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Abstract

Background—Approximately 30% of older adults have disrupted gait. It is associated with
increased risk of cognitive decline, disability, dementia, and death. Additionally, most older adults
present with one or more neuropathologies at autopsy. Recently there has been an effort to
investigate the association between subclinical neuropathology and gait.

Summary—We reviewed studies that investigated the association between gait and
neuropathologies. Although all pathologies reviewed were associated with gait, grey matter
atrophy was most consistently linked with poorer gait performance. Studies investigating the
association between white matter and gait focused primarily on total white matter. Future research
using more parsed regional analysis will provide more insight into this relationship. Evidence from
studies investigating neuronal activity and gait suggests that gait disruption is associated with both
under- and over-activation. Additional research is needed to delineate these conflicting results.
Lastly, early evidence suggests that both amyloid and tau aggregation negatively impact multiple
gait parameters, but additional studies are warranted. Overall, there was substantial

methodological heterogeneity and a paucity of longitudinal studies.

Key messages—Longitudinal studies mapping changes in different types of neuropathology as
they relate to changes in multiple gait parameters are needed to better understand trajectories of
pathology and gait.
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Introduction

Gait abnormalities affect approximately 30% of older adults [1]. Gait decline is associated
with an increased risk of functional and cognitive decline, disability, dementia, and death
[2,3]. Gait parameters can be classified into three categories: spatial (e.g., stride length),
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temporal (e.g., support time), and spatio-temporal (e.g., cadence). Intraindividual variation
in gait parameters (e.g., stance time variability) has also been shown to be a strong predictor
of negative clinical outcomes [4,5]. Additionally, tests such as the timed up-and-go (TUG)
can be used to evaluate gait and mobility [6].

Gait is a complex task involving the coordination of both the central nervous system (CNS)
and musculoskeletal system [7]. It also requires coordination across regions of the brain [7].
Sensorimotor regions are of course required to initiate, sustain, and coordinate mobility.
Recent research has shown that regions involved in higher level cognitive functioning and
memory, including the prefrontal cortex, hippocampus, and cerebellar regions, are also
required to coordinate mobility. However, the exact extent of the role of brain regions in gait
is not yet well defined.

Neurodegenerative disorders (e.g., Parkinson’s disease (PD), Huntington’s disease (HD),
etc.) often present with gait dysfunction, suggesting a connection between the CNS and gait.
A recent review hypothesized that, among older adults, CNS dysfunction is the leading
cause of mobility impairment (defined as restriction in moving through one’s environment,
including gait dysfunction) [8]. Neuropathologies are associated with multiple
neurodegenerative diseases in the aging brain. For example, amyloid beta (AB) plaques and
neurofibrillary tangles are the hallmarks of Alzheimer’s disease (AD) [9-12]. However, the
accumulation of neuropathology is common even among older adults without a clinical
diagnosis of a neurodegenerative disease. Indeed, approximately 35% of cognitively normal
(CN) adults between ages 70 and 79 and 57% of CN adults between ages 80 and 89 have
substantial cerebral Ap deposition [13]. The toxic and atrophic effects of these pathologies
may result in impaired ability of the brain to coordinate gait.

Although multiple studies have examined the association between brain pathology and gait
dysfunction in neurodegenerative diseases, fewer studies have investigated the associations
between subclinical neuropathology and gait [7]. As an initial step, we evaluated the
literature examining neuropathology and gait among non-demented, aging individuals, and
highlighted areas for future research. Specifically, we investigated white matter (WM) and
grey matter (GM) atrophy; neuronal activity as measured by cerebral glucose metabolism;
and Ap and tau. The majority of studies investigating the association between subclinical
neuropathology and gait have focused on cerebrovascular pathology (e.g., white matter
hyperintensities (WMHSs)). The association between greater cerebrovascular pathology and
poorer gait performance has been reviewed in-depth by others [14,15]. Because less is
known about the effect of other types of neuropathologies and gait, we focused on
summarizing the evidence of non-cerebrovascular pathology and gait in the present review.
We aimed to determine whether patterns emerged wherein certain types of gait parameters
(e.g., spatial vs. temporal vs. spatio-temporal) were differentially associated with certain
types of neuropathologies.

