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Abstract

Great care is taken in epidemiologic studies to ensure the internal validity of causal effect 

estimates; however, external validity has received considerably less attention. When the study 

sample is not a random sample of the target population, the sample average treatment effect, even 

if internally valid, cannot usually be expected to equal the average treatment effect in the target 

population. The utility of an effect estimate for planning purposes and decision making will 

depend on the degree of departure from the true causal effect in the target population due to 

problems with both internal and external validity. Herein, we review concepts from recent 

literature on generalizability, one facet of external validity, using the potential outcomes 

framework. Identification conditions sufficient for external validity closely parallel identification 

conditions for internal validity, namely: conditional exchangeability; positivity; the same 

distributions of the versions of treatment; no interference; and no measurement error. We also 

require correct model specification. Under these conditions, we discuss how a version of direct 

standardization (the g-formula, adjustment formula, or transport formula) or inverse probability 

weighting can be used to generalize a causal effect from a study sample to a well-defined target 

population, and demonstrate their application in an illustrative example.
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Introduction

Epidemiology as a discipline seeks to identify causes of disease for the purpose of 

intervening to improve public health. Great care is generally taken in epidemiologic studies 

to ensure the internal validity of causal effect estimates.1 However, the external validity of 
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effect estimates has received considerably less attention. Although there have been recent 

advances in methods for drawing externally valid inferences, particularly in statistics and 

computer science,2–6 those concepts have not yet been widely accepted in epidemiology7,8 

as is evidenced by ongoing debates as to the importance of representativeness in study 

samples.9–11 The purpose of this paper is to review recent developments in generalizability, 

one facet of external validity, using the potential outcomes framework.

For the purposes of this paper, external validity refers to the extent to which an internally 

valid effect measured in a study sample is an (asymptotically) unbiased estimator of the 

treatment effect in the population of interest (henceforth, the target population).7 The effect 

in the study sample is sometimes called the sample average treatment effect, while the effect 

of interest is sometimes called the (target) population average treatment effect. External 

validity can be divided into two problems: generalizability and transportability. 

Generalizability is concerned with making inference from a possibly biased sample of the 

target population back to the full target population (including the study sample), while 

transportability concerns making inference for a target population when the study sample 

and the target population are partially or completely non-overlapping. Here we will mainly 

discuss generalizability, as in5,7,12. A set of identification assumptions sufficient for 

generalizability are outlined, and parallels are noted with identification assumptions 

sufficient for internal validity. We describe two estimators that have been proposed to 

generalize results from a study sample to a target population when the study sample was not 

randomly sampled from the target population: a generalization of the g-formula13 

(adjustment formula)14 and an inverse probability of sampling weighted estimator. We 

demonstrate their use with an illustrative example. We briefly outline distinctions between 

generalizability and transportability. Finally, we discuss practical considerations for 

addressing generalizability in epidemiologic study design.

Definitions and causal framework

Specifying a well-defined causal question starts by defining: the outcome(s) of interest Y; 

the treatments of interest A; and the target population.15 The effect of interest (population 

average treatment effect) is a contrast of the average potential outcome in the target 

population under two different interventions, treatments, or policies of interest, for example:

(1)

where Y(x) denotes the outcome that a participant would have if he or she received 

treatment x = a, a′. Unless otherwise noted, E and P denote expectations and probabilities in 

the target population. Equation (1) can be expanded, by the law of total probability, to 

incorporate pre-treatment covariates W:

(2)
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When the effect of interest is heterogeneous over strata defined by W, equation (2) 

emphasizes that the population average treatment effect is a weighted average of the stratum 

specific effects, with weights defined by the distribution of W in the target population P(W = 

w). (Here, we assume variables in W are discrete; however, all concepts are easily extended 

to incorporate continuous W.) Answering the causal question requires data, e.g., a study 

sample. Although it is often assumed for statistical inference that the study sample is a 

random sample of the target population, such random sampling rarely occurs in practice. If 

the stratum specific effects differ and the distribution of W in the study sample differs from 

the distribution of W in the target population, the sample average treatment (or causal) effect

(where i indexes the n individuals in the study sample, i = 1, … , n) may not equal the 

population average treatment effect. It is helpful to distinguish threats to validity that arise 

after enumeration of the study sample, which we define as threats to internal validity, from 

threats to validity due to eligibility and enrollment of study subjects, which we define as 

threats to external validity. We define an estimator as internally valid when the estimator of 

association in the study sample is an unbiased estimator of the sample average treatment 

effect or the average treatment effect in the population of which the study sample constitutes 

a simple random sample (although this latter population is usually hypothetical as random 

sampling to generate a study sample is rare in public health research). We define a causal 

estimator to be externally valid when it is an unbiased estimator of the average treatment 

effect in the target population.

