status were analyzed using the R
package WGCNA. Such a package originally used for studying gene co-
expression networks (Langfelder and Horvath, 2008) can also be used for
analyzing metabolite data sets (DiLeo et al., 2011) and integrating mor-
phological traits (Toubiana et al., 2013; Liseron-Monfils and Ware, 2015).
The WGCNA scripts used in this study are described in the Supplemental
File 1. Twodifferent coexpressionmodule networkscorresponding to theV
stage and to 15DASwere constructed for studying biologicallymeaningful
relationshipsbetween thedifferentmetaboliteandenzymedata.Before the
networkswere constructed, the appropriate soft-threshold powerwas first
determined by performing an analysis of the network topology. For the V
stage, the one-step network construction option was used with a soft-
thresholdpower valueof 5andaminModuleSizeof5.For 15DAS, thesame
one-stepnetworkconstructionoptionwasusedwith thesameparameters,
but with a soft-threshold power value of 4. Physiological traits with a k
Module (kME) >0.3 were assigned to a colored coexpression module or to
a gray module, if they did not meet the threshold criteria described above
(Supplemental Data Sets 8 and 9). The connectivity and module mem-
bership for each trait are presented in Supplemental Data Sets 13 and
14 for the V stage and for 15 DAS, respectively. Network screening was
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performed using weighted and Pearson correlations of the WGCNA net-
workScreening function. The q-values (false discovery rates) were then
calculated (Storey et al., 2004). Correlations between the mean values of
the modules (metabolite content and enzyme activity), their individual
values and agronomical traits (GY, KN, and TKW), and physiological pa-
rameters representative of the plant physiological status (C, N, C/N ratio,
andnitrate contents) at theVstageand15DASwereconsideredsignificant
when the q-value was <0.05.

Supplemental Data

Supplemental Figure 1. Genetic relatedness of the 19 maize lines
within the origin of the five groups of lines.

Supplemental Figure 2. Average proportions of different metabolite
classes in the 19 maize lines representative of American and European
plant diversity (Camus-Kulandaivelu et al., 2006).

Supplemental Figure 3. Hierarchical clustering analysis of metabo-
lites and at the V stage and 15 DAS in the 19 maize lines.

Supplemental Figure 4. Hierarchical clustering analysis to investigate
the relationship between the five groups of maize lines and metabo-
lites.

Supplemental Figure 5. Hierarchical clustering analysis used to
investigate the relationship between the five groups of maize lines of
the maize lines and enzyme activities.

Supplemental Figure 6. Metabolism similarity matrix indicating the
ratio of active reactions with shared flux ranges between the 19 maize
lines in a pairwise manner.

Supplemental Figure 7. The five groups of maize lines identified by
means of specific leaf metabolic signature during the grain filling
period.

Supplemental Figure 8. Heat map and Pearson correlations with the
modules and agronomic traits (GY, KN, and TKW) and physiological
parameters representative of the kernel and leaf physiological status at
the V stage.

Supplemental Figure 9. Network diagram of relationships between
leaf metabolites and enzyme activities 15 DAS.

Supplemental Table 1. Classification of the 19 maize lines originating
from Europe and America on the basis of their genetic relatedness.

Supplemental Table 2. The enzymes involved in central C and N
metabolism used for studying genotypic variation in their activity and
for determining the metabolic changes through modeling.

Supplemental File 1. WGCNA script.

Supplemental Data Set 1. Database containing the relative values of
the three replicates for the different agronomic, biochemical, and
metabolic traits measured in the panel of 19 maize lines representative
of American and European plant genetic diversity.

Supplemental Data Set 2. List of metabolites selected from the four
components of the sPLS-DA.

Supplemental Data Set 3. Genetic distance matrices based on SNP
markers and phenotypic distances matrices used for the Mantel test.

Supplemental Data Set 4. Analysis of variance to estimate the
repeatability for metabolites, enzyme activities, and physiological
traits at the V stage and 15 DAS.

Supplemental Data Set 5. Incorporation of 15NH4
+ in a young fully

developed leaf at the vegetative stage of plant development.

Supplemental Data Set 6. Flux range associated with each reaction in
the genome scale model for each maize line.