To identify studies we utilized the Mayo Clinic Library, and searched the following
databases: PubMed, MEDLINE, and Cochrane Libraries from January 21 to April 1, 2016.
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We searched for studies that examined neuropathology and gait in adult humans using
multiple search terms, including “neuropathology,” “volumetric decline,” “brain atrophy,”
“brain volume,” “cortical thinning,” “cortical thickness,” “white matter volume,” “gray
matter volume,” “hippocampus volume,” “hippocampus atrophy,” “FDG PET,” “cerebral
glucose uptake,” “amyloid,” “amyloid beta,” “PiB-PET,” “tau,” “gait,” and “mobility.” We
used filters to restrict studies to research conducted in humans and excluding PD patients
and falls as an outcome. Searches from PubMed returned 2,016 titles, MEDLINE returned
974, and Cochrane returned 13.

Titles were screened for keywords. Abstracts were screened if titles were insufficient. We
excluded studies from review if they were conducted in samples of patients with significant
medical conditions (e.g., Down’s syndrome, HD, PD, Creutzfeldt-Jakob), investigated
cerebrovascular pathologies, or did not meet our other criteria (i.e., not conducted in
humans, only examined falls as an outcome). We included studies for review if they
measured both gait and neuropathology either via imaging methods, on autopsy, or in
cerebrospinal fluid (CSF) in middle to older aged adults. Additional studies were identified
from the reference sections of selected papers.

We included 31 studies, 23 of which measured brain volume or tissue integrity and gait,
three that assessed glucose uptake, four that measured Ap, and one that assessed tau. These
studies are summarized in Table 1-Table 4. Although the methods of these studies were too
heterogeneous to complete a meta-analysis, we did summarize the findings by regions of
interest (ROI) (Table 5 and Table 6). All studies reviewed met quality guidelines set forth by
the National Institutes of Health [16].

White matter (WM)

Studies that have investigated the association between WM atrophy and gait have focused
mostly on total WM, as measured by structural magnetic resonance imaging (MRI). One
cross-sectional study found, among 112 non-demented community-dwelling adults aged 70
years and older, that greater bilateral total WM was associated with faster gait speed (Table
1). However, this association was not significant after excluding participants with mild
cognitive impairment (MCI) [17]. Longitudinally, one study among 225 community-
dwelling older adults (mean age=71) without severe gait impediments or contraindication to
MRI reported that change in total WM atrophy was associated with declining gait speed,
step length, and cadence over an average of 30 months [18].

Using diffusion tensor imaging (DTI) techniques, researchers have investigated the
association between WM integrity and gait. A study among high-functioning older adults
(mean age=83) found that global greater mean diffusivity (MD), was associated with greater
step length variability [19]. Additionally, in 173 community-dwelling older adults (mean
age=73), lower fractional anisotropy (FA), indicating less white matter microstructural
integrity, in the genu, but not the splenium of the corpus callosum, was associated with
poorer gait and balance [20]. Importantly, this association was independent of WMH
volume. In CN older adults (mean age=71), lower FA in the left anterior thalamic radiation
and left corticospinal tract was associated with reduced step width and greater instability
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measured during treadmill walking [21]. The corpus callosum is primarily responsible for
communication across hemispheres, and the genu primarily connects the left and right
prefrontal and anteriorfrontal cortices [22]. Together these findings support the idea that
integrity of the frontal areas associated with executive function is important for gait and
balance, and that gait and balance involve the coordination of multiple areas across
hemispheres.

The association between WM integrity within the context of substantial cerebrovascular
burden has also been examined. Among 429 non-demented later middle-aged adults (mean
age=65) with cerebral small vessel disease, lower FA and higher MD of the corpus callosum
was associated with slower gait speed, reduced stride length and cadence, and increased
stride width [23]. In a smaller study of 20 older adults (range=65-84) with significant
cerebrovascular pathology, lower FA and higher MD, and axial and radial diffusivity across
all WM were associated with freezing of gait [24]. Another study that examined the effect of
FA within the context of WMHSs found that FA measures throughout WM regions
significantly moderated the association between WMH volume and gait speed among 265
community-dwelling older adults (mean age=83) [25]. Specifically, among those with high
FA, there was no association between WMH and gait speed. These results suggest that
WMHs alone may not be associated with slower gait and are consistent with the hypothesis
that the interaction between multiple pathologies is necessary to substantially affect gait
performance [26].