Defining the target population

Ideally, the overall study goal would drive the choice of the target population, the study 

sample would be randomly sampled from that target population, and exposure would be 

randomly assigned within the study sample such that the sample average treatment effect 

would equal the population average treatment effect in expectation. However, typically, an 

investigator has a causal question and a study sample within which to conduct analysis. 

After the research has been conducted, the investigator would like to know whether their 

results are “generalizable” to the population from which the study sample was drawn or 

“transportable” to an external target population.

Generalizability is a characteristic of the relationship between results from a specific study 

sample and a specific target population, not a characteristic of a study alone. Therefore, to 

make meaningful inference about the generalizability of study results, the target population 

of interest must be well-defined.9,16–19 Study results may be generalizable to one specific 

target population but not another. Comparisons between the target population and study 

sample should consider differences in patient characteristics (exchangeability), details of the 

intervention (treatment versions), and patterns of interference.
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There are several types of target populations that may be of interest,15 which can be 

classified according to their relationship with the sample. First, when the target population is 

not explicitly described, the implicit assumption is that the target population of interest is the 

study sample itself, or the hypothetical population from which the study sample was 

randomly sampled; this population is described by a (typical) paper’s so-called “Table 1.” 

This is a commonly assumed target population in statistical and causal inference. However, 

it is almost never the case that the study sample is a simple random sample or census of any 

target population of substantive interest. Often research is conducted to inform decisions 

about a population at least somewhat different than that under study, or at the very least to 

inform decisions about the same population in the future. Second, we may be interested in a 

target population from which the study sample was sampled, but where the sampling was not 

at random. In this case, the sample average treatment effect will typically differ from 

population average treatment effect. In statistics and economics, this difference has been 

called “sampling selection bias.”3,4,20,21 Finally, we may be interested in a target population 

that is distinct from the study sample. If the study sample is neither a census nor a (possibly 

biased) sample from the target population, we face a problem of transportability rather than 

generalizability,2 and additional assumptions or information are needed to estimate the effect 

of interest in the target population.

Assumptions

Determining a set of assumptions sufficient to identify a causal parameter applicable to a 

particular set of individuals is a fundamental step in the process of causal inference. 

Identification involves writing a well-defined function of the distribution of potential 

outcomes in terms of a well-defined function of the distribution of the observed data. Within 

a study sample, the fundamental problem of causal inference can be framed as a missing 

data problem: we never observe all potential outcomes for subjects in our study sample and 

thus assumptions are required for parameter identification.22,23 Sufficient sets of 

assumptions are well-described in the literature for identification of a sample average 

treatment effect (that is, for an internally valid estimate). One such sufficient set of 

assumptions includes: 1) on average, the outcomes of persons who received treatment a 
equal the potential outcomes of persons who received treatment a′ had they received 

treatment a and vice versa (exchangeability), perhaps within strata of a set of covariates, a 
(conditional exchangeability).24 This is often referred to as the randomization or no 

unmeasured confounders assumption. 2) There is a non-zero probability of exposure within 

every stratum defined by a (positivity, which holds trivially if Z is empty). 3) There are no 

versions of treatment other than those defined by A (treatment version irrelevance, 

sometimes referred to as consistency).25–28 4) One person’s exposure does not affect another 

person’s outcome (no interference).29,30 5) Outcome, treatment and covariates are measured 

without error. We also require that all models be correctly specified, including the structural 

model and any parametric or semi-parametric models used to describe associations between 

covariates and exposure or outcome. Most of these assumptions may be met in expectation if 

we conduct a randomized controlled trial. These assumptions may be less plausible in the 

