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The homomeric GABA-ρ ligand-gated ion channels (also known as GABAC or GABAA-ρ receptors) are similar to heteromeric GABAA

receptors in structure, function and mechanism of action. However, their distinctive pharmacological properties and distribution
make them of special interest. This review focuses on GABA-ρ ion channel structure, ligand selectivity toward ρ receptors over
heteromeric GABAA receptor sub-types and selectivity between different homomeric ρ sub-type receptors. Several GABA
analogues show selectivity at homomeric GABA-ρ receptors over heteromeric GABAA receptors. More recently, some synthetic
ligands have been found to show selectivity at receptors formed from one ρ subtype over others. The unique pharmacological
profiles of these agents are discussed in this review. The classical binding site of GABA within the orthosteric site of GABA-ρ
homomeric receptors is discussed in detail regarding the loops and residues that constitute the binding site. The ligand-residue
interactions in this classical binding and those of mutant receptors are discussed. The structure and conformations of GABA are
discussed in regard to its flexibility and molecular properties. Although the binding mode of GABA is difficult to predict, several
interactions between GABA and the receptor assist in predicting its potential conformation and mode of action. The
structure–activity relationships of GABA and structurally key ligands at ρ receptors are described and discussed.

Abbreviations
2-MeGABA; 4-amino-2-methylbutanoic acid; 2-MeTACA; trans-2-methyl-4-aminocrotonic acid; 3-AMOHP,
3-(aminomethyl)-1-oxo-1-hydroxy-phospholane; 3-AOHP, 3-(amino)-1-oxo-1-hydroxy-phospholane; 3-GOHP,
3-(guanidino)-1-oxo-1-hydroxy-phospholane; 4-ACPAM, 4-aminocyclopent-1-enecarboxamide; 4-ACPHA, 4-amino-N-
hydroxycyclopent-1-enecarboxamide; ACPBPA; 3-aminocyclopentenyl-butylphosphinic acid; (±)-ACPECA; (±)-4-
aminocyclopent-2-ene-1-carboxylic acid; CACA; cis-4-aminocrotonic acid; CAMP; cis-2-(aminomethyl)cyclopropane
carboxylic acid; I4AA; imidazole-4-acetic acid; LGIC; ligand-gated ion channel; TACA; trans-4-aminocrotonic acid; TAMP;
trans-2-(aminomethyl) cyclopropane carboxylic acid; THIP; 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol; TM;
transmembrane; TPMPA; (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid
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Cys-loop pentameric ligand-gated
ion channels
The GABAA-ρ receptors as designated by the International
Union of Pharmacology (IUPHAR) (Alexander et al., 2015)
and also known as GABA-ρ or GABAC receptors, are
homopentameric ligand-gated ion channels (LGIC)
composed of ρ subunits. They are members of the pentameric
or Cys-loop LGIC superfamily comprising excitatory cation
selective receptors such as nicotinic acetylcholine
receptors, 5-HT3 receptors and zinc-activated
channels, and inhibitory anion-selective receptors such as
GABAA receptors, strychnine-sensitive glycine receptors
and invertebrate glutamate-gated chloride channels
(Thompson et al., 2010; Baenziger and Corringer, 2011).
Receptors of this superfamily require five subunits to
assemble a single ion channel. The ion channel may be
homomeric formed by five identical subunits as is the case
of GABA-ρ receptors or heteromeric, consisting of a
combination of at least two different subunits, such as GABAA

receptors (Olsen and Sieghart, 2009).
The Cys-loop receptors are analogous to each other in

their structure, and they consist of three domains. The
N-terminal extracellular domain is generally formed by 10
β-strands in two sheets that form a sandwich and two
α-helices (Figure 1). This domain contains the orthosteric
binding site and also the Cys–Cys disulfide bond forming
the characteristic Cys-loop of 13 residues (also called β6–β7
loop). This loop is conserved across subunits belonging to
this superfamily and is the basis of the name “Cys-loop
receptors” (Miller and Smart, 2010). This structure is believed
to be important for both cell surface expression and
cooperative interaction between the agonist binding sites
and the channel gate (Wong et al., 2014). The second domain
consists of the four transmembrane α-helices (TM1–TM4).
TM2 forms the pore of the ion channel, whereas the
remaining three TM helices form a hydrophobic
environment to incorporate the pore into the plasma

membrane (Figure 1) (Corringer et al., 2000). The third
domain is an intracellular loop between TM3 and TM4 that
is variable and of unknown structure. This loop has little
residue conservation between different subunits or subunits
of different subtypes. There is evidence that the intracellular
domain is involved in modulating the receptor by
phosphorylation and binding to other intracellular
molecules. There is a short extracellular C terminus after M4
(Filippova et al., 1999).