Supplemental Data Set 7. Correlations between agronomical and
physiological traits at the V stage and 15 DAS.

Supplemental Data Set 8. Metabolite and enzyme annotations
including module membership and weighted correlation with agro-
nomical and physiological traits at the V stage.

Supplemental Data Set 9. Metabolite and enzyme annotations
including module membership and weighted correlation with agro-
nomical and physiological traits 15 DAS.

Supplemental Data Set 10. Correlations between modules and
agronomic and physiological traits at the V stage and 15 DAS.

Supplemental Data Set 11. Weighted correlations between leaf
metabolite content, enzyme activities, and GY-related traits.

Supplemental Data Set 12. Weighted correlations between leaf
metabolite content, enzyme activities, and GY-related traits.

Supplemental Data Set 13. Connectivity and module component
values at the V stage.

Supplemental Data Set 14. Connectivity and module component
values 15 DAS.

ACKNOWLEDGMENTS

We thank Gilles Clément for performing the metabolome analyses, which
were carried out at the Obervatoire du Végétal Chimie Metabolisme of the
Institute Jean-Pierre Bourgin, INRA, Versailles-Grignon. We also thank
Guillaume Ménard and Patricia Ballias for technical support at the Bor-
deaux Metabolome Platform and Christophe Montagnier from the INRA
Versailles field experiment unit for setting up the plant culture.

AUTHOR CONTRIBUTIONS

R.A.C. andZ.Y.-C. performed themetabolomic, enzymatic, physiological, and
agronomic traitsstudiesandanalysisof thedata.M.S.performedthemetabolic
modelingusing thedatageneratedbyR.A.C.,Z.Y.-C., andS.N.F.C.performed
the studyon thebiomarkers. P.A. participated to theenzymeactivitymeasure-
ments and the analysis of the data. I.Q. conducted the field trials and yield
measurements. C.C. and A.M.L. performed and analyzed the 15N-labeling
studies, respectively. Y.G. supervised the enzyme activity measurements on
the robot-based platform. S.N. performed the genetic distance studies. L.B.
performed the leaf protein and seed nitrogen content analysis. P.J.L., C.D.M.,
andB.H. designed the experiment and participated to the analysis of the data.
P.J.L. and B.H. wrote the article.

Received August 22, 2016; revisedMarch 7, 2017; accepted April 6, 2017;
published April 10, 2017.

REFERENCES

Allen, D.K., and Ratcliffe, R.G. (2009). Quantification of isotope label.
In Plant Metabolic Networks, J. Schwender, ed (New York:
Springer), pp. 105–149.

Amiour, N., Imbaud, S., Clément, G., Agier, N., Zivy, M., Valot, B.,
Balliau, T., Armengaud, P., Quilleré, I., Cañas, R., Tercet-
Laforgue, T., and Hirel, B. (2012). The use of metabolomics in-
tegrated with transcriptomic and proteomic studies for identifying
key steps involved in the control of nitrogen metabolism in crops
such as maize. J. Exp. Bot. 63: 5017–5033.

Metabolic Genetic Diversity in Maize 939

http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00613/DC1


Amiour, N., Imbaud, S., Clément, G., Agier, N., Zivy, M., Valot, B.,
Balliau, T., Quilleré, I., Tercé-Laforgue, T., Dargel-Graffin, C.,
and Hirel, B. (2014). An integrated “omics” approach to the char-
acterization of maize (Zea mays L.) mutants deficient in the ex-
pression of two genes encoding cytosolic glutamine synthetase.
BMC Genomics 15: 1005.

Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T., and
Albrecht, M. (2008). Computing topological parameters of bi-
ological networks. Bioinformatics 24: 282–284.

Astle, W., and Balding, D.J. (2009). Population structure and cryptic
relatedness in association genetics studies. Stat. Sci. 24: 451–471.

Azevedo, R.A., Lancien, M., and Lea, P.J. (2006). The aspartic acid
metabolic pathway, an exciting and essential pathway in plants.
Amino Acids 30: 143–162.

Bender, R.R., Haegele, J.W., Ruffo, M.L., and Below, F.E. (2013).
Nutrient uptake, partitioning, and remobilization in modern, trans-
genic insect-protected maize hybrids. Agron. J. 105: 161–170.

