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Abstract

The important concept of equilibrium has always been controversial in ecology, but a new,

more general concept, an asymptotic environmentally determined trajectory (AEDT), over-

comes many concerns with equilibrium by realistically incorporating long-term climate

change while retaining much of the predictive power of a stable equilibrium. A population or

ecological community is predicted to approach its AEDT, which is a function of time reflect-

ing environmental history and biology. The AEDT invokes familiar questions and predictions

but in a more realistic context in which consideration of past environments and a future

changing profoundly due to human influence becomes possible. Strong applications are

also predicted in population genetics, evolution, earth sciences, and economics.

Introduction

The concept of equilibrium has been the basis of prediction in ecology, as in many sciences,

because the vicinity of equilibrium commonly defines the properties expected of a system. In

conservation, equilibrium, as a formalization of the ancient concept of the balance of nature,

has been imagined to define the essence of a system and to be treated with reverence [1,2]. In a

strict equilibrium view, undeniable population fluctuations and trends [3] are treated as noise,

transients, or temporary disequilibrium. Limit cycles, strange attractors, and stationary proba-

bility distributions provide alternatives to the equilibrium concept, but all suffer from the com-

plaint that they are merely equilibria on different scales [4]. They all imply stable long-term

frequencies of population states and so are incompatible with long-term climate fluctuations.

Last century, dissatisfaction with the equilibrium concept led to the introduction of models

of population dynamics in which the environment is a stochastic process [5–9]. But in all cases,

the environment was assumed to be stationary: any given state of the environment recurs with a

predictable long-run frequency (Box 1 and S1 Text Part A). Population dynamics are then often

also stationary in the long run and described by a probability distribution, the stationary distri-

bution, which takes the place of the point equilibrium [10]. The quest for convergence on equi-

librium in traditional ecology became the quest for convergence on this probability distribution,

which is in essence an equilibrium probability distribution [10–13]. Human activities make us
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acutely aware that all populations face a future of change that is not simply a replay of some past

event, which convergence on a stationary distribution necessarily implies. Also, too often, in the

absence of obvious human influence, we think of what we see today at a locality as its long-term

state (its “natural” state), but historical reconstruction often informs otherwise [14]. No organ-

isms escape the influence of climate. Climate fluctuations do not have stable repetition frequen-

cies [15,16], and the complex of factors driving climate variation gives scant expectation that

they should [17]. They are nonstationary. Ecological theory should account for these major facts

and not rely on the serious fiction that the present conditions are characteristic of the past.

Moreover, it needs to be ready for a future of profound, anthropogenically driven change.

Resolution

Fortunately, a foundation for rising to this challenge exists. Although not generally known, for

decades, mathematicians have been developing relevant concepts and machinery in the theory

of nonautonomous dynamics [18] (S1 Text Part B). Understanding of the familiar logistic

model in a nonstationary environment was elucidated decades ago [19] but is not widely

appreciated. Although other ecological models have been developed in this context [20,21],

they have not reached ecologists; and the theory (S1 Text Part B), though powerful and elegant,

has been presented mostly in mathematically abstract terms, dense with findings that are

meaningful to mathematicians but less clear to others. Fortunately, an ecologically meaningful

development is possible in simpler terms, which I show here.

Box 1. Glossary

AEDT: Asymptotic environmentally determined trajectory. A trajectory, N�(t), of the

population process that is approached by other trajectories, N(t), either as the starting

time, s, of the system recedes into the past (backward convergence) or the current time,

t, advances into the future (forward convergence) (Fig 1).

Attractor: In nonautonomous dynamics theory, an “attractor” consists of a set of sets

{At}, indexed by time t, that are approached either in the forward or backward senses by

population trajectories. If each set At consists of just 1 element, then At = {N�(t)}, the

AEDT.

Backward convergence: In terms of the AEDT, N(t)! N�(t) as the starting time,

s!–1, for starting density, N(s), fixed at any positive finite value. In the nonautono-

mous dynamics literature, such convergence is known as “pull-back convergence.”

Equilibrium: The idea that N(t) remains fixed at a particular value, N�, the equilib-

rium point. Stable equilibrium points are of most significance, namely, values that are

approached over time in the forward sense: N(t)! N� as t!1.