Ionotropic GABA receptor subunit
composition
In humans, there are 19 isoforms of GABAA subunits, that is,
six α, three β, three γ and one of δ, ε, π, θ, known to form
heteromeric GABAA receptors, and three ρ subunits that were
reclassified by the Nomenclature Committee of IUPHAR
(Olsen and Sieghart, 2009) to GABAA from a distinct class of
receptors known as GABAC. This reclassification is
controversial due to the differing pharmacology, physiology
and molecular biology of GABA receptors containing
ρ-subunits from those containing non ρ-subunits. Most
GABAA receptors are heteromeric and require at least two
different GABAA subunits (Olsen and Sieghart, 2009). The
predominant GABAA receptors in brain tissues are formed
from two α, two β and one γ subunit, for example, GABAA

α1β2γ. The formation of active GABA-gated ion channels
requires the presence of at least α and β subunits. However,
GABA-ρ receptors express as homomeric ion channels, and
some studies suggest pseudoheteromeric channels consisting
of different ρ subunits (Connolly et al., 1996). There is some
limited in vitro evidence to support co-assembly of ρ subunits
with other GABAA subunits, particularly with α1 and γ2
(Milligan et al., 2004; Pétriz et al., 2014), and also with glycine
receptor α1 and α2 subunits (Pan et al., 2000).

Significant differences have been identified between
various ionotropic GABA receptors based on physiological,

Figure 1
Pentameric ligand-gated ion channel receptor of GABA-ρ homology model based on GluCl structure prepared has been previously described
(Naffaa et al., 2015). A single ion channel showing the main domains with five identical subunits, coloured differently to show the intersubunit
interfaces located between the principal (+) and complementary (�) sides. (A) Bottom view and (B) side view. As the structure of the intracellular
domain has not yet been determined by crystallography, it is not included.

BJP M M Naffaa et al.

1882 British Journal of Pharmacology (2017) 174 1881–1894

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=72
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=72
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=72
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=76
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=76
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=68
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=68
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=83
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=83
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=73
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=445


pharmacological and biochemical properties (Johnston,
2002). The amino acid sequence identity between various
GABAA subunits and the ρ subunits ranges between 35 and
45% but is as high as 75% in the TM region (Le Novere and
Changeux, 1999). GABA-ρ ion channels expressed in Xenopus
oocytes have different properties to other GABAA receptors in
terms of potency, channel opening time and receptor
desensitization. In general, GABA is between 10- and
100-fold more potent at GABA-ρ receptors than heteromeric
GABAA receptors, with slow activation and deactivation and
less readily desensitized (Feigenspan et al., 1993; Amin and
Weiss, 1994; Feigenspan and Bormann, 1994; Bormann,
2000). Heteromeric GABAA receptors are also well known to
be modulated by agents such as benzodiazepines,
barbiturates and neurosteroids (Johnston, 1996; Bormann,
2000). GABA-ρ receptors are insensitive to these GABAA

receptor modulators. However, some GABAA modulators can
also modulate GABA-ρ receptors, such as zinc, lanthanides
(Wu et al., 1993; Calvo et al., 1994; Chang et al., 1995) and
some synthetic neurosteroids (Morris et al., 1999).

GABA-ρ receptors
The concept of a third sub-type of GABA receptor arose in
1984 from the studies demonstrating the lack of inhibition
by cis-4-aminocrotonic acid (CACA) (Figure 2), a GABA
analogue that has a bicuculline-insensitive depressant action
on the firing of cat spinal neurones, on the binding of [3H]-
baclofen to the rat cerebellar membranes and thus unlikely
to act as an agonist on bicuculline-sensitive GABAA or
baclofen-sensitive GABAB receptors (Drew et al., 1984).
Later, bovine retinal mRNA expressed in Xenopus oocytes
was found to result in receptors sensitive to GABA but
insensitive to both bicuculline and baclofen (Polenzani
et al., 1991), and the novel ρ1 subunit from a human retina
cDNA library was cloned in the early 1990s (Cutting et al.,
1991). Originally known as (and often still referred to as)
GABAC receptors, the second member of this subfamily,
ρ2 subunits were cloned from human retina a year later
(Cutting et al., 1992) and is also found in brain tissue such as
hippocampus, cerebellum and pituitary, with significant
abundance (Lopez-Chavez et al., 2005). A third member of
this subfamily, ρ3, has been detected in retina and at lower
expression levels in higher brain regions (Boue-Grabot et al.,
1998; Bailey et al., 1999). In the retina, ρ3 subunits are
expressed in ganglion neurons, while ρ1 and ρ2 subunits are
specifically expressed in bipolar and horizontal cells (Qian
and Dowling, 1993; Fletcher et al., 1998; Lopez-Chavez

et al., 2005). ρ1 knockout mice studies have indicated that ρ
receptors are present in the superior colliculus (Schlicker
et al., 2009). The presence of GABA ρ1 and ρ2 subunits, either
homomerically or combined with other GABAA (α1 and γ2)
subunits, has also been identified in cultured cerebellar
astrocytes. It is proposed that these GABA-ρ subunits may
contribute to the regulation of glial development in the
cerebellum (Pétriz et al., 2014). Although GABA-ρ receptors
are mainly expressed in the CNS, they are also found in the
peripheral nervous system, for example, in the
gastrointestinal tract (Jansen et al., 2000), and sperm cells
(Li et al., 2008). Members of this ρ subfamily share more than
70 and 95% amino acid identity and similarity respectively
(Figure 3) (Zhang et al., 2001).