In summary, the evidence presented here suggests that WM atrophy is associated with
disrupted gait; however, it is not overwhelmingly compelling, particularly compared to the
association between other types of pathology and gait (e.g., GM atrophy), as described
below. The few studies investigating the association between gait and WM volume have
focused on total volume [17,18], This broad type of investigation may be obscuring regional
differences. It may be that more parsed analyses investigating individual regions are needed
to detect a stronger association between WM and gait.

Ventricles

Ventricular enlargement may be indicative of GM atrophy, declines in CSF reabsorption,
and/or total generalized brain atrophy. Among 20 community-dwelling MCI patients (mean
age=76), greater left ventricular volume of both the main bodies and temporal horn, was
associated with slower gait speed [27] (Table 1). Further, bilateral larger temporal horns
were associated with greater stride-to-stride variability among 115 community-dwelling
older adults (mean age=70 years) [28]. Similarly, among 321 CN and MCI subjects, slower
gait speed was associated with severe ventricular enlargement (i.e., ventricular grade>5)
[29]. Ventricular enlargement is a non-specific measure of cerebral damage, which could
explain why the association with gait impairment was only observed with severe ventricular
enlargement.
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Grey matter (GM)

GM volume decreases with age and this decrease is further exacerbated in aging related
diseases such as type Il diabetes and AD [30-32]. The associations between spatial,
temporal, and spatiotemporal gait parameters and reduced cortical thickness have been
widespread across cortical regions. Six studies reported that lower total GM volume was
associated with poorer performance on multiple gait measures [17,19,33-36] (Table 1).
Seven studies showed that smaller GM volume in frontal regions was associated with poorer
gait [33,34,37-41]. Five studies showed a relationship between lower GM volume in the
parietal lobe and poorer performance on gait parameters [33,37-40]. Four studies found that
lower GM volume in temporal lobe regions [37,38,42,43], cerebellum [37,40,43,44] and
basal ganglia, insula, and limbic systems [33,37,38,40] was associated with disrupted gait.
Three studies found that smaller GM volume in motor areas [33,38,39] and the hippocampus
were also associated with poorer gait performance [17,18,45].

Across all ROIs reviewed, the association between GM volume in frontal regions and gait
was the most commonly reported. This finding supports the hypothesis that gait involves
regions important for higher level cognitive functioning. Indeed, decline in prefrontal ROIs
is associated with executive dysfunction [46]. The strong relationship reported between the
parietal lobe and gait is also not surprising because parietal regions are central to sensory
integration, visuospatial function, and managing the relationship between one’s self and
surroundings [39,40,47]. Findings that the caudate nucleus is associated with gait are
supported from research in PD and HD, which are both characterized by disrupted gait and
marked caudate nucleus atrophy [48,49]. The association between widespread GM atrophy
and gait supports the theory that the coordination and interaction of multiple brain regions is
necessary for proper gait performance.

The association between GM volume within the context of cerebrovascular pathology has
also been examined. De Laat and colleagues studied the association between cortical
thickness and gait within the context of small vessel disease [33]. Among 415 community-
dwelling adults (age range 50 to 85 years) with cerebral small vessel disease, disrupted gait
(i.e., slower gait speed, shorter stride length, lower cadence, wider stride width) was
associated with lower GM volume across the cortex, including frontal, orbitofrontal,
ventrolateral prefrontal, inferior parietal, visual, primary motor and premotor, temporal and
left fusiform gyri, visual areas, insula, and cingulate ROIls. Similarly, Smith and colleagues
(2015) [34] found that smaller total GM volume, in the context of cerebral small vessel
disease, was associated with slower TUG. These findings suggest that even in the context of
small vessel disease, widespread GM atrophy in areas associated with cognition and
visuospatial processing is associated with disrupted gait.