Forward convergence: In terms of the AEDT, N(t)–N�(t)! 0, as time, t,!1, for

fixed starting time, s, and starting density, N(s).
N(t): Population density or a vector of population densities with components repre-

senting, for example, populations of different species, different ages or size classes, or

populations at different spatial locations. As a function of time, t, N(t) defines a trajec-

tory of the system.

Stationary environment: The idea that the environment, when viewed over a suffi-

ciently large interval of time, will have the same statistical properties (mean, variance,

autocorrelation, and frequencies of events) independently of when that interval of time

starts. This is the common assumption in models with variable environments.
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Consider the Beverton-Holt model (Box 2), which is a discrete-time version of the logistic

model. Temporal environmental variation can be represented by time-varying population

parameters, which may show any pattern of change over time. The changing environment pre-

cludes convergence on a traditional equilibrium, but Box 2 shows that the population process,

N(t), quite broadly converges on a time-dependent function of the environment, N�(t), inde-

pendently of initial population densities. This convergence occurs in 2 senses. In the back-

wards sense, the dependence of population density, N(t), at time t, on the “starting” density,

N(s), at time s, is lost as s recedes into the past (Fig 1). In the forwards sense, the difference

between N(t) and N�(t) converges to zero as t increases (Fig 1). Like a traditional equilibrium,

N(t) will equal N�(t) for all t if it is equal to N�(t) for any t. Thus, N�(t) is a generalization of a

stable point equilibrium, but unlike a point equilibrium, it is a function of time and reflects

changing environmental conditions. It is an asymptotic environmentally determined trajec-

tory (AEDT, Box 1 and S1 Text Part B). An AEDT is a trajectory of the population process on

which other trajectories converge in at least 1 of the 2 senses above. It applies even when the

population process is driven by nonstationary environmental variation.

It is important to emphasize that the AEDT, N�(t), is not simply the moving value of the tra-

ditional equilibrium (N�
EðtÞ of Boxes 2 & 3, Fig 1), which depends only on E(t) and therefore

treats the environment as frozen in time. In contrast, N�(t) depends on the past sequence of

environmental states. Consonant with asymptotic independence from the starting density,

however, the contributions of past environments diminish with their distances from the pres-

ent. Nevertheless, the value of the AEDT at any given time reflects a certain amount of history.

Fig 1. Convergence on an asymptotic environmentally determined trajectory (AEDT). Illustration using the Beverton-Holt model. Red line: the

AEDT, N*(t); thin black solid lines: different trajectories, N(t), for different starting times, s (= 200, 300,. . ., 1000), and 2 different initial values, N(s)

(upper versus lower lines). Light blue dashed line: the moving equilibrium,N�
EðtÞ, reflecting the underlying physical environment at each point in time,

which, for illustration here, depends on the reconstructed mean Northern Hemisphere temperature, 200–1995 CE (S1 Text Part C). Backward

convergence is illustrated by the increasing closeness of N(t) to N*(t), for t > 1000 as the starting time, s, is decreased. Forward convergence is

illustrated by the fact that, by 1950, most trajectories are indistinguishable from the red trajectory, N*(t). (For the data, see S1 Data).

https://doi.org/10.1371/journal.pbio.2002634.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002634 May 30, 2017 3 / 13

https://doi.org/10.1371/journal.pbio.2002634.g001
https://doi.org/10.1371/journal.pbio.2002634


Box 2. The nonstationary Beverton-Holt model (discrete-time
logistic)

The Beverton-Holt model of density-dependent population growth is a discrete-time

model defined by the following difference equation for population density of a single-

species, N(t),

Nðt þ 1Þ ¼
RðtÞ

1þ aðtÞNðtÞ

� �

NðtÞ: ð1Þ

Here, R(t) is the maximum finite rate of increase and α(t) is the intraspecific competition

coefficient. These parameters vary over time as functions of the changing environment.

The traditional equilibrium depicted in Fig 1 is N�
EðtÞ ¼ KðtÞ ¼ ½RðtÞ � 1�=aðtÞ and is a

function of the environmental conditions, E(t) = (R(t), α(t)), at time t only. It is the solu-

tion of Eq 1 for N(t+1) = N(t). The AEDT, denoted N�(t), is a very different quantity (Fig

1). It is most easily derived in terms of the reciprocal, 1/N, of N.

