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Abstract

Background—Approximately 30% of older adults have disrupted gait. It is associated with 

increased risk of cognitive decline, disability, dementia, and death. Additionally, most older adults 

present with one or more neuropathologies at autopsy. Recently there has been an effort to 

investigate the association between subclinical neuropathology and gait.

Summary—We reviewed studies that investigated the association between gait and 

neuropathologies. Although all pathologies reviewed were associated with gait, grey matter 

atrophy was most consistently linked with poorer gait performance. Studies investigating the 

association between white matter and gait focused primarily on total white matter. Future research 

using more parsed regional analysis will provide more insight into this relationship. Evidence from 

studies investigating neuronal activity and gait suggests that gait disruption is associated with both 

under- and over-activation. Additional research is needed to delineate these conflicting results. 

Lastly, early evidence suggests that both amyloid and tau aggregation negatively impact multiple 

gait parameters, but additional studies are warranted. Overall, there was substantial 

methodological heterogeneity and a paucity of longitudinal studies.

Key messages—Longitudinal studies mapping changes in different types of neuropathology as 

they relate to changes in multiple gait parameters are needed to better understand trajectories of 

pathology and gait.
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Introduction

Gait abnormalities affect approximately 30% of older adults [1]. Gait decline is associated 

with an increased risk of functional and cognitive decline, disability, dementia, and death 

[2,3]. Gait parameters can be classified into three categories: spatial (e.g., stride length), 
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temporal (e.g., support time), and spatio-temporal (e.g., cadence). Intraindividual variation 

in gait parameters (e.g., stance time variability) has also been shown to be a strong predictor 

of negative clinical outcomes [4,5]. Additionally, tests such as the timed up-and-go (TUG) 

can be used to evaluate gait and mobility [6].

Gait is a complex task involving the coordination of both the central nervous system (CNS) 

and musculoskeletal system [7]. It also requires coordination across regions of the brain [7]. 

Sensorimotor regions are of course required to initiate, sustain, and coordinate mobility. 

Recent research has shown that regions involved in higher level cognitive functioning and 

memory, including the prefrontal cortex, hippocampus, and cerebellar regions, are also 

required to coordinate mobility. However, the exact extent of the role of brain regions in gait 

is not yet well defined.

Neurodegenerative disorders (e.g., Parkinson’s disease (PD), Huntington’s disease (HD), 

etc.) often present with gait dysfunction, suggesting a connection between the CNS and gait. 

A recent review hypothesized that, among older adults, CNS dysfunction is the leading 

cause of mobility impairment (defined as restriction in moving through one’s environment, 

including gait dysfunction) [8]. Neuropathologies are associated with multiple 

neurodegenerative diseases in the aging brain. For example, amyloid beta (Aβ) plaques and 

neurofibrillary tangles are the hallmarks of Alzheimer’s disease (AD) [9–12]. However, the 

accumulation of neuropathology is common even among older adults without a clinical 

diagnosis of a neurodegenerative disease. Indeed, approximately 35% of cognitively normal 

(CN) adults between ages 70 and 79 and 57% of CN adults between ages 80 and 89 have 

substantial cerebral Aβ deposition [13]. The toxic and atrophic effects of these pathologies 

may result in impaired ability of the brain to coordinate gait.

Although multiple studies have examined the association between brain pathology and gait 

dysfunction in neurodegenerative diseases, fewer studies have investigated the associations 

between subclinical neuropathology and gait [7]. As an initial step, we evaluated the 

literature examining neuropathology and gait among non-demented, aging individuals, and 

highlighted areas for future research. Specifically, we investigated white matter (WM) and 

grey matter (GM) atrophy; neuronal activity as measured by cerebral glucose metabolism; 

and Aβ and tau. The majority of studies investigating the association between subclinical 

neuropathology and gait have focused on cerebrovascular pathology (e.g., white matter 

hyperintensities (WMHs)). The association between greater cerebrovascular pathology and 

poorer gait performance has been reviewed in-depth by others [14,15]. Because less is 

known about the effect of other types of neuropathologies and gait, we focused on 

summarizing the evidence of non-cerebrovascular pathology and gait in the present review. 