observational setting where the treatment assignment mechanism is not known.1,31,32
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Just as we never observe all potential outcomes for subjects in our study sample,23,26,27 

when we try to expand inference beyond the study sample to a particular target population, 

we typically do not observe any potential outcomes for subjects in our target population who 

were not selected into the study sample (unless additional data sources are available beyond 

the study sample). Assuming the sample average treatment effect is identifiable, the 

population average treatment effect will be identifiable when the sampling mechanism 

giving rise to the study sample is known (e.g., if the study sample is known to be a random 

sample from the target population). If the sampling mechanism is not known, additional 

assumptions are required to identify the population average treatment effect.

For external validity, it is sufficient to assume, first, that the participants included in the 

study sample are exchangeable with members of the target population who were not 

sampled, perhaps conditional on pre-treatment characteristics W (conditional 

exchangeability between those sampled and those not sampled):6

(3)

where S is an indicator of membership in the study sample. Enrollment into the sample is 

typically both under the control of the researcher (in designing a recruitment strategy) and 

under the control of the participants (in deciding whether to participate). The set of 

characteristics W should be chosen such that (3) is considered plausible. Judging whether a 

set of characteristics W is sufficient to satisfy this independence assumption may be a 

difficult task. One way to make this judgment more transparent is to explicitly represent the 

assumed data generating mechanism using a directed acyclic graph (DAG).33 The 

assumption encoded in (3) can then be verified by inspection of the DAG 2,6,34–36 as has 

been recommended for determining the set of covariates sufficient for confounder control for 

internal validity.33,37,38 Second, we assume that, within strata of W, all subjects in the target 

population have some non-zero probability of being selected into the sample (analogous to 

positivity):

Third, we assume the same distribution of versions of treatment in the study sample and the 

target population (treatment version irrelevance is a special case). This may be a strong 

assumption when the delivery mechanism for treatment differs dramatically between the 

study sample and the target population (e.g., treatment given to trial participants may have 

been accompanied by more adherence education and supportive services, as well as 

Hawthorne effects due to trial participation).8,39 Fourth, we assume no interference29,30 in 

the target population and the study sample (although these results can be extended to 

scenarios where the pattern of interference is the same in the target population and the study 

sample). Fifth, we assume no measurement error, including of W. We also require correct 

model(s) specification for any parametric or semi-parametric models used to describe 

associations between covariates and outcome or any models used to describe the sampling 
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mechanism. Assumptions sufficient for identification of a causal effect in the target 

population may, at first glance, look similar to those required for identification of a causal 

effect in the study sample.5,40 However, assumptions about the relationships between the 

potential outcomes and the sampling mechanism are sufficient for external validity, 

compared to the case of internal validity for which assumptions about the relationships 

between the potential outcomes and the treatment assignment mechanism are sufficient. As 

assumptions sufficient for internal validity are met in expectation when treatment is 

randomized, assumptions sufficient for external validity will be met in expectation if the 

study sample is a simple random sample of the target population.

Estimators

If identifying assumptions hold, a generalization of the g-formula13 (or adjustment 

formula)14 or inverse probability of sampling weights can be employed to estimate the 

population average treatment effect. These estimators use data from the study sample on the 

exposure-outcome relationship and data from the target population on either (i) the 

distribution of W for the g-formula estimator, or (ii) the sampling probabilities conditional 

on W for the inverse probability of sampling estimator.

Recall that the g-formula13,14 to account for non-random treatment assignment is

where a is a set of covariates sufficient for conditional exchangeability between treatment 

arms, i.e., A ⊥ Y(x)|a for x = a, a′. Assuming the study sample is a random sample of the 

target population, non-parametric g-formula estimators will be consistent for the population 

average treatment effect. However, if the study sample was not randomly sampled from the 

target population, consistent estimators (based on the g-formula or otherwise) may not 

exist.4

Nonetheless, if in this setting we can find a set W that establishes conditional 

exchangeability between the sampled and unsampled, i.e., (3), and treatment A is assigned at 

random to the study sample, then

(4)