The involvement of GABA-ρ receptors in a range of
physiological processes has been suggested, including the
inhibition of ammonia-induced apoptosis in hippocampal
neurons (Yang et al., 2003) and hormone release in the
pituitary (Boue-Grabot et al., 2000). The GABA-ρ antagonist
(1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid;
TPMPA) (Figure 2) was shown to improve the symptoms of
retinitis pigmentosa in rats (Jensen, 2012) and inhibit the
development of myopia in chicks (Chebib et al., 2009b). Both
GABA-ρ1 and -ρ2 receptors are found in the hippocampus as
extrasynaptic receptors activated by GABA through spillover
(Alakuijala et al., 2006) and are believed to be involved in
paired-pulse depression of inhibitory postsynaptic currents
(Xu et al., 2009). More recently GABA-ρ2 receptors expressed
pre-synaptically in the spinal dorsal horn have been
implicated in pain perception and identified as a novel target
for analgesia (Tadavartya et al., 2015). Behavioural
pharmacological studies have shown an important role for
ρ1 receptors in the sleep-waking behaviour of rats (Arnaud
et al., 2001), learning and memory in chicks and rats (Chebib
et al., 2009b; Gibbs and Johnston, 2005), the inhibitory
modulation of the olfactory bulb (Chen et al., 2007) and
evidence that ρ1 and ρ2 receptors may be important for some
specific, in vivo, effects of ethanol (Blednov et al., 2014).

Structure and function of GABA-ρ1
receptors
Homology models of GABA-ρ receptors (Harrison and
Lummis, 2006b; Abdel-Halim et al., 2008; Osolodkin et al.,
2009; Tai et al., 2009; Naffaa et al., 2015) have been based
on the five different LGIC crystal structures, AChBP, ELIC,
GLIC, GABAA β3 and GluCl (Brejc et al., 2001; Hilf and
Dutzler, 2008; Chen et al., 2010; Hibbs and Gouaux, 2011;
Miller and Aricescu, 2014). With the exception of AChBP,
these crystal structures are of full ion channels, with varying
percentages of residues conserved with GABA-ρ. AChBP, ELIC
and GLIC have limited amino acid conservation with ρ1
(~20% amino acid identity), while for GABAA β3 and GluCl
receptors, this is ~40% (Figure 4) (Naffaa et al., 2015).

The human homopentameric GABAA β3 receptor was the
first of the GABAA receptor structures to be resolved (Miller
and Aricescu, 2014). The β3 subunit has a relatively high
sequence identity to the ρ1 subunit, and it is unlikely to form
functional homomeric receptors in vivo (Tretter and Moss,
2008). In GABAA heteromeric receptors, the orthosteric

Figure 2
Chemical structures of ligands that selectively distinguish GABA-ρ1
receptors from GABAA receptors.
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binding site is between the β subunit on the principal (+) side
(comprising loops A–C) and an α subunit on the
complementary (�) side (comprising loops D–G), as defined
in the same manner as shown for GABA-ρ receptors
(Figure 1). The (�) side of the GABA β3 homomeric receptor
lacks the key arginine residue that forms a critical salt-bridge
between all α and ρ subunits and the carboxylate of GABA
(Naffaa et al., 2015). Therefore, the (+) side of the interface
may provide accurate predictions, but the (�) side is lacking
residues that form essential interactions with GABA. The
homology model based on the GABAA β3 template is not able
to fully predict the critical interactions of GABA and its
binding mode (Figure 4) (Baumann et al., 2002; Naffaa et al.,
2015). In contrast, the ρ1 homology model based on GluCl
is in excellent agreement with most previous ρ1 receptor
experimental findings. Additionally, GluCl has been co-
crystalized with its endogenous ligand, L-glutamate, which
is similar to GABA in structure and flexibility that also helps
to predict GABA interactions (Naffaa et al., 2015).