We aimed to determine whether patterns emerged wherein certain types of gait parameters 

(e.g., spatial vs. temporal vs. spatio-temporal) were differentially associated with certain 

types of neuropathologies.

Methods

To identify studies we utilized the Mayo Clinic Library, and searched the following 

databases: PubMed, MEDLINE, and Cochrane Libraries from January 21 to April 1, 2016. 

Wennberg et al. Page 2

Dement Geriatr Cogn Disord. Author manuscript; available in PMC 2018 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We searched for studies that examined neuropathology and gait in adult humans using 

multiple search terms, including “neuropathology,” “volumetric decline,” “brain atrophy,” 

“brain volume,” “cortical thinning,” “cortical thickness,” “white matter volume,” “gray 

matter volume,” “hippocampus volume,” “hippocampus atrophy,” “FDG PET,” “cerebral 

glucose uptake,” “amyloid,” “amyloid beta,” “PiB-PET,” “tau,” “gait,” and “mobility.” We 

used filters to restrict studies to research conducted in humans and excluding PD patients 

and falls as an outcome. Searches from PubMed returned 2,016 titles, MEDLINE returned 

974, and Cochrane returned 13.

Titles were screened for keywords. Abstracts were screened if titles were insufficient. We 

excluded studies from review if they were conducted in samples of patients with significant 

medical conditions (e.g., Down’s syndrome, HD, PD, Creutzfeldt-Jakob), investigated 

cerebrovascular pathologies, or did not meet our other criteria (i.e., not conducted in 

humans, only examined falls as an outcome). We included studies for review if they 

measured both gait and neuropathology either via imaging methods, on autopsy, or in 

cerebrospinal fluid (CSF) in middle to older aged adults. Additional studies were identified 

from the reference sections of selected papers.

We included 31 studies, 23 of which measured brain volume or tissue integrity and gait, 

three that assessed glucose uptake, four that measured Aβ, and one that assessed tau. These 

studies are summarized in Table 1–Table 4. Although the methods of these studies were too 

heterogeneous to complete a meta-analysis, we did summarize the findings by regions of 

interest (ROI) (Table 5 and Table 6). All studies reviewed met quality guidelines set forth by 

the National Institutes of Health [16].

White matter (WM)

Studies that have investigated the association between WM atrophy and gait have focused 

mostly on total WM, as measured by structural magnetic resonance imaging (MRI). One 

cross-sectional study found, among 112 non-demented community-dwelling adults aged 70 

years and older, that greater bilateral total WM was associated with faster gait speed (Table 

1). However, this association was not significant after excluding participants with mild 

cognitive impairment (MCI) [17]. Longitudinally, one study among 225 community-

dwelling older adults (mean age=71) without severe gait impediments or contraindication to 

MRI reported that change in total WM atrophy was associated with declining gait speed, 

step length, and cadence over an average of 30 months [18].

Using diffusion tensor imaging (DTI) techniques, researchers have investigated the 

association between WM integrity and gait. A study among high-functioning older adults 

(mean age=83) found that global greater mean diffusivity (MD), was associated with greater 

step length variability [19]. Additionally, in 173 community-dwelling older adults (mean 

age=73), lower fractional anisotropy (FA), indicating less white matter microstructural 

integrity, in the genu, but not the splenium of the corpus callosum, was associated with 

poorer gait and balance [20]. Importantly, this association was independent of WMH 

volume. In CN older adults (mean age=71), lower FA in the left anterior thalamic radiation 

and left corticospinal tract was associated with reduced step width and greater instability 
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measured during treadmill walking [21]. The corpus callosum is primarily responsible for 

communication across hemispheres, and the genu primarily connects the left and right 

prefrontal and anteriorfrontal cortices [22]. Together these findings support the idea that 

integrity of the frontal areas associated with executive function is important for gait and 

balance, and that gait and balance involve the coordination of multiple areas across 

hemispheres.