A proof of this equivalence is given in Appendix A. Graphical conditions for determining 

the validity of (4) are provided in Bareinboim et al.3 If A was not randomly assigned in the 

sample and one is willing to assume for some set of covariates W′ that (3) holds and also A 
⊥ Y(x)|W′, S = 1 for x = a, a′, then (4) holds with W′ in place of W. In either case, the 

conditional expectation E[Y|A = a, W = w, S = 1] is identifiable from the study sample. If an 

external source of data (not from the study sample) is available which identifies P(W = w), 
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then the population average treatment effect is identifiable via (4). This suggests the 

following substitution (or plug-in) estimator for the population average treatment effect:

where Ê[Y|A = x, W = w, S = 1] for x = a, a′ is based on data from the study sample and P̂ 

(W = w) is an estimator of the distribution of W in the target population based on external 

data.

The inverse probability of sampling weighted estimator arises from a different but equivalent 

expression for E[Y(a)]. In particular, again assuming conditional exchangeability between 

sampled and unsampled individuals (3), and random treatment assignment within the study 

sample, it follows that:

(5)

A proof of this equivalence is also given in Appendix A. Expression (5) suggests instead the 

following plug-in estimator for the population average treatment effect:

where G(w) = P̂(S = 1|W = w)−1 and P̂(S = 1|W = w) is an estimator of the conditional 

probability of study enrollment based on an external source of data from the target 

population. If treatment is not randomly assigned within the study sample (e.g. as in an 

observational study), inverse probability of treatment weights41 can be multiplied by G(Wi) 

to simultaneously control for confounding.

The inverse probability of sampling and g-formula/transport formula estimators may give 

different results, particularly due to different modeling assumptions of the two approaches. 

A formal comparison of the two methods and a sufficient condition under which they will 

yield the same results when nonparametric estimators are employed is given in Appendix B. 

In settings where it is feasible to utilize both estimators, we will in general have a greater 

degree of confidence in the results when the two estimates are similar. Substantial 

differences between the two estimates could indicate possible violations of one or more of 

the assumptions being invoked.

Example

To demonstrate how the methods described above can be used to estimate the population 

average treatment effect when the study sample is not a random sample of the target 

population, consider an arbitrarily large (infinite) target population where: W1 and W2, are 

two independent Bernoulli random variables with expectations 0.15 and 0.20, respectively; 
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Y(1) and Y(0) are Bernoulli random variables where P(Y(a) = 1|W1, W2) = 0.1073 – 0.05a 
+ 0.20W1 + 0.20W2 −0.15aW1W2 for a = 0,1; and A is Bernoulli with mean 0.5 and 

independent of W1, W2, Y(1), and Y(0). For this data generating mechanism, E[Y(1) = 1] = 

0.123 and E[Y(0) = 1] = 0.177, such that the population average treatment effect (x 100%) is 

−5.5%. A study sample of n = 2,000 individuals was simulated by selecting a biased sample 

from the target population. Specifically, 320, 480, 480 and 720 individuals were randomly 

sampled from strata defined by (W1 = 0,W2 = 0), (W1 = 1,W2 = 0), (W1 = 0,W2 = 1), and 

(W1 = 1,W2 = 1). As in many trials, this sampling scheme oversampled participants at 

greater risk of the outcome (W1 = 1 or W2 = 1). For the n = 2,000 individuals in the study 

sample the sample average treatment effect (x 100%) was (0.250–0.356)×100 = −10.7%. 

The simulated observed study data, W1, W2, A and Y, are given in Table 1. Additionally, a 

random sample of m = 50,000 individuals from the target population was generated for 

which W1, W2 and S were observed (Table 2).

Given this realization of the data, the empirical risk difference (x 100%) in the study sample 

between individuals with A = 1 and A = 0 is −13.1% (Table 3). On the other hand, the 

estimate of the population average treatment effect (x 100%) using the non-parametric g-

(transport) formula is −5.4 and using inverse probability of sampling weights is −5.3%. As 

expected, the results from these two approaches are similar because we used nonparametric 

estimators of P(Y = 1|A = a, W1 = w1, W2 = w2, S = 1) and P(W1 = w1, W2 = w2) in the g-

formula approach and P(S = 1|W1 = w1, W2 = w2) in the inverse probability of sampling 

approach. All calculations for this example appear in Appendix C.