GABA-ρ1 agonist binding site
Mutational studies on a number of ρ1 residues equivalent to
some previously studied in the GABAA β2 subunit (Amin
and Weiss, 1993) led to significant decreases in GABA
sensitivity, revealing the importance of residues such as
Tyr198, Tyr200, Tyr241, Tyr247 and Thr244 (Figure 5) (Amin
and Weiss, 1994; Bormann and Feigenspan, 1995). Mutation
of Tyr102 to serine was also found to produce spontaneously
active receptors (Torres and Weiss, 2002), and structurally
diverse antagonists were found to exhibit different effects at

these spontaneously active receptors suggesting differing
affinities for the open and closed state of the receptor
(Yamamoto et al., 2012b). Other mutational studies have
identified Tyr102, Tyr106, Phe138 and Phe240 in GABA-ρ1
receptors to be major determinants for antagonist selectivity
at ρ1 receptors when compared with the GABAA α1β2γ
receptors (Figure 4) (Zhang et al., 2008). Mutation of the
Tyr102 residue leads to significant changes in GABA activity
but does not appear to be involved in stabilizing GABA in
the binding site (Figure 5B). Therefore, Tyr102 may play a role
in the conformational changes that lead to gating, as has
been proposed for the equivalent residue (Phe64) in the
GABAA α1 subunit (Szczot et al., 2014), or it may also have a
critical role in stabilizing the protein by forming inter-
subunit interactions (Figure 5B) (Miller and Aricescu, 2014;
Naffaa et al., 2015).

In a mapping study on loops A, E and F (Figure 5A)
(Sedelnikova et al., 2005), only residues Asp136 in loop A,
Leu166, Ser168 and Arg170 in loop E and Gln226 in loop F were
noted to significantly decrease GABA sensitivity when
cysteine was introduced at these sites. Interestingly, cysteine
mutation of Leu169, located in loop E but orientated away
from the binding site and not thought to be involved in
GABA binding, resulted in a several-fold increase in the
potency of GABA. Residues at the 169 position may be
involved in the conformational changes of channel gating
or form interactions with residues in the same subunit, with
the interactions formed by the cysteine leading to greater
stability. Trp133, Pro135 and Phe139 in loop A and Gln160 in
loop E, when individually mutated to cysteine resulted in
non-functional receptors. As these residues are also some
distance away from the GABA binding site, these residues

Figure 3
The amino acid sequence alignment of GABA-ρ1, GABA-ρ2 and GABA-ρ3 subunits. Alignments were prepared as previously described (Naffaa et al.,
2015). The amino acid sequence of various human GABA-ρ receptors was obtained from the Universal Protein Resources (http://www.uniprot.org/)
(UniProt Consortium, 2013). The UniProt IDs for GABA-ρ1, GABA-ρ2 and GABA-ρ3 subunits are P24046, P28476 and A8MPY1 respectively.
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Figure 5
Molecular basis of GABA bound in the orthosteric binding site of GABA ρ1 homology model based on GluCl. (A) GABA bound GABA-ρ1 homology
model based on GluCl, showing loops A–G (labelled in red), and H-bond interactions formed between GABA and Thr244 and Ser168, and salt
bridges with Arg104 and Glu196. Arg158 and Arg170 are two important residues for protein stability either by forming interaction within the same
subunit or between neighbouring subunits. (B) GABA and aromatic residues (Tyr102, Tyr198, Tyr241 and Tyr247) forming the aromatic box that
stabilizes GABA in the binding site during the channel gating. The Phe138 residue may form important interactions as it has a benzene ring system
that partially oriented to both the GABA binding site and the adjacent subunit.

Figure 4
The amino acids sequence alignment of GluCl, GABA α1, GABAγ2, GABA ρ1, GABA β3 and GABA β2 subunits. The different shades of blue
highlights show the conserved amino acids between the template ‘GluCl’ and the studied GABA subunits in this review. Dark blue indicates that
the residue is conserved between all or most of the subunits, while light blue indicates that residue is conserved or related to another residue in two
or three subunits only. Alignments were prepared as previously described (Naffaa et al., 2015). The amino acid sequence of human GABA and
GluCl subunits was obtained from the Universal Protein Resources (http://www.uniprot.org/) (UniProt Consortium, 2013) and Protein Data Bank
(PDB). UniProtKT ID for GABA α1, GABAγ2, GABAρ1 and GABA β2 subunits are P14867, P18507, P24046 and P47870–1 respectively. PDB ID for
GluCl and GABA β3 are 3RIF and 4COF respectively.

GABA-ρ receptors BJP

British Journal of Pharmacology (2017) 174 1881–1894 1885

http://www.uniprot.org


may have critical roles in protein stability through intra-
subunit interactions rather than a direct effect on GABA
binding. The same study showed that when cysteine replaces
Gln160 in loop E, the receptors become spontaneously active,
suggesting that this residue is involved in the conformational
changes that lead to gating (Sedelnikova et al., 2005).

Mutations of residues in the binding site within a distance
of 7 Å of the carboxylate group of GABA identified Arg104 and
Ser168 (Figure 5A) (Harrison and Lummis, 2006a) to be
essential for GABA activity and have been predicted by
modelling studies to form a salt bridge and a H-bond
interaction, respectively, with GABA (Harrison and Lummis,
2006b; Abdel-Halim et al., 2008; Melis et al., 2008; Osolodkin
et al., 2009; Naffaa et al., 2015). However, Arg158 and Arg170

residues (Figure 5A), which are also in close proximity to the
carboxylate group of GABA in the binding site and have been
found to be critical for receptor activation by GABA, are
predicted by modelling not to be involved in GABA binding
but important for protein stability (Harrison and Lummis,
2006b; Abdel-Halim et al., 2008; Osolodkin et al., 2009;
Naffaa et al., 2015).