The association between WM integrity within the context of substantial cerebrovascular 

burden has also been examined. Among 429 non-demented later middle-aged adults (mean 

age=65) with cerebral small vessel disease, lower FA and higher MD of the corpus callosum 

was associated with slower gait speed, reduced stride length and cadence, and increased 

stride width [23]. In a smaller study of 20 older adults (range=65–84) with significant 

cerebrovascular pathology, lower FA and higher MD, and axial and radial diffusivity across 

all WM were associated with freezing of gait [24]. Another study that examined the effect of 

FA within the context of WMHs found that FA measures throughout WM regions 

significantly moderated the association between WMH volume and gait speed among 265 

community-dwelling older adults (mean age=83) [25]. Specifically, among those with high 

FA, there was no association between WMH and gait speed. These results suggest that 

WMHs alone may not be associated with slower gait and are consistent with the hypothesis 

that the interaction between multiple pathologies is necessary to substantially affect gait 

performance [26].

In summary, the evidence presented here suggests that WM atrophy is associated with 

disrupted gait; however, it is not overwhelmingly compelling, particularly compared to the 

association between other types of pathology and gait (e.g., GM atrophy), as described 

below. The few studies investigating the association between gait and WM volume have 

focused on total volume [17,18], This broad type of investigation may be obscuring regional 

differences. It may be that more parsed analyses investigating individual regions are needed 

to detect a stronger association between WM and gait.

Ventricles

Ventricular enlargement may be indicative of GM atrophy, declines in CSF reabsorption, 

and/or total generalized brain atrophy. Among 20 community-dwelling MCI patients (mean 

age=76), greater left ventricular volume of both the main bodies and temporal horn, was 

associated with slower gait speed [27] (Table 1). Further, bilateral larger temporal horns 

were associated with greater stride-to-stride variability among 115 community-dwelling 

older adults (mean age=70 years) [28]. Similarly, among 321 CN and MCI subjects, slower 

gait speed was associated with severe ventricular enlargement (i.e., ventricular grade>5) 

[29]. Ventricular enlargement is a non-specific measure of cerebral damage, which could 

explain why the association with gait impairment was only observed with severe ventricular 

enlargement.
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Grey matter (GM)

GM volume decreases with age and this decrease is further exacerbated in aging related 

diseases such as type II diabetes and AD [30–32]. The associations between spatial, 

temporal, and spatiotemporal gait parameters and reduced cortical thickness have been 

widespread across cortical regions. Six studies reported that lower total GM volume was 

associated with poorer performance on multiple gait measures [17,19,33–36] (Table 1). 

Seven studies showed that smaller GM volume in frontal regions was associated with poorer 

gait [33,34,37–41]. Five studies showed a relationship between lower GM volume in the 

parietal lobe and poorer performance on gait parameters [33,37–40]. Four studies found that 

lower GM volume in temporal lobe regions [37,38,42,43], cerebellum [37,40,43,44] and 

basal ganglia, insula, and limbic systems [33,37,38,40] was associated with disrupted gait. 

Three studies found that smaller GM volume in motor areas [33,38,39] and the hippocampus 

were also associated with poorer gait performance [17,18,45].

Across all ROIs reviewed, the association between GM volume in frontal regions and gait 

was the most commonly reported. This finding supports the hypothesis that gait involves 

regions important for higher level cognitive functioning. Indeed, decline in prefrontal ROIs 

is associated with executive dysfunction [46]. The strong relationship reported between the 

parietal lobe and gait is also not surprising because parietal regions are central to sensory 

integration, visuospatial function, and managing the relationship between one’s self and 

surroundings [39,40,47]. Findings that the caudate nucleus is associated with gait are 

supported from research in PD and HD, which are both characterized by disrupted gait and 

marked caudate nucleus atrophy [48,49]. The association between widespread GM atrophy 

and gait supports the theory that the coordination and interaction of multiple brain regions is 

necessary for proper gait performance.

The association between GM volume within the context of cerebrovascular pathology has 

also been examined. De Laat and colleagues studied the association between cortical 

thickness and gait within the context of small vessel disease [33]. Among 415 community-

dwelling adults (age range 50 to 85 years) with cerebral small vessel disease, disrupted gait 

(i.e., slower gait speed, shorter stride length, lower cadence, wider stride width) was 

associated with lower GM volume across the cortex, including frontal, orbitofrontal, 

ventrolateral prefrontal, inferior parietal, visual, primary motor and premotor, temporal and 

left fusiform gyri, visual areas, insula, and cingulate ROIs. Similarly, Smith and colleagues 

(2015) [34] found that smaller total GM volume, in the context of cerebral small vessel 

disease, was associated with slower TUG. These findings suggest that even in the context of 

small vessel disease, widespread GM atrophy in areas associated with cognition and 

visuospatial processing is associated with disrupted gait.