With y = 1/N, ρ = 1/R, and a = α/R, Eq 1 takes the linear form

yðt þ 1Þ ¼ rðtÞyðtÞ þ aðtÞ: ð2Þ

This transformation to linearity gives an exact solution by iteration,

yðtÞ ¼
Yt� 1

u¼s

rðuÞ

" #

yðsÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Dependent on
the initial state

þ
Xt� 1

u¼s

aðuÞ
Yt� 1

v¼uþ1

rðvÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Independent of
the initial state

: ð3Þ

Because the ρs are the reciprocals of the maximum finite rates of increase, they should

mostly be less than 1 if the population is to persist at all. In particular, the leftmost prod-

uct of the ρs should converge on 0 as the starting time, s, recedes into the past. Under

this condition, a unique asymptotic environmentally determined trajectory (AEDT)

results in terms of y:

y�ðtÞ ¼
Xt� 1

u¼� 1

aðuÞ
Yt� 1

v¼uþ1

rðvÞ ð4Þ

(S1 Text Part C). Dependence on the initial state, y(s), has been lost, and only biology

and the physical environment, encoded in a and ρ, remain in y�(t). Taking the reciprocal

of y�(t), we have the AEDT shown in Fig 1:

N�ðtÞ ¼
Xt� 1

u¼� 1

aðuÞ
Yt� 1

v¼uþ1

rðvÞ

" #� 1

: ð5Þ

The nonstationary probability distribution

The AEDT can also be considered as a stochastic process, and in general, it is a nonsta-

tionary stochastic process described statistically by a nonstationary probability distribu-

tion. In particular, its mean and variance change over time. Nonstationary distributions

have the potential to be highly complex, but a simple form applies to the Beverton-Holt

model when the parameter ρ(t) is a constant and all effects of the changing environment
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In contrast also with the moving equilibrium,N�
EðtÞ, the observed trajectory, N(t), at time t can

actually be expected to be near the value N�(t)—that is what asymptotic environmental deter-

mination implies. However, there is no expectation that N(t) should be near N�
EðtÞ(e.g., Fig 1)

unless environmental change is slow relative to population dynamics.

The AEDT concept applies not just to the Beverton-Holt model but generally in ecological

models. Box 3 and S1 Text Part E show how the density-dependent feedback, critical for con-

vergence on a traditional equilibrium, is involved with convergence on an AEDT in a variable

environment. Box 4 and S1 Text Part F, on the other hand, explain how life-history phenom-

ena behind the storage effect coexistence mechanism, which do not involve a traditional equi-

librium, nevertheless give convergence on an AEDT in a variable environment, whether

stationary or not, as illustrated in Fig 2. Thus, the AEDT captures an important ecological out-

come, namely nonequilibrium coexistence [22], that a traditional equilibrium cannot. The

AEDT shows how ideas that have formed the heart of population and community ecology can

be reinterpreted in a new, more realistic context. Added to these traditional ideas, however, is

come from a(t) (S1 Text Part D). The AEDT of the Beverton-Holt model is approxi-

mately a Gaussian stochastic process in many cases and so is characterized by its mean,

variance, and covariance functions. Regardless of the applicability of the Gaussian

approximation, these moment functions can be derived in terms of the corresponding

moment functions of the environment process, a(t), with mean denoted by θ(t) and vari-

ance by φ2(t). For simplicity, in this box, we assume no temporal environmental correla-

tions, although arbitrary correlations present no difficulty (S1 Text Part D).

The results are simplest when expressed in terms of the reciprocal of the density,

namely, y�(t). The theoretical mean of y�(t) is simply

m�ðtÞ ¼
ŷðtÞ

1 � r
; ð6Þ

where ŷðtÞ is a geometric weighted average over the past mean environments, θ(t −1),

θ(t −2), θ(t −3), . . . with weights (1 − ρ), (1 − ρ)ρ, (1 − ρ)ρ2, . . . reflecting Eq 4 for y�(t).
The variance of the distribution of y�(t) can be written in terms of a similar weighted

average,

s�2ðtÞ ¼
φ̂2ðtÞ
1 � r2

; ð7Þ

where φ̂2ðtÞ is defined in terms of ρ2 by the formula φ̂2ðtÞ ¼ ð1 � r2Þφ2ðt � 1Þ þ