Bertin, P., and Gallais, A. (2000). Physiological and genetic basis of
nitrogen use efficiency in maize. I. Agrophysiological results.
Maydica 45: 53–66.

Bertin, P., and Gallais, A. (2001). Physiological and genetic basis of
nitrogen use efficiency in maize. II. QTL detection and coincidences.
Maydica 46: 53–68.

Biais, B., et al. (2014). Remarkable reproducibility of enzyme activity profiles
in tomato fruits grown under contrasting environments provides a road-
map for studies of fruit metabolism. Plant Physiol. 164: 1204–1221.

Bouchet, S., Servin, B., Bertin, P., Madur, D., Combes, V., Dumas,
F., Brunel, D., Laborde, J., Charcosset, A., and Nicolas, S. (2013).
Adaptation of maize to temperate climates: mid-density genome-
wide association genetics and diversity patterns reveal key genomic
regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS
One 8: e71377.

Bradford, M.M. (1976). A rapid and sensitive method for the quanti-
tation of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal. Biochem. 72: 248–254.

Brauer, D., and Teel, M.R. (1981). Metabolism of trans-aconitic acid
in maize 1: purification of two molecular forms of citrate dehydrase.
Plant Physiol. 68: 1406–1408.

Butrón, A., Li, R.G., Guo, B.Z., Widstrom, N.W., Snook, M.E., Cleveland,
T.E., and Lynch, R.E. (2001). Molecular markers to increase corn ear-
worm resistance in a maize population. Maydica 46: 117–124.

Camus-Kulandaivelu, L., Veyrieras, J.B., Madur, D., Combes, V.,
Fourmann, M., Barraud, S., Dubreuil, P., Gouesnard, B.,
Manicacci, D., and Charcosset, A. (2006). Maize adaptation to
temperate climate: relationship between population structure and
polymorphism in the Dwarf8 gene. Genetics 172: 2449–2463.

Cataldo, D.A., Haroon, M., Schrader, L.E., and Youngs, V.L. (1975).
Rapid colorimetric determination of nitrate in plant tissue by nitra-
tion of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71–80.

Chollet, R., Vidal, J., and O’Leary, M.H. (1996). Phophoenolpyruvate
carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 47: 273–298.

Ciampitti, I.A., and Vyn, T.J. (2012). Physiological perspectives of
changes over time in maize yield dependency on nitrogen uptake and
associated nitrogen efficiency: a review. Field Crops Res. 133: 48–67.

Cliquet, J.B., Deléens, E., and Mariotti, A. (1990). C and N mobili-
zation from stalk and leaves during kernel filling by 13C and 15N
tracing in Zea mays L. Plant Physiol. 94: 1547–1553.

Colijn, C., Brandes, A., Zucker, J., Lun, D.S., Weiner, B., Farhat,
M.R., Cheng, T.Y., Moody, D.B., Murray, M., and Galagan, J.E.
(2009). Interpreting expression data with metabolic flux models:
predicting Mycobacterium tuberculosis mycolic acid production.
PLOS Comput. Biol. 5: e1000489.

Cousins, A.B., Baroli, I., Badger, M.R., Ivakov, A., Lea, P.J.,
Leegood, R.C., and von Caemmerer, S. (2007). The role of
phosphoenolpyruvate carboxylase during C4 photosynthetic iso-
tope exchange and stomatal conductance. Plant Physiol. 145:
1006–1017.

Covshoff, S., and Hibberd, J.M. (2012). Integrating C4 photosyn-
thesis into C3 crops to increase yield potential. Curr. Opin. Bio-
technol. 23: 209–214.

Dai, Z., Ku, M., and Edwards, G.E. (1995). C4 photosynthesis - the
effects of leaf development on the CO2-concentrating mechanism
and photorespiration in maize. Plant Physiol. 107: 815–825.

Dash, S., Mueller, T.J., Venkataramanan, K.P., Papoutsakis, E.T.,
and Maranas, C.D. (2014). Capturing the response of Clostridium
acetobutylicum to chemical stressors using a regulated genome-
scale metabolic model. Biotechnol. Biofuels 7: 144.