Additionally, the relationship between GM volume and gait has been explored specifically in 

MCI. In a smaller study (N=20) of MCI patients, thinner motor cortex measures were 

associated with slower gait speed in both single and dual task walking, and greater stride 

time variability during single task walking [50]. Another study examined the association 

between both GM and WM volumes and mobility in 170 older adults diagnosed as CN, 

amnestic (a) MCI, or nonamnestic (na) MCI [35]. Participants completed both the real 
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(r)TUG and imagined (i) TUG. Smaller total GM volume was associated with slower rTUG, 

and smaller total and left PFC volume was associated with slower iTUG. The strongest 

association between brain volume and TUG performance was seen among the naMCI group. 

This may suggest that the pathological changes occurring in naMCI affects motor imagery, 

and this is independent of the kinesthetic completion of motor tasks (e.g., rTUG).

GM volume has also been associated with more severe measures of motor dysfunction 

(bradykinesia and gait disturbance), which is prevalent even among older adults without 

neurological conditions [42,51,52]. Among 307 community-dwelling older adults (mean 

age=83) without PD, smaller GM sensorimotor cortical and posterior parietal lobe volumes 

were associated with bradykinesia and gait disturbance. Smaller GM medial temporal lobe 

volume was associated only with gait disturbance and smaller GM volume in the cerebellum 

and dorsolateral prefrontal cortex was associated only with bradykinesia [43].

Together, the above studies suggest that there is a strong association between GM atrophy 

and gait. However, there is a paucity of longitudinal evidence, so it is difficult to determine 

trajectories of atrophy and gait. Indeed, only one study [18] examined the association 

between GM and gait over time. Future studies are also needed to systematically examine 

specific ROIs and consistently measure multiple gait parameters to elucidate whether GM 

atrophy in certain ROIs is more or less associated with different gait parameters.

Neuronal activity

Glucose uptake is a measure of neuronal activity, and has been shown to decrease in normal 

aging, with further decline in dementia [53–55]. Greater glucose uptake is indicative of 

neuronal activation or up-regulation, whereas reduced glucose uptake is indicative of 

deactivation or down-regulation. Based on findings from functional magnetic resonance 

imaging (fMRI) studies, Jahn and colleagues [56,57] proposed a supraspinal locomotor 

network that includes the frontal cortex, basal ganglia, brain stem tegmentum, and 

cerebellum. This network, which is activated during locomotion across species and can be 

interrupted by lesions, provides insight into the locomotive process. Their locomotor 

network hypothesis is supported by findings from a study that examined glucose uptake 

measured by with Fludeoxyglucose (18F) (FDG)-PET during locomotion in 16 adults aged 

51 to 73 [58] (Table 2). The greatest uptake was in the bilateral central region, particularly 

focused in the mesial part of the primary cortex, the primary somatosensory cortex, lingual 

gyrus, fusiform gyrus, and parahippocampal gyrus during walking. Additionally, the authors 

observed greater uptake in the occipital lobe and precuneus. The first group of brain areas is 

associated with visually guided navigation, while the latter areas are associated with visual-

motor coordination.

A study that measured glucose uptake in 24 community-dwelling women aged 75 to 82 

similarly found greater glucose uptake in the occipital lobe, as well as the sensorimotor area 

and cerebellum during treadmill walking [59]. Their results showed reduced uptake in the 

orbitofrontal and superior frontal gyrus, dorsolateral prefrontal cortex (dLPFC), 

supplementary motor area, middle and superior temporal gyrus, posterior cingulate cortex, 

pons, and hippocampus. Another study separated participants into low step variability (LSV) 
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and high step variability (HSV) groups, because, as aforementioned, greater step variability 

is associated with increased risk of negative clinical outcomes [4,5]. The LSV group showed 

greater sensorimotor activation than the HSV group. Additionally, the HSV group had 

relative deactivation of the supplementary motor area, dLPFC, and hippocampus during 

treadmill walking. The authors hypothesized that deactivation, as assessed by lower glucose 