ð1 � r2Þr2φ2ðt � 2Þ þ ð1 � r2Þr4φ2ðt � 3Þ þ . . .. Finally, the covariance function,

s�2ðt0; tÞ ¼ covðy�ðt0Þ; y�ðtÞÞ, for t> t0, rounds out the first and second moments of y�(t):

s�2ðt0; tÞ ¼ rt� t0s�2ðt0Þ: ð8Þ

These mean and variance functions have very straightforward interpretations. The

environmental mean and variance, θ(t) and φ2(t), define the trends over time in the envi-

ronmental fluctuations, i.e., they characterize its nonstationary properties. The mean

and variance of y�(t) represent limited-time horizon averages over the past in these

trends.
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Box 3. General convergence conditions

General discrete-time population dynamics can be represented in the form

Nðt þ 1Þ ¼ FðNðtÞ;EðtÞÞ ð9Þ

where F is some function that depends on both the population size N and the environ-

mental conditions E. In general, N might actually be a vector representing multiple inter-

acting populations or age or spatial structure in 1 or more species (S1 Text Part E), but

for simplicity, here it is a single unstructured population. Key to convergence on an

AEDT is that any 2 population trajectories, N(t) and N 0(t), obeying Eq 9 with the same

E(t) but starting at different values (N 0(s) 6¼ N(s)) must converge on each other. Their

difference, ΔN(t) = N 0(t)–N(t), satisfies the equation

DNðt þ 1Þ ¼ F0ð €NðtÞ;EðtÞÞDNðtÞ; ð10Þ

where F 0 is the derivative of F with respect to population density, N, and €N ðtÞ is a num-

ber between N 0(t) and N(t) given by the mean value theorem of differential calculus.

Thus, Eq 10 is exact, not a linear approximation. Expressed as the difference over time,

we obtain

DNðtÞ ¼
Yt� 1

u¼s

F0ð €N ðuÞ;EðuÞÞ

" #

DNðsÞ: ð11Þ

In standard ecological theory, stabilizing density dependence corresponds to an absolute

value of F 0 less than 1. Provided the geometric mean of these F 0 values is ultimately

bounded less than 1 either as s decreases (backward convergence) or t increases (forward

convergence), the trajectories converge and become independent of their initial values.

Demonstrating such convergence is potentially a more complex endeavor than tradi-

tional linear stability analyses, where F 0 only needs to be evaluated at equilibrium, but

the ecological principles are the same: convergence occurs with a preponderance of sta-

bilizing density dependence. In other words, a perturbation of the density would be fol-

lowed, after an interval of time, by density differences of smaller magnitude when there

is net stabilizing density dependence. This idea generalizes to show that ecological pro-

cesses that we normally expect to stabilize dynamics about equilibrium in multispecies

systems and in structured populations also have roles in convergence on an AEDT (S1

Text Part E).

This demonstration provides no formula for the AEDT and allows the possibility

that, although trajectories converge on each other, the starting time, s, continues to have

a strong influence. However, given convergence on each other, whenever 1 trajectory

shows backward convergence, they all do, on a unique AEDT. Moreover, convergence of

Eq 11 to 0, for all pairs of trajectories as t increases, is, by definition, forward conver-

gence. Although the AEDT in that case is not unique, possible definitions of the AEDT

differ negligibly for large t (S1 Text Part B).

As emphasized, the AEDT, N�(t), is not the moving equilibrium, N�
EðtÞ, defined by the

equation

N�
EðtÞ ¼ FðN�

EðtÞ;EðtÞÞ; ð12Þ

but given backward convergence, the AEDT can be related to the moving equilibrium by
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the formula

N�ðtÞ ¼
Xt� 1

u¼� 1

N�
EðuÞ½1 � F0ð €N ðuÞ;EðuÞÞ�

Yt� 1

v¼uþ1

F0ð €NðvÞ;EðvÞÞ; ð13Þ

where €N ðuÞ is a number between N�(u) and N�
EðuÞ(S1 Text Part E). This formula expresses

the AEDT as a geometrically weighted moving average of the moving equilibrium into

past with time varying geometric weights ½1 � F0ð €NðuÞ;EðuÞÞ�
Yt� 1

v¼uþ1

F0ð €N ðvÞ;EðvÞÞ

reflective of the varying strength of density dependence with time (S1 Text Part E). Note

that these formulae might be applied in practice using a transformation of N, such its

reciprocal, y, used for the Beverton-Holt model. Indeed, applying Eqs 11 and 13 to y in

the Beverton-Holt model reproduces the results of Box 2.