Similar to other LGIC receptors, the orthosteric binding
site of GABA-ρ1 receptors contains many aromatic residues.
Mutational studies have demonstrated the significance of
the aromatic residues Tyr198, Tyr241 and Tyr247 (Figure 5B).
Mutation of these tyrosine residues to the aromatic amino
acid phenylalanine leads to only a minor effect on GABA
response whereas mutation to the aliphatic serine leads to a
significant decrease (Lummis et al., 2012). These residues are
predicted by modelling studies to have their aromatic group
oriented toward the binding site and to form an aromatic
box surrounding the ammonium group of GABA (Harrison
and Lummis, 2006b; Abdel-Halim et al., 2008; Osolodkin
et al., 2009; Naffaa et al., 2015). Tyr200 (Figure 5B) was also
found to be important for GABA activity. However, according
to modelling studies, this residue has its functional group
oriented away from the orthosteric binding site, indicating
that it is unlikely to interact directly with GABA (Lummis
et al., 2012; Naffaa et al., 2015).

Mutation of the ρ1 Thr244 residue in loop C, which has its
hydroxyl group oriented toward the GABA binding site
(Figure 5A), found that only the T244S mutation resulted in
functional receptors, which were 35-fold less sensitive to
GABA (Amin and Weiss, 1994). A range of agonists studied
at the T244S mutant receptor demonstrated many-fold
decreases in potency, while antagonist activity remained
unaffected by the mutation (Yamamoto et al., 2012a).
Thr244 is proposed to be essential for the formation of an
H-bond with agonists initiating conformational changes
through movement of Loop C to open the channel (Naffaa
et al., 2016).

GABA-ρ1 channel
The structure of the TM2 domains of most LGIC receptors is
highly conserved across species and subunits, with
variation at only a few sites in the pore. The structures of
the ρ1 and ρ2 subunits differ at two sites within TM2
regions only, Pro294 (�20) and Ser304 (120) in ρ1 are Ser290

(20) and Thr300 (120), respectively, in ρ2 subunits (Figure 6).

Picrotoxinin is a pore-blocker at many ligand-gated ion
channels (Akaike et al., 1985; Jarboe et al., 1968; Pribilla
et al., 1992). It binds to a unique site in TM2 (Gurley
et al., 1995; Wang et al., 1995), inhibiting the chloride flux
through the anionic ligand-gated channels (Inoue and
Akaike, 1988; Etter et al., 1999).

Picrotoxinin has different effects at ρ1 and ρ2 homomeric
receptors and also at native GABA-ρ receptors from different
species (Qian and Dowling, 1993; Lukasiewicz and Werblin,
1994; Zhang et al., 1995). In GABA and glycine channels,
the residues located at the 20 positions play significant roles
in the picrotoxinin activity (Lynch et al., 1995; Shan et al.,
2001; Sedelnikova et al., 2006). Introduction of mutations at
Pro294 (�20) and Pro298 (20) (Figure 6) of human ρ1 homomeric
receptors expressed in Xenopus oocytes changed not only
picrotoxinin sensitivity but also the response of the mutant
receptors to the agonists and partial agonists (Carland et al.,
2004). Rat GABA-ρ2 receptors are relatively insensitive to
picrotoxinin (Feigenspan et al., 1993). Mutation of Thr314

(60) in the TM2 of the rat ρ1 subunit to methionine (Met299),
the equivalent residue in the rat ρ2 subunit, resulted in
mutant receptors with smaller chloride currents (Figure 6).
Co-expression of rat WT ρ1 and rat T314 M ρ1 mutant
subunits resulted in receptors with picrotoxinin sensitivity
that is similar to co-expressed rat WT ρ1 and ρ2 subunits,
which led to the suggestion of native pseudo-heteromeric
GABAA ρ receptors composed of ρ1 and ρ2 subunits in rat
(Zhang et al., 1995). In the ρ2 channel, the serine residue at
the 20 position is predicted by homology models to form
multiple hydrogen bonds and hydrophobic interactions with
picrotoxinin, whereas the homologous proline residues of ρ1
channels are predicted to form only hydrophobic contacts
with picrotoxinin (Naffaa and Samad, 2016).