uptake, of the supplementary motor area and dLPFC in the HSV group indicate that these 

participants found it more difficult to adapt to the novel walking environment (i.e., the 

treadmill). While the observed greater activation of the hippocampus is in line with earlier 

findings [60], indicating that hippocampal metabolism and atrophy are associated with 

greater step length variability. In contrast, lower glucose uptake in the prefrontal, posterior 

cingulate, and parietal cortices was associated with slower maximum walking speed and 

lower cadence at maximum walking speed among 182 community-dwelling women aged 55 

to 89 years [61]. This finding indicates that lower neural activation, as opposed to increased 

neural activation, is associated with poorer gait.

Associations between gait and cerebral glucose uptake are diffuse across brain regions, 

including frontal, temporal, parietal, and occipital lobes, and the cerebellum and limbic 

areas. This is consistent with the hypothesis put forth by Jahn et al. [56,57], indicating that 

locomotion requires coordination of multiple brain regions, including those involved in 

higher level cognition. It is unclear, however, whether higher glucose uptake (which suggests 

up-regulation and recruitment of brain regions) is needed to execute gait, or lower glucose 

uptake (which suggests cerebral dysfunction) is associated with gait. For example, the study 

from Shimada et al. found HSV participants had lower glucose uptake in sensorimotor areas, 

but higher glucose uptake in the hippocampus [59]. It may be that different brain regions 

respond contrarily to the demands of gait functioning, and therefore have varying glucose 

uptake patterns. Longitudinal studies will be critical for understanding these associations to 

determine whether decreased and/or increased glucose uptake, perhaps dependent on the 

ROI, predicts gait decline.

Amyloid Beta (Aβ)

Over 30% of adults over the age of 70 have substantial cerebral Aβ deposition [13]. 

However, few studies have investigated the association between Aβ and gait. Two autopsy 

studies reported that greater AD pathology (neuritic plaques, diffuse plaques, and 

neurofibrillary tangles) deposition in the midfrontal, superior temporal, inferior parietal, 

entorhinal cortices, and hippocampus was associated with reduced gait speed prior to death 

and declining gait speed up to 6 years prior to death [62,63] (Table 3). A study in 128 non-

demented older adults (aged 70 years or older) found that greater Aβ deposition in the 

putamen, caudate, precuneus, and occipital, temporal, and parietal lobes was associated with 

slower gait speed [64]. The association was strongest for Aβ deposition in the posterior 

putamen. Given its proximity to the motor corticostriatal circuits, this finding suggests that 

Aβ deposition contributes to gait dysfunction.

Expanding on this study, we investigated the association between C11 Pittsburgh Compound 

B (PiB) [65] PET standardized uptake volume ration (SUVR) and gait parameters in 

cognitively normal adults aged 50 to 69 [66]. Greater PiB-PET SUVR across ROIs 
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(prefrontal, orbitofrontal, temporal, parietal, anterior and posterior cingulate, and motor) was 

associated with slower gait speed, lower cadence, longer double support time, and greater 

stance time variability, independent of neurodegeneration, as measured by FDG PET and 

MRI, in AD-signature regions. In sex-stratified analyses, these associations were only 

significant among women. In conclusion, despite the relatively few studies that have 

investigated the association between Aβ and gait, it appears that greater Aβ burden is 

associated with disrupted gait. Longitudinal studies are needed to determine the trajectories 

between amyloidosis and gait.

Tau

Aggregates of tau protein are part of the pathological process of a number of diseases, 

including AD and frontotemporal dementia. The majority of research examining the 

association between gait and tau has been conducted in AD and normal pressure 

hydrocephalus (NPH) patients [67–69]. However, one study among 86 participants without 

PD (or AD or NPH), reported that the number of neurofibrillary tangles in the substantia 

nigra was significantly associated with declining gait in annual exams prior to death [70]. 

This evidence suggests that gait and mobility are impacted by tau aggregation both in 

diagnosed and prodromal disease. With the new availability of tau-PET ligands, imaging 

will provide information on whether regional deposition of cerebral tau affects gait in vivo, 

which cannot currently be ascertained by measuring tau in the CSF.