Additionally, the relationship between GM volume and gait has been explored specifically in
MCI. In a smaller study (N=20) of MCI patients, thinner motor cortex measures were
associated with slower gait speed in both single and dual task walking, and greater stride
time variability during single task walking [50]. Another study examined the association
between both GM and WM volumes and mobility in 170 older adults diagnosed as CN,
amnestic (a) MCI, or nonamnestic (na) MCI [35]. Participants completed both the real
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(NTUG and imagined (i) TUG. Smaller total GM volume was associated with slower rTUG,
and smaller total and left PFC volume was associated with slower iTUG. The strongest
association between brain volume and TUG performance was seen among the naMCI group.
This may suggest that the pathological changes occurring in naMCI affects motor imagery,
and this is independent of the kinesthetic completion of motor tasks (e.g., rTUG).

GM volume has also been associated with more severe measures of motor dysfunction
(bradykinesia and gait disturbance), which is prevalent even among older adults without
neurological conditions [42,51,52]. Among 307 community-dwelling older adults (mean
age=83) without PD, smaller GM sensorimotor cortical and posterior parietal lobe volumes
were associated with bradykinesia and gait disturbance. Smaller GM medial temporal lobe
volume was associated only with gait disturbance and smaller GM volume in the cerebellum
and dorsolateral prefrontal cortex was associated only with bradykinesia [43].

Together, the above studies suggest that there is a strong association between GM atrophy
and gait. However, there is a paucity of longitudinal evidence, so it is difficult to determine
trajectories of atrophy and gait. Indeed, only one study [18] examined the association
between GM and gait over time. Future studies are also needed to systematically examine
specific ROIs and consistently measure multiple gait parameters to elucidate whether GM
atrophy in certain ROIs is more or less associated with different gait parameters.

Neuronal activity

Glucose uptake is a measure of neuronal activity, and has been shown to decrease in normal
aging, with further decline in dementia [53-55]. Greater glucose uptake is indicative of
neuronal activation or up-regulation, whereas reduced glucose uptake is indicative of
deactivation or down-regulation. Based on findings from functional magnetic resonance
imaging (fMRI) studies, Jahn and colleagues [56,57] proposed a supraspinal locomotor
network that includes the frontal cortex, basal ganglia, brain stem tegmentum, and
cerebellum. This network, which is activated during locomotion across species and can be
interrupted by lesions, provides insight into the locomotive process. Their locomotor
network hypothesis is supported by findings from a study that examined glucose uptake
measured by with Fludeoxyglucose (18F) (FDG)-PET during locomotion in 16 adults aged
51 to 73 [58] (Table 2). The greatest uptake was in the bilateral central region, particularly
focused in the mesial part of the primary cortex, the primary somatosensory cortex, lingual
gyrus, fusiform gyrus, and parahippocampal gyrus during walking. Additionally, the authors
observed greater uptake in the occipital lobe and precuneus. The first group of brain areas is
associated with visually guided navigation, while the latter areas are associated with visual-
motor coordination.

A study that measured glucose uptake in 24 community-dwelling women aged 75 to 82
similarly found greater glucose uptake in the occipital lobe, as well as the sensorimotor area
and cerebellum during treadmill walking [59]. Their results showed reduced uptake in the
orbitofrontal and superior frontal gyrus, dorsolateral prefrontal cortex (dLPFC),
supplementary motor area, middle and superior temporal gyrus, posterior cingulate cortex,
pons, and hippocampus. Another study separated participants into low step variability (LSV)

Dement Geriatr Cogn Disord. Author manuscript; available in PMC 2018 February 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wennberg et al.