DellaPenna, D., and Last, R.L. (2008). Genome-enabled approaches
shed new light on plant metabolism. Science 320: 479–481.

Desnoues, E., Gibon, Y., Baldazzi, V., Signoret, V., Génard, M., and
Quilot-Turion, B. (2014). Profiling sugar metabolism during fruit
development in a peach progeny with different fructose-to-glucose
ratios. BMC Plant Biol. 14: 336.

DiLeo, M.V., Strahan, G.D., den Bakker, M., and Hoekenga, O.A.
(2011). Weighted correlation network analysis (WGCNA) applied to
the tomato fruit metabolome. PLoS One 6: e26683.

Dhillon, M.K., Kalia, V.K., and Gujar, G.T. (2013). Insect-pest and
their management: current status and future need of research in
quality maize. In Maize: Nutrition Dynamics and Novel Uses, P.
Chaudhary, S. Kumar, and S. Langyan, eds (New Delhi, India:
Springer), pp. 95–103.

Doebley, J.F., Gaut, B.S., and Smith, B.D. (2006). The molecular
genetics of crop domestication. Cell 127: 1309–1321.

Döring, F., Streubel, M., Bräutigam, A., and Gowik, U. (2016). Most
photorespiratory genes are preferentially expressed in the bundle
sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot. 67: 3053–
3064.

Dubois, F., Tercé-Laforgue, T., Gonzalez-Moro, M.B., Estavillo,
M.B., Sangwan, R., Gallais, A., and Hirel, B. (2003). Glutamate
dehydrogenase in plants: is there a new story for an old enzyme?
Plant Physiol. Biochem. 41: 565–576.

Fernie, A.R., and Schauer, N. (2009). Metabolomics-assisted
breeding: a viable option for crop improvement? Trends Genet. 25:
39–48.

Fernie, A.R., and Stitt, M. (2012). On the discordance of metab-
olomics with proteomics and transcriptomics: coping with in-
creasing complexity in logic, chemistry, and network interactions
scientific correspondence. Plant Physiol. 158: 1139–1145.

Ferruz, E., Loran, S., Herrera, M., Gimenez, I., Bervis, N., Barcena,
C., Carramiñana, J.J., Juan, T., Herrera, A., and Ariño, A. (2016).
Inhibition of Fusarium growth and mycotoxin production in culture
medium and maize kernels by natural phenolic acids. J. Food Prot.
79: 1753–1758.

Fiehn, O. (2006). Metabolite profiling in Arabidopsis. In Methods in
Molecular Biology: Arabidopsis Protocols, , J. Salinas and J.J.
Sanchez-Serrano, eds (Totowa NJ: Humana Press), pp. 439–447.

Fontaine, J.X., Tercé-Laforgue, T., Armengaud, P., Clément, G.,
Renou, J.P., Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y.,
Lea, P.J., Hirel, B., and Dubois, F. (2012). Characterization of
a NADH-dependent glutamate dehydrogenase mutant of Arabi-
dopsis demonstrates the key role of this enzyme in root carbon and
nitrogen metabolism. Plant Cell 24: 4044–4065.

Fukushima, A., and Kusano, M. (2013). Recent progress in the de-
velopment of metabolome databases for plant systems biology.
Front. Plant Sci. 4: 73.

940 The Plant Cell



Ganal, M.W., et al. (2011). A large maize (Zea mays L.) SNP geno-
typing array: development and germplasm genotyping, and genetic
mapping to compare with the B73 reference genome. PLoS One 6:
e28334.

Gibon, Y., Blaesing, O.E., Hannemann, J., Carillo, P., Höhne, M.,
Hendriks, J.H., Palacios, N., Cross, J., Selbig, J., and Stitt, M.
(2004). A Robot-based platform to measure multiple enzyme ac-
tivities in Arabidopsis using a set of cycling assays: comparison
of changes of enzyme activities and transcript levels during di-
urnal cycles and in prolonged darkness. Plant Cell 16: 3304–
3325.

Girondé, A., et al. (2015). The contrasting N management of two
oilseed rape genotypes reveals the mechanisms of proteolysis as-
sociated with leaf N remobilization and the respective contributions
of leaves and stems to N storage and remobilization during seed
filling. BMC Plant Biol. 15: 59.