Transportability

Generalizing results to a target population which includes as members those persons 

included in the study sample differs from transporting results to a target population of which 

the study sample is not a subset.42 That is, in a transportability problem43 the study sample 

is imagined to have arisen from a population that is distinct from the target population. 

Individuals within the target population have zero probability of being selected into the 

study sample when transporting study results, violating the positivity assumption as defined 

above. For transporting results, a different positivity assumption can be presumed

where P(·) and E(·) denote probability and expectation in the target population as above, and 

P*(·) and E*(·) denote probability and expectation with respect to the superpopulation that 

gave rise to the study sample. Furthermore, the exchangeability assumption for transporting 

results is qualitatively different. When transporting results, it is sometimes sufficient to 

assume E*[Y(a)|S = 1, W = w] = E[Y(a)|W = w] rather than (3). However, if S is associated 

with post-treatment covariates, there may not be any set of covariates W which satisfies 

E*[Y(a)|S = 1, W = w] = E[Y(a)|W = w]. Other distinctions between generalizability and 

transportability problems are beyond the scope of this paper and are discussed elsewhere6. 

Methods for handling both selection and transportability problems are surveyed by 

Bareinboim and colleagues.3,4,44
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Discussion

To ensure an estimate is generalizable (in expectation) to a particular target population it 

would be sufficient to draw a study sample that is a random sample from that target 

population.5 However, beyond the logistical, financial, and ethical challenges to conducting 

such a study, in certain circumstances, a study sample that is representative of the target 

population may be undesirable.9,10 When first exploring the existence of a causal effect, 

epidemiologists may purposefully undertake non-random sample selection to increase 

statistical efficiency, to match or restrict on important confounders, or to allow estimation of 

subgroup effects.

Epidemiologists have been primarily concerned with the internal validity of effect estimates. 

However, the utility of an effect estimate for planning purposes and policy decision making 

will depend on both internal and external validity. For example, an internally valid estimate 

with extremely poor external validity may be of less use than an estimate with some internal 

bias but good external validity. External validity of an effect estimate will be threatened by 

the degree to which the prevalence of the effect measure modifiers differs in the study 

sample compared to the target population, as well as the magnitude of the modification.7 For 

example, Greenhouse et al.17 described a meta-analysis of trials of antidepressants in 

adolescents that suggested an increased risk of suicide among treated subjects. However, the 

majority of the meta-analyzed trials excluded participants with the most severe depression 

who would have experienced the greatest benefits from the therapy.17 In this case, while trial 

effects were internally valid, the lack of external validity had serious implications for policy: 

the Food and Drug Administration used the meta-analysis to justify issuing a black box 

warning advising physicians and patients of increased suicide risk, which resulted in limiting 

potentially beneficial treatment options for depressed adolescent patients.17 This example 

highlights the importance of balancing study design decisions to maximize both internal and 

external validity; internal and external bias both exist on a continuous scales (as degrees 

rather than as dichotomies) and relatively minor violations of internal validity may be 

tolerable in exchange for greater external validity.

Many of the assumptions and estimators we describe above may be familiar to the reader 

versed in threats to internal validity due to selection bias. Indeed, violations of equation (3), 

in particular, may be interpreted as a selection bias problem (internal validity) or a 

generalizability problem (external validity). We view the process of enumerating the study 

sample as determining the generalizability or external validity of study results, while 

exclusion of participants due to drop out or missing data after the study sample has been 

defined determines the internal validity of study results. One might imagine the study as a 

randomized trial and ask whether selection occurred before or after enumeration of the study 

sample and treatment assignment (external or internal validity, respectfully). This distinction 

may be hypothetical, but is in harmony with existing thought experiments in epidemiology, 

such as framing analysis of observational data as if it arose from a randomized trial.1,31,32

We have discussed a g-formula estimator and inverse probability of sampling weighted 

estimator for generalizing results from a specified study sample to a specified target 

population. Doubly-robust estimation of the population average treatment effect is an area 
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for future research. Such doubly-robust estimators would be consistent if either the model 

used to adjust for non-random sampling into the study or the model used to specify W-

specific treatment effects is correct (without requiring both models be correct). Some 

doubly-robust estimators that might be easily adapted to the generalizability problem are 

those that have been developed for problems of missing outcome data in a trial.45–47

Commentaries on the lack of generalizability of randomized trials typically advocate 

evaluating a lengthy check list of potential determinants of external validity.18,19,48,49 We 

argue evaluations of generalizability could be more straightforward if considered 

quantitatively within the potential outcomes framework or the (logically equivalent) 

graphical models framework. Specifically, understanding the mechanism by which 

differences between the sample and the target populations arise is useful for identifying 

methods to account for those differences.