The Trp328 in TM3 of ρ1 receptors is important for
sensitivity to pentobarbital. Although ρ1 wild-type
receptors are generally insensitive to pentobarbital, when
Trp328 is mutated to various hydrophobic residues, these ρ1
mutant receptors become sensitive to pentobarbital. This is
possibly due to a change in structure that results from
substitution of Trp328 by smaller, hydrophobic residues
exposing the gate of the channels to the extracellular
membrane components or affording a binding cavity for
pentobarbital (Amin, 1999). Moreover, mutation of Ile323 in
TM2 to serine also renders human homomeric ρ1 mutant
receptors sensitive to barbiturates, which is believed to be
due to allosteric rather than direct effects (Belelli et al.,
1999). Wild-type GABA-ρ receptors are also insensitive to

Figure 6
(A) Chemical structure of picrotoxinin. (B) The amino acids sequence
alignment of the second TM domain of human GABA ρ1 and ρ2
subunits against the GABA rat ρ1 subunit.
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modulation by benzodiazepines. However, the double
mutation of I307S/W328 M in ρ1 subunits renders
homomeric mutant receptors sensitive to micromolar
concentrations of diazepam (Walters et al., 2000). These ρ1
I307S/W328 M mutant GABA receptors still resemble ρ1 WT
receptors in terms of the pharmacological properties of
agonists and antagonists, demonstrating that the receptors
retain GABA-ρ character (Hall et al., 2014).

Many divalent cations such as Zn2+, Ni2+ and Cu2+ have
modulatory actions at ρ1 receptors (Calvo et al., 1994; Dong
and Werblin, 1995). The zinc cation, which is present in the
synaptic terminal of photoreceptors (Wu et al., 1993), is able
to reduce GABA responses at ρ1 receptors with an effect that
depends on the extracellular pH. Because of this pH effect,
the His156 residue in the orthosteric binding site was
suggested to have a direct role in zinc modulation.
Introduction of a tyrosine at this site leads to receptors
insensitive to divalent cations such as Zn2+. However, other
pharmacological and electrophysiological properties were
the consistent with those of wild-type receptors, supporting
the involvement of this residue in the modulation by Zn2+

(Calvo et al., 1994; Wang et al., 1995).

Ligand selectivity for GABA-ρ receptors
and structure activity relationships

Structure and conformations of GABA
GABA is a low molecular weight, zwitterionic ligand that has
three rotatable carbon–carbon bonds, which afford flexibility
and the ability to adopt many different conformations. The
flexible rotation about C2–C3 and C3–C4 bonds allows GABA
to exist in a range of low-energy conformations. Because of
the variation in binding residues and sensitivities of specific
subunit combinations to GABA, the conformational
flexibility is critical for its biological activity at different
receptors sub-types (Figure 2, Table 1). It is believed that
GABA adopts different conformations at the orthosteric
binding sites of different GABA receptor sub-types
(Crittenden et al., 2005a,c; Majumdar and Guha, 1988;
Ottosson et al., 2014). However, the question of the
conformation(s) of GABA in the binding site has not yet been
fully answered, and there is currently no evidence to support
whether GABA is able to activate a receptor subtype in only
one or more than one conformation. Indeed, this
conformational flexibility may be an important factor in the
ability of GABA to activate receptors.

Structure activity relationships of GABA-ρ
receptors
The synthesis of conformationally restricted GABA analogues
led to the initial identification of GABA-ρ receptors using
ligands that are selective at this subfamily, relative to
heteromeric GABAA receptors (Johnston et al., 1975). The
conformationally restricted GABA analogues, CACA and
trans-3-aminocrotonic acid (TACA) possess an unsaturated
bond at C2–C3 and are therefore only freely rotatable at the
C3-C4 bond. The cis-isomer (CACA, Figure 2, Table 1) offers
a folded conformation and is a potent and selective GABA
receptor partial agonist. CACA depressed firing of cat spinal

neurons with bicuculline-insensitive properties, and this
depressant effect, not reproduced by baclofen, suggested
pharmacologically distinct GABA receptors in the
mammalian CNS, which were not GABAA or GABAB

(Johnston, 1996). CACA is inactive at heteromeric GABAA

receptors but is a partial agonist (70% efficacy) at GABA-ρ1
recombinant homomeric receptors. The trans-isomer (TACA,
Figure 2, Table 1) exhibits an extended conformation and is
a potent agonist. TACA has greater potency than GABA at ρ
receptors but is non-selective, also acting as an agonist at
heteromeric GABAA receptors (Woodward et al., 1993;
Kusama et al., 1993a; Kerr and Ong, 1995).

The restricted cyclic analogue, (+)-cis-2-
(aminomethyl)cyclopropane carboxylic acid
(CAMP) (Figure 2), demonstrates greater selectivity for
GABA-ρ receptors than CACA, which also inhibits GABA
reuptake transporters. Interestingly, (+)- and (�)-CAMP show
opposite pharmacological actions, with (+)-CAMP being a full
agonist and (�)-CAMP being a weak antagonist on both ρ1
and ρ2 receptors (Duke et al., 2000). Both (±)-CAMP and (±)-
trans-2-(aminomethyl) cyclopropane carboxylic acid (TAMP)
(Figure 7, Table 1) have been shown to differentiate between
subtypes of GABA-ρ receptors (Table 1). (±)-CAMP is a partial
agonist at ρ3 receptors while (±)-TAMP is an antagonist (Vien
et al., 2002). The area of steric interaction encountered by the
antagonists (�)-TACP (Figure 8, Table 1) and (�)-CAMP
(Figure 2, Table 1) is thought to be the same area of the
binding site (Chebib et al., 2001) and may be responsible for
the antagonist action of these ligands.