Page 7

and high step variability (HSV) groups, because, as aforementioned, greater step variability
is associated with increased risk of negative clinical outcomes [4,5]. The LSV group showed
greater sensorimotor activation than the HSV group. Additionally, the HSV group had
relative deactivation of the supplementary motor area, dLPFC, and hippocampus during
treadmill walking. The authors hypothesized that deactivation, as assessed by lower glucose
uptake, of the supplementary motor area and dLPFC in the HSV group indicate that these
participants found it more difficult to adapt to the novel walking environment (i.e., the
treadmill). While the observed greater activation of the hippocampus is in line with earlier
findings [60], indicating that hippocampal metabolism and atrophy are associated with
greater step length variability. In contrast, lower glucose uptake in the prefrontal, posterior
cingulate, and parietal cortices was associated with slower maximum walking speed and
lower cadence at maximum walking speed among 182 community-dwelling women aged 55
to 89 years [61]. This finding indicates that lower neural activation, as opposed to increased
neural activation, is associated with poorer gait.

Associations between gait and cerebral glucose uptake are diffuse across brain regions,
including frontal, temporal, parietal, and occipital lobes, and the cerebellum and limbic
areas. This is consistent with the hypothesis put forth by Jahn et al. [56,57], indicating that
locomotion requires coordination of multiple brain regions, including those involved in
higher level cognition. It is unclear, however, whether higher glucose uptake (which suggests
up-regulation and recruitment of brain regions) is needed to execute gait, or lower glucose
uptake (which suggests cerebral dysfunction) is associated with gait. For example, the study
from Shimada et al. found HSV participants had lower glucose uptake in sensorimotor areas,
but higher glucose uptake in the hippocampus [59]. It may be that different brain regions
respond contrarily to the demands of gait functioning, and therefore have varying glucose
uptake patterns. Longitudinal studies will be critical for understanding these associations to
determine whether decreased and/or increased glucose uptake, perhaps dependent on the
ROI, predicts gait decline.

Amyloid Beta (AB)

Over 30% of adults over the age of 70 have substantial cerebral AR deposition [13].
However, few studies have investigated the association between A and gait. Two autopsy
studies reported that greater AD pathology (neuritic plaques, diffuse plaques, and
neurofibrillary tangles) deposition in the midfrontal, superior temporal, inferior parietal,
entorhinal cortices, and hippocampus was associated with reduced gait speed prior to death
and declining gait speed up to 6 years prior to death [62,63] (Table 3). A study in 128 non-
demented older adults (aged 70 years or older) found that greater A deposition in the
putamen, caudate, precuneus, and occipital, temporal, and parietal lobes was associated with
slower gait speed [64]. The association was strongest for AB deposition in the posterior
putamen. Given its proximity to the motor corticostriatal circuits, this finding suggests that
AP deposition contributes to gait dysfunction.

Expanding on this study, we investigated the association between C11 Pittsburgh Compound
B (PiB) [65] PET standardized uptake volume ration (SUVR) and gait parameters in
cognitively normal adults aged 50 to 69 [66]. Greater PiB-PET SUVR across ROIs
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(prefrontal, orbitofrontal, temporal, parietal, anterior and posterior cingulate, and motor) was
associated with slower gait speed, lower cadence, longer double support time, and greater
stance time variability, independent of neurodegeneration, as measured by FDG PET and
MRI, in AD-signature regions. In sex-stratified analyses, these associations were only
significant among women. In conclusion, despite the relatively few studies that have
investigated the association between AP and gait, it appears that greater AB burden is
associated with disrupted gait. Longitudinal studies are needed to determine the trajectories
between amyloidosis and gait.

Aggregates of tau protein are part of the pathological process of a number of diseases,
including AD and frontotemporal dementia. The majority of research examining the
association between gait and tau has been conducted in AD and normal pressure
hydrocephalus (NPH) patients [67—69]. However, one study among 86 participants without
PD (or AD or NPH), reported that the number of neurofibrillary tangles in the substantia
nigra was significantly associated with declining gait in annual exams prior to death [70].
This evidence suggests that gait and mobility are impacted by tau aggregation both in
diagnosed and prodromal disease. With the new availability of tau-PET ligands, imaging
will provide information on whether regional deposition of cerebral tau affects gait in vivo,
which cannot currently be ascertained by measuring tau in the CSF.