Finally, distinguishing internal and external threats to validity is useful for determining 

which parameters in the study sample or target population are estimable. When collider 

stratification bias due to selection is present in a study, it may threaten causal inference 

being made for any population,50 even the study sample, and depending on the magnitude of 

the bias, may preclude attempts to generalize results to any specified target population. In 

contrast, if an analysis of a study is believed to have sufficient control of confounding and 

selection bias and differences in the average treatment effect can be attributed to nonrandom 

sampling of the study population, then (given the above assumptions) methods exist to 

generalize results to user-specified target population. Understanding the source of the 

different biases that combine to influence a final estimate will help make analysis decisions 

that minimize the total bias. Generalizing effect estimates to the appropriate target 

population will improve their utility, and better inform implementation of interventions in 

target populations.
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Appendix A

Proof of (4)

Proof of (5)

Similar to the proof of (4), under the stated assumptions it is straightforward to show:

and

which together imply (5).

Appendix B

Non-equivalence of the nonparametric g-formula and inverse probability of sampling 

weighted estimator when weights are estimated nonparametrically Suppose we observe (Wi, 

Ai, Yi) for i = 1, . . . , n individuals in the study sample.

Suppose we also observe (Wj, Sj) for j = 1, . . . , m individuals based on a random sample 

from the target population.

The nonparametric g-formula based estimator is:

where the conditional expectation is estimated by data from the study sample, i.e.,

and P̂ (W = w) is a nonparametric estimator based on data from the target population, i.e.,
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For notational convenience, let  and 

 so that the nonparametric g-formula estimator can be written

(6)

Now consider the non-parametric inverse probability of sampling weighted estimator is

where Gi(Wi) is the inverse of the estimated probability of being sampled conditional on 

covariates Wi. Equivalently, we can write the inverse probability of sampling weighted 

estimator as

or

Using the notation above, we have:

Assume we estimate P(S = 1|W) nonparametrically such that
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where . Then

(7)

Thus the non-parametric g-formula estimator (6) and the non-parametric inverse probability 

of sampling weighted estimator (7) will be equal if

i.e.

But this need not be true in general.

Appendix C

Calculations for example

Population average treatment effect (PATE)

Sample average treatment effect (SATE)

Empirical risk difference in the study sample
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Estimation of the PATE from the study sample using the g-formula

Estimation of the PATE from the study sample using inverse probability 

weighting

First, estimate G(w) = [P̂ (S = 1|W = w)]−1.

Then the inverse probability of sampling weighted estimate equals:
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Table 1

Data from a nonrandom study sample (n=2,000)

W1 W2 A Y Number

0 0 0 0 143

0 0 0 1 22

0 0 1 0 141

0 0 1 1 14

0 1 0 0 172

0 1 0 1 72

0 1 1 0 178

0 1 1 1 58

1 0 0 0 166

1 0 0 1 82

1 0 1 0 171

1 0 1 1 61

1 1 0 0 162

1 1 0 1 207

1 1 1 0 248

1 1 1 1 103

Total: 2,000

*
W1 and W2 are pre-treatment covariates that modify the effect of treatment A on outcome Y
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Table 2

Data from a random sample from the target population (m=50,000)

W1 W2 S Number

0 0 0 33,498

0 0 1 320

0 1 0 8,162

0 1 1 480

1 0 0 5,556

1 0 1 480

1 1 0 784

1 1 1 720

Total: 50,000

*
W1 and W2 are the same pre-treatment covariates defined in table 1, measured in a random sample from the target population. S is an indicator of 

further selection from the target population into the study sample.
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