Summary of the reported brain regions associated with gait

Pathologies in three regions were most often found to be associated with disrupted gait: the 

frontal regions were associated with gait in 12 studies, and the limbic system and parietal 

regions, were each associated with gait in 11 studies (Tables 5 and 6). Although there was 

not strong evidence for the association between the motor cortices and gait, the motor cortex 

and somatosensory motor cortex are located in the frontal and parietal lobes, respectively, 

and are a juncture of the inputs from multiple converging cortical and subcortical regions, 

such as the frontal lobe and thalamus. Further, the motor areas provide input to the 

descending corticospinal tract [50,71]. The observed association of the limbic system with 

gait further suggests that cognition, especially memory, is important for gait. Indeed, past 

studies have suggested that gait requires memory, particularly in novel situations 

[35,45,59,60]. Thus, other regions associated with gait and cognitive functioning (e.g., 

frontal and parietal regions) may impact gait partially through cognitive dysfunction. For 

additional information, the association between cognition and gait has been reviewed 

elsewhere [72].

Gaps in the literature and future directions

Future studies should consider potential sex differences in the association between 

neuropathologies and gait. Past studies have shown that this relationship can differ between 

men and women [66]. This is unsurprising given the increased recognition of sex differences 

in aging [73,74], gait changes [73,75–78], and brain and neuropathological development 

[50,79–85]. An empirical understanding of sexual dimorphism across pathologies is 
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important. Reasonably, these differences in pathology would translate to differing patterns of 

gait dysfunction. Thus, future research should attempt to delineate how different pathologies 

affect different gait parameters by sex. This may translate into sex-specific clinical 

guidelines for gait impairment associated with brain pathology. Moreover, most studies in 

this review investigated the association between a particular pathology and gait speed. 

However, it is important to examine other gait parameters to determine whether they are 

differentially affected by specific pathologies, show different trajectories of decline, or have 

sex-specific differences.

Perhaps the most glaring gap in the literature is the lack of longitudinal studies. Of the 

research we reviewed, only two studies [18,63] had a longitudinal design. Longitudinal 

studies are needed to determine how gait trajectories are affected by changes in 

neuropathology over time. Quantifying trajectories of pathology, based on both type and 

location, with gait decline will allow for a more precise approach to utilizing gait as a 

measure in-clinic and for therapeutic and intervention trials.

Conclusion

The goal of this review was to summarize research examining the associations between 

neuropathologies and gait. We found that all pathologies reviewed (i.e., WM, GM, and HVa 

decline, ventricular enlargement, and amyloid and tau aggregation) were associated with 

poorer gait performance. The strongest associations were between GM and gait. Regardless, 

this review further suggests a link between neurodegenerative biomarkers and gait 

performance.

This review has limitations that should be considered. First, relatively little research has 

been conducted investigating the association between protein aggregation (i.e., Aβ and tau) 

and gait, in part because PET ligands have only recently been developed, so it is difficult to 

draw robust conclusions. However, past reviews have not included these studies, and we 

hope more research will be conducted investigating the association between protein 

aggregation and gait. Additionally, we were unable to conduct a meta-analysis due to the 

heterogeneity of the methods for measuring both neuropathology and gait. For example, 

some studies used voxel count methods to determine volume while others used ROI 

methods. These methods produce comparable, but heterogeneous results, [86] and more 

research is needed to make direct comparisons between these methods [87].Without a meta-

analysis, it is difficult to come to quantitative conclusions about findings in the literature, 

including determining whether gait parameters were differentially associated with different 

neuropathologies. Still, we hope this review sheds light on the emerging field of research 

investigating the link between neuropathologies and gait.

Multiple studies have been published since Rosso and colleagues put out the call to better 

understand the connection between the CNS and gait [7]. However, more research is needed 

to develop a deeper understanding of the link between neurological mechanisms and 

different facets of gait and mobility [88]. An empirical quantification of the association 

between neuropathology and gait parameters will contribute to the increased use of gait 

measures in the clinic and for clinical trials. Gait has been identified as a potentially useful 
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clinical tool [89]. This is largely because it is easy to measure and it is associated with 

several poor clinical outcomes. Understanding and interpreting specific declines in gait 

parameters throughout the aging process, beginning as early as middle age, could be 

important to prevent future poor clinical outcomes [8].
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