Summary of the reported brain regions associated with gait

Pathologies in three regions were most often found to be associated with disrupted gait: the
frontal regions were associated with gait in 12 studies, and the limbic system and parietal
regions, were each associated with gait in 11 studies (Tables 5 and 6). Although there was
not strong evidence for the association between the motor cortices and gait, the motor cortex
and somatosensory motor cortex are located in the frontal and parietal lobes, respectively,
and are a juncture of the inputs from multiple converging cortical and subcortical regions,
such as the frontal lobe and thalamus. Further, the motor areas provide input to the
descending corticospinal tract [50,71]. The observed association of the limbic system with
gait further suggests that cognition, especially memory, is important for gait. Indeed, past
studies have suggested that gait requires memory, particularly in novel situations
[35,45,59,60]. Thus, other regions associated with gait and cognitive functioning (e.g.,
frontal and parietal regions) may impact gait partially through cognitive dysfunction. For
additional information, the association between cognition and gait has been reviewed
elsewhere [72].

Gaps in the literature and future directions

Future studies should consider potential sex differences in the association between
neuropathologies and gait. Past studies have shown that this relationship can differ between
men and women [66]. This is unsurprising given the increased recognition of sex differences
in aging [73,74], gait changes [73,75-78], and brain and neuropathological development
[50,79-85]. An empirical understanding of sexual dimorphism across pathologies is
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important. Reasonably, these differences in pathology would translate to differing patterns of
gait dysfunction. Thus, future research should attempt to delineate how different pathologies
affect different gait parameters by sex. This may translate into sex-specific clinical
guidelines for gait impairment associated with brain pathology. Moreover, most studies in
this review investigated the association between a particular pathology and gait speed.
However, it is important to examine other gait parameters to determine whether they are
differentially affected by specific pathologies, show different trajectories of decline, or have
sex-specific differences.

Perhaps the most glaring gap in the literature is the lack of longitudinal studies. Of the
research we reviewed, only two studies [18,63] had a longitudinal design. Longitudinal
studies are needed to determine how gait trajectories are affected by changes in
neuropathology over time. Quantifying trajectories of pathology, based on both type and
location, with gait decline will allow for a more precise approach to utilizing gait as a
measure in-clinic and for therapeutic and intervention trials.

Conclusion

The goal of this review was to summarize research examining the associations between
neuropathologies and gait. We found that all pathologies reviewed (i.e., WM, GM, and HVa
decline, ventricular enlargement, and amyloid and tau aggregation) were associated with
poorer gait performance. The strongest associations were between GM and gait. Regardless,
this review further suggests a link between neurodegenerative biomarkers and gait
performance.

This review has limitations that should be considered. First, relatively little research has
been conducted investigating the association between protein aggregation (i.e., Ap and tau)
and gait, in part because PET ligands have only recently been developed, so it is difficult to
draw robust conclusions. However, past reviews have not included these studies, and we
hope more research will be conducted investigating the association between protein
aggregation and gait. Additionally, we were unable to conduct a meta-analysis due to the
heterogeneity of the methods for measuring both neuropathology and gait. For example,
some studies used voxel count methods to determine volume while others used ROI
methods. These methods produce comparable, but heterogeneous results, [86] and more
research is needed to make direct comparisons between these methods [87].Without a meta-
analysis, it is difficult to come to quantitative conclusions about findings in the literature,
including determining whether gait parameters were differentially associated with different
neuropathologies. Still, we hope this review sheds light on the emerging field of research
investigating the link between neuropathologies and gait.

Multiple studies have been published since Rosso and colleagues put out the call to better
understand the connection between the CNS and gait [7]. However, more research is needed
to develop a deeper understanding of the link between neurological mechanisms and
different facets of gait and mobility [88]. An empirical quantification of the association
between neuropathology and gait parameters will contribute to the increased use of gait
measures in the clinic and for clinical trials. Gait has been identified as a potentially useful
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clinical tool [89]. This is largely because it is easy to measure and it is associated with
several poor clinical outcomes. Understanding and interpreting specific declines in gait
parameters throughout the aging process, beginning as early as middle age, could be
important to prevent future poor clinical outcomes [8].
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