(S)-2MeGABA (Figure 7) and (+)-4-aminocyclopent-2-ene-
1-carboxylic acid [(+)-ACPECA] (Figure 8, Table 1) are full
agonists at ρ1 and ρ2 receptors with preferred orientations
that place the bulk of the molecule behind the plane. Their
enantiomeric pairs, (R)-2MeGABA and (�)-ACPECA, are
antagonists and orientate such that the bulk of the molecule
is in front of the plane (Figure 8) (Crittenden et al., 2006). This
difference in orientation is thought to contribute to their
opposing pharmacological activities. This finding is in
accordance with the pharmacological profile of GABA
analogues at the ρ1 receptor where substitution behind the
double bond leads to agonist activity while substitution in
front of the double bond results in antagonist activity
(Crittenden et al., 2005b). These results are also consistent
with the observed antagonist activity of (�)-CAMP.
Substitution in the front of the plane may lead to steric
interactions that prevent the movement of loop C required
for receptor activation, thus resulting in antagonist activity
(Abdel-Halim et al., 2008; Naffaa and Samad, 2016).

4,5,6,7-Tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP)
(Gaboxadol, Figure 2, Table 1), a relatively rigid analogue
of GABA, is a potent antagonist at all GABA-ρ receptor
subtypes (Johnston et al., 2003) but acts as a partial agonist
at synaptic GABAA receptors and as a potent super-agonist
at extra-synaptic α4β3δ receptors (Krogsgaard-Larsen et al.,
2004). THIP has demonstrated therapeutic effects on the area
of sleep and analgesia (Krogsgaard-Larsen et al., 2004). The
THIP derivative, aza-THIP (Figure 8, Table 1), is
approximately equipotent to THIP as an antagonist at
GABA-ρ1 receptors but is more selective for GABA-ρ receptors
than THIP, with negligible activity at heteromeric GABAA

receptors. Thio-THIP (Figure 8, Table 1) in which the
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Table 1
The activities of the ligands at various GABA-ρ, GABAA and GABAB receptors.