Box 4. The lottery model

As proposed previously [6], perennial organisms competing for space in a variable envi-

ronment might be modeled with the equations

Niðt þ 1Þ ¼ ð1 � diÞNiðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

surviving adults

þ
Xn

j¼1
djNjðtÞ

h i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

space given up
by adult death

BiðtÞNiðtÞXn

j¼1
BjðtÞNjðtÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

fraction of available space
captured by species i

; i ¼ 1; ‥; n:

NiðtÞ : fraction of space held by species i

di : fraction of species i adults dying per unit time

BiðtÞ : per capita juvenile production rate of species i

ð14Þ

In this model, success in competition for space depends on the ratio Bi(t)/δi for each

species [6]. When environmental conditions are constant, only the species with the larg-

est B/δ ratio persists in the long run. Unlike the models of Boxes 2 and 3, there is no sta-

ble equilibrium with all species at positive densities for any given state of the

environment. All stable equilibria imply extinction of all but 1 species. Coexistence

occurs, however, with the right sorts of environmental fluctuations [6], and it remains

possible to demonstrate convergence on an AEDT. Fig 2 illustrates this with a simulation

in the 3-species case, but in the 2-species case, with equal adult death rates (δ1 = δ2), con-

vergence can be proved by transforming density to the log-odds scale:

ZiðtÞ ¼ lnfNiðtÞ=ð1 � NiðtÞÞg: ð15Þ

On this scale, the difference, DZi ¼ Z0i � Zi, between any 2 trajectories, N 0i and Ni, with

different starting values can be shown to decrease monotonically over time, t, according
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the ability to analyze the effects of environmental history and their interaction with life-history

processes. For example, continuing changes in United States forest composition, well-docu-

mented with pollen records, are conceptually interpretable with the AEDT concept but do not

fit an equilibrium perspective [23].

The AEDT concept also resolves 1 of the discontents nearly universally seen with the tradi-

tional equilibrium idea. The system equations give convergence on a constant state, but a con-

stant state cannot in fact be found in nature, which goes to the heart of the classic dispute

between Nicholson and Andrewartha & Birch [24]. A natural system will not be at a traditional

to the inequality

DZiðt þ 1Þ � DZiðtÞ � � dð1 � dÞ
½rðtÞ þ r� 1ðtÞ � 2�½N 0i ðtÞ � NiðtÞ�

dþ ð1 � dÞmaxfrðtÞ; r� 1ðtÞg
ð16Þ

where ρ(t) = Bi(t) /Bj(t) and ρ-1(t) = Bj(t) /Bi(t) (S1 Text Part F). The quantity ρ(t) +

ρ– 1(t) – 2 is always positive whenever ρ(t) 6¼1, i.e., whenever Bi(t) 6¼ Bj(t). Thus, strict

decreases in ΔZi require inequality between species in their responses to the environ-

ment (Bi(t) 6¼ Bj(t)) and overlapping generations (δ< 1). Moreover, convergence of ΔZi

to 0 as t increases or s decreases requires ρ(t) to fluctuate about 1, thus favoring different

species at different times (S1 Text Part F). These requirements are familiar issues for spe-

cies coexistence by the storage effect in previous work for stationary environments [6].

Fig 2. Forward convergence in the lottery model. Lines of the same color but different intensity represent the same species with different initial

conditions. Although starting at very different values, the effect of the initial conditions has all but disappeared by midway through the simulation. The

environmental fluctuations driving this lottery simulation are lognormal, independent between species and over time, with a linear trend creating

nonstationarity. Specifically, the lnBj(t) are independent normal with means 0.05j + 0.002(4 –j)t and variance 1.5. For each species, δ = 0.25. (For the

data, see S2 Data).

https://doi.org/10.1371/journal.pbio.2002634.g002
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equilibrium, nor will it be close to one in most cases. The traditional equilibrium cannot be

equated with the average, even in the case of a stationary environment. Although in some mod-

els the average may not be very far from the traditional equilibrium, in others, the traditional

equilibrium can be grossly misleading, as models such as the lottery model (Box 4) demonstrate.