Good, A.G., and Beatty, P.H. (2011). Biotechnological approaches to
improving nitrogen use efficiency in plants: alanine aminotransfer-
ase as a case of study. In Molecular and Physiological Basis of
Nutrient Use Efficiency in Crops, M.J. Hawkesford and P. Barraclough,
eds (Chichester, UK: Science Publishers, Wiley-Blackwell), pp. 165–
192.

Han, M., Wong, J., Beatty, P.H., and Good, A.G. (2016). Identification
of nitrogen use efficiency genes in barley: searching for QTLs
controlling complex physiological traits. Front. Plant Sci. 7: 1587.

Hirel, B., Martin, A., Tercé-Laforgue, T., Gonzalez-Moro, M.B., and
Estavillo, J.M. (2005). Physiology of maize I: A comprehensive and
integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant.
124: 167–177.

Hirel, B., and Gallais, A. (2006). Rubisco synthesis, turnover and
degradation: some new thoughts on an old problem. New Phytol.
169: 445–448.

Hirel, B., Le Gouis, J., Bernard, M., Perez, P., Falque, M., Quétier,
F., Joets, J., Montalent, P., Rogwoski, P., Murigneux, A., and
Charcosset, A. (2007). Genomics and plant breeding: maize and
wheat. In Functional Plant Genomics, J.F. Morot-Gaudry, P.J. Lea,
and J.F. Briat, eds (Enfield, NH:Science Publishers), pp. 614–635.

Jenner, H.L., Winning, B.M., Millar, A.H., Tomlinson, K.L., Leaver,
C.J., and Hill, S.A. (2001). NAD malic enzyme and the control of
carbohydrate metabolism in potato tubers. Plant Physiol. 126:
1139–1149.

Joët, T., Salmona, J., Laffargue, A., Descroix, F., and Dussert, S.
(2010). Use of the growing environment as a source of variation
to identify the quantitative trait transcripts and modules of
co-expressed genes that determine chlorogenic acid accumulation.
Plant Cell Environ. 33: 1220–1233.

Joshi, V., Joung, J.G., Fei, Z., and Jander, G. (2010). In-
terdependence of threonine, methionine and isoleucine metabolism
in plants: accumulation and transcriptional regulation under abiotic
stress. Amino Acids 39: 933–947.

Kandoi, D., Mohanty, S., Govindjee, and Tripathy, B.C. (2016). To-
wards efficient photosynthesis: overexpression of Zea mays phos-
phoenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth.
Res. 130: 47–72.

Keurentjes, J.J.B., Sulpice, R., Gibon, Y., Steinhauser, M.C., Fu, J.,
Koornneef, M., Stitt, M., and Vreugdenhil, D. (2008). Integrative
analyses of genetic variation in enzyme activities of primary car-
bohydrate metabolism reveal distinct modes of regulation in Ara-
bidopsis thaliana. Genome Biol. 9: R129.

Kruijer, W., Boer, M.P., Malosetti, M., Flood, P.J., Engel, B., Kooke,
R., Keurentjes, J.J.B., and van Eeuwijk, F.A. (2015). Marker-
based estimation of heritability in immortal populations. Genetics
199: 379–398.

Kusano, M., Fukushima, A., Redestig, H., and Saito, K. (2011).
Metabolomic approaches toward understanding nitrogen metabo-
lism in plants. J. Exp. Bot. 62: 1439–1453.

Kusano, M., and Fukushima, A. (2013). Current challenges and future
potential of tomato breeding using omics approaches. Breed. Sci.
63: 31–41.

Lacuesta, M., Dever, L.V., Muñoz-Rueda, A., and Lea, P.J. (1997). A
study of photorespiratory ammonia production in the C4 plant
Amaranthus edulis, using mutants with altered photosynthetic ca-
pacities. Physiol. Plant. 99: 447–455.

Laemmli, U.K. (1970). Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature 227:
680–685.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics 9:
559.

Lea, P.J., Sodek, L., Parry, M.A.J., Shewry, P., and Halford, N.
(2007). Asparagine in plants. Ann. Appl. Biol. 150: 1–26.
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