GABAA-ρ1 GABAA-ρ2 GABAA-ρ3 GABAA (α1β2γ2L) GABAB

GABA EC50 = 2.5μMa EC50 = 2.5μMb EC50 = 2.5μMb EC50 = 21.1μMc EC50 = 1.7 μMc

TACA EC50 = 0.44μMd EC50 = 0.3μMa EC50 = 3.8 μMe EC50 = 133 μMf Inactive

CACA EC50 = 74 μMg

(70% efficacy)
EC50 = 70 μMg EC50 = 139 μMe Inactive Inactive

(+)-CAMP EC50 = 40 μMg EC50 = 17 μMg EC50 = 28 μMg Weak antagonist
≥ 1mMg

Inactive

TPMPA KB = 2.1 μMh KB = 15.6 μMi KB = 10.2 μMe Weak Antagonist
KB = 320 μMh

Weak agonist
EC50 ~ 500 μMh

THIP Ki = 25 μMk - IC50 = 10.2 μMe EC50 = 355 μMl Inactive

Picrotoxinin IC50 = 48μMm IC50 = 4.8μMm - IC50 = 5 μMn Inactive

I4AA IC50 = 1.45 μMi IC50 = 3.18 μMj IC50 = 12.6 μMi EC50 = 138 μMa -

2-MeTACA Kb = 45 μMi Partial agonist
KB = 101 μM,
IMAX = 34%)i

Inactivee

(-)-TAMP EC50 = 9 μM,
IMAX = 39%g

EC50 = 55 μM,
IMAX = 55%g

Antagonistg EC50 = 50 μM,
IMAX = 51%g

Inactive

(R)-ACPBPA KB = 60 μMc KB = 6 μMo - Inactivec Inactivec

(S)-ACPBPA KB = 5 μMc KB = 11 μMo - Inactivec Inactivec

(S)-2MeGABA EC50 = 65μMp EC50 = 20μMp EC50 = 25μMq - -

(R)-2MeGABA IC50 = 16μMp IC50 = 36μMp - - -

(+)-ACPECA EC50 = 135μMp EC50 = 60μMp EC50 = 110μMp - -

(�)-ACPECA IC50 = 300 μM
Inhibit 25% of
GABA EC50

p

- IC50 = 300 μM
Inhibit 25% of
GABA (3μM)p

- -

(+)-TACP EC50 = 2.7 μM,
IMAX = 83%q

EC50 = 1.5 μM,
IMAX = 85%q

EC50 = 2.7 μM,
IMAX = 27%q

- -

(�)-TACP(100 μM) 2% activation
(56% blockade
of 1 μM GABA)q

4.5% activation
(62% blockade
of 1 μM GABA)q

- - -

Aza-THIP Ki = 31 μMk - - Ki > 100 μMk -

Thio-THIP Ki = 91 μMk - - Ki = 52 μMk -

3-AMOHP IC50 = 20 μMr IC50 = 60 μMr - Inactiveq Weak agonistr

3-GOHP IC50 = 30 μMr IC50 = 50 μMq - Inactiver Inactiver

3-AOHP Inactiver - - Inactiver Inactiver

4-ACPAM IC50 = 10 μMs - - IC50 = 23 μMs Inactives

4-ACPHA IC50 = 13 μMs - - Inactives Inactives

Note: KB = the molar concentration of a competitive antagonist that would occupy 50% of the receptors at equilibrium; Ki = themolar concentration of a
competing ligand that would occupy 50% of the receptors if no radioligand was present; IC50 = the molar concentration of an agonist or antagonist
which produces 50% of its maximum possible inhibition in a functional assay. 2-MeTACA, trans-2-methyl-4-aminocrotonic acid; 3-AMOHP, 3-
(aminomethyl)-1-oxo-1-hydroxy-phospholane; 3-AOHP, 3-(amino)-1-oxo-1-hydroxy-phospholane; 3-GOHP, 3-(guanidino)-1-oxo-1-hydroxy-
phospholane; 4-ACPAM, 4-aminocyclopent-1-enecarboxamide; 4-ACPHA, 4-amino-N-hydroxycyclopent-1-enecarboxamide.
aData from Kusama et al. (1993a).
bData from Kusama et al. (1993b).
cData from Kumar et al. (2008).
dData from Chebib et al. (1997).
eData from Vien et al. (2002).
fData from Ragozzino (1996).
gData from Duke et al. (2000).
hData from Murata (1996).
iData from Chebib et al. (1998).
jUnpublished data Nafaa et al
kData from Krehan et al. (2003a).
lData from Ebert (1997).
mData from Wang et al. (1995).
nData from Xu (1995).
oData from Kim et al. (2008).
pData from Crittenden et al. (2006).
qData from Chebib et al. (2001).
rData from Gavande et al. (2011).
sData from Locock et al. (2013).
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isoxazole oxygen is replaced by a bulkier sulfur atom has
threefold lower potency than THIP at GABA-ρ receptors,
which is likely due to increased steric bulk of the sulfur atom
(Krehan et al., 2003a).

The interaction between the acidic moiety of ligands and
the GABA-ρ receptor proteins is a common interaction among
many GABA ligands. Ligands containing different acidic
groups including carboxylic, phosphinic, methylphosphinic,
phosphonic and seleninic acids have been investigated for
their activity at GABA-ρ receptor (Chebib et al., 1997; Krehan
et al., 2003b; Kumar et al., 2008; Chebib et al., 2009a,b;
Gavande et al., 2011). Additionally, replacement of the
carboxylic acid moiety with either a hydroxamic acid (4-
amino-N-hydroxycyclopent-1-enecarboxamide) or amide
group (4-aminocyclopent-1-enecarboxamide) (Figure 8,
Table 1) results in antagonists of moderate potency with
increased selectivity for GABA-ρ receptors. This indicates that
a zwitterionic structure is not essential for strong
ligand–receptor interactions (Locock et al., 2013) but is
required for activation of the receptor. The proposed
antagonist binding site as determined by homology
modelling has been predicted to be larger in the apo
conformation of the GABA-ρ receptor than in the open
conformation of the receptor, allowing the antagonists to be
substituted with larger acidic moieties (Abdel-Halim et al.,

2008). This has been confirmed through a number of studies
where changing the carboxylic acid to a larger acid such as
alkyl phosphinic, phosphonic or seleninic acid leads to the
conversion of agonist to antagonist activity (Chebib et al.,
1997; Krehan et al., 2003b; Kumar et al., 2008).

Modification of the amine moiety of amino-substituted
phospholanes has been used to investigate the role of the
basic functional group (�NH2). 3-(aminomethyl)-1-oxo-1-
hydroxy-phospholane (Figure 8, Table 1) is a potent
antagonist at GABA-ρ1 receptors but inactive at GABAA

(Gavande et al., 2011). Shortening the carbon backbone by
one carbon, 3-(amino)-1-oxo-1-hydroxy-phospholane
(Table 1), led to loss of activity across all GABA receptors. This
demonstrates the importance of the distance between the
acid and amine groups in determining the ligand affinity,
potency and selectivity (Chang et al., 2000; Chebib et al.,
2009a; Gavande et al., 2011). 3-(Guanidino)-1-oxo-1-
hydroxy-phospholane (Figure 8 Table 1), with a guanidino
group replacing the amine shows greater selectivity for
GABA-ρ receptors with reduced inhibition at GABAA

receptors (Gavande et al., 2011). Replacement of the