In contrast, the AEDT, N�(t), does give predictions that can be compared directly with nature.

Disagreement between N�(t) and observations of nature point to disagreements between nature

and the model that produced the N�(t) prediction without being caught up in hand waving

about how an equilibrium model should be interpreted in a nonequilibrium world.

Traditionally, stability of an equilibrium was interpreted as demonstrating robustness to

environmental fluctuations. Even though a population or community might be continually

perturbed from equilibrium, it would always be returning: equilibrium would define a central

tendency for population fluctuations. However, the lottery model (Box 4), and scale transition

theory more generally [25], show that this reasoning applies only to perturbing forces that are

weak relative to the stability of the equilibrium, while strong perturbing forces can create new

central tendencies unrelated to the traditional equilibrium [6]. These new central tendencies

are captured by the AEDT to the extent that environmental fluctuations are accurately mod-

eled (Box 4). But the AEDT also has stability properties analogous to a traditional stable equi-

librium, as most clearly seen with forward convergence: a trajectory perturbed from the AEDT

will return to it over time. Thus, like a traditional stable equilibrium, an AEDT with forward

convergence is robust to small, infrequent perturbations outside the modeled environmental

fluctuations.

Although proposed here to address nonstationary environments, the AEDT concept applies

to the special case of a stationary environment too. Traditionally, analysis of a stochastic popu-

lation model in a stationary environment sought a corresponding stationary probability distri-

bution for population size, not a trajectory [12]. The statistical properties of the AEDT,

however, would be described by this stationary probability distribution in that case. In the

nonstationary case, there will not normally be a stationary distribution to describe the statisti-

cal properties of the AEDT, but depending on the context, a nonstationary distribution would

be involved (Box 2).

Traditional equilibrium analysis focuses on determining the existence of a stable equilib-

rium with specific properties. In coexistence analysis, for instance, it is an equilibrium where

all species have positive densities [11]. In the study of biological control, it might be an equilib-

rium where a pest and its natural enemy persist but with the pest below an economic threshold

[26]. With convergence on a stationary distribution, the variance of the stationary distribution

or its shape might be an issue [27]. The focus above has been on convergence on an AEDT,

not its properties, which will, of course, be key in any examples. With general nonstationary

environments, this process can be more involved than traditional equilibrium analysis. Natural

questions concern the long-term prediction of N�(t). Will it grow indefinitely? Will it converge

on 0? Or will it do something else? A nonstationary environment process, in general, can have

any properties. So the issue here is determining relationships between environment process

properties and AEDT properties. Formulae for the AEDT in Boxes 2 and 3 readily lead to such

relationships (S1 Text Parts C, D, and E). Even though the environment is nonstationary and

the AEDT is a nonstationary stochastic process (Box 2), it might nevertheless be bounded in

some sense, precluding indefinite population growth or extinction. For instance, for the non-

stationary lottery model, the stochastic boundedness concept applies and places probability

limits on N�(t) (S1 Text Part G), as does the nonstationary distribution for the Beverton-Holt

model (Box 2).
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Extensions and key applications

The AEDT concept is introduced here specifically to replace the point equilibrium idea but

has generalizations under the general heading of “nonautonomous attractors” to also replace

multiple stable points, limit cycles, and strange attractors under nonstationary environmental

conditions, along with bifurcation theory for transitions between them, in the new mathemati-

cal field of nonautonomous dynamics (S1 Text Part B). Although at the present time the com-

plexity of the field may be daunting to those not steeped in mathematics and may appear too

abstract for application, numerical approaches (for example, using the ideas in Box 3) are

broadly applicable and accessible (S1 Text Part E). Moreover, these fields can be expected to

become more practical as examples are developed in areas of application, a few of which are

given here. Nevertheless, a likely complaint is that insights from AEDT theory are too hard to

come by compared with equilibrium theory. But a critical aspect of AEDT theory should be to

determine when standard equilibrium analysis suffices for the problem at hand. It can do this

through the information it gives on the role of environmental history and, when coupled with

scale-transition theory [25], through the information it gives on the role of environmental

fluctuations.

Although I have presented the AEDT concept for ecological models, it can be applied

equally well in many areas of science that involve dynamics over time subject to nonstationary

environments. A simple and obvious extension is to population genetics, where the dynamics

of gene frequencies have many parallels to the dynamics of populations and are no less affected

by nonstationary environmental change. Indeed, the lottery model (Box 4), presented here for

competition between species, is also a model of competition between genotypes in an asexual

population subject to temporally varying selection [28]. It and similar models have critical

roles in population genetic thinking, but historical shifts between environmental states have

long been a staple in the field [29]. The AEDT potentially provides a realistic way of viewing

such change. Evolutionary studies likewise can make use of this concept, especially given the

recognition from long-term field studies of the temporally changing selection pressures in nat-

ural populations [30]. Consequently, population morphologies are potentially described as

AEDTs.

Earth sciences are often intimately involved with the environmental change yet still make

use of equilibrium concepts [31]. Sometimes, the changing nature of the system is paramount,

and any standard equilibrium description has little to offer, but an AEDT may apply instead.

Box 5 discusses applications in hydrology. Geomorphology, a discipline in which equilibrium

theories have long had a role in theories of landform development, might well find that an

AEDT is a more satisfactory concept [32,33]. Finally, economic theory is replete with equilib-

rium ideas [34], but the environments of real-world economic systems do not follow regular

patterns.

In ecology, population fluctuations and trends are universal, yet a standard equilibrium per-

spective relegates them to noise or temporary anomalies, not part of the essence of a system.

With the AEDT, change is of the essence, reflecting environmental history and biology. Both

forward and backward convergence imply that the reach of environmental history is limited,

and the AEDT formulae in Boxes 2 and 3 show its limits and assessment within the AEDT

concept. At the same time, within the relevant history, change can determine overall structure,

for example, in the lottery model (Box 4), where multiple species are supported in a changing

world according to the storage-effect coexistence mechanism [38], but only a single species is

supported in an unchanging world. Management of ecosystems can be viewed and practiced

more appropriately as managing change, including the fluctuations essential to holding it

together, reflective of the role of environmental history and anticipating an environmental
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future strongly driven by human influence. Thus, ecology is now in a position to go beyond

denying the significant reality that it needs to embrace for proper interpretation of history and

a future of anthropogenically driven climate change.

Supporting information
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Box 5. Applications in hydrology

Hydrological theory provides a natural application of the AEDT beyond biology [35].

Water dynamics in nature are subject to many time-dependent effects [36], most obvi-

ously the temporal variability of rainfall. Depending on the context, hydrological models

can be extremely complex, but the simplest, which are easy to illustrate, describe water

exchanges between compartments. The theory of water storage provides examples with

just 1 compartment (a reservoir) having highly variable inputs due to rainfall and stream

flow. Following Gani [37], simple models for the amount of water stored, S(t), which

arise in dam theory, can be put in the form

dS
dt
¼ pðtÞ � dðtÞ � f ðtÞ; ð17Þ

where p refers to precipitation inputs, d defines withdrawals from the dam, and f defines

overflow. In the existing theory, this equation would be interpreted as a stochastic differ-

ential equation, but an ordinary differential equation interpretation suffices for the pur-

poses here. Assume here for simplicity that only p(t) is directly a function of the physical

environment, with the sum of the losses d(t) and f(t) being expressible as an increasing

function of S(t) alone: l(S(t)) = d(t) + f(t). Also, make the mild assumption that the deriv-

ative of l is bounded above 0 by a constant K. Of most importance for convergence to an

AEDT is the change in the difference between the storage for 2 different starting values

dðS 0 � SÞ
dt

¼ � ðlðS 0Þ � lðSÞÞ � � KðS 0 � SÞ; ð18Þ

with S 0 > S. Integrating this inequality leads to the result

S 0ðtÞ � SðtÞ � ðS 0ðsÞ � SðsÞÞe� Kðt� sÞ; ð19Þ

and as S 0(t) − S(t) cannot change sign (S1 Text Part H), the difference S 0(t) − S(t) must

approach zero as either s! −1 (backward convergence) or t!1 (forward conver-

gence). Moreover, this same result shows that S(t) is a Cauchy sequence in s (S1 Text

Part H), and hence, there is a unique AEDT in the backward sense upon which conver-

gence occurs both forwards and backwards, provided only that the amount of storage in

the dam has an upper limit and can never be negative—features of serious models of

dams. This finding is similar to the general result theorem 3.21 in [18] but does not

require special assumptions about how the environment changes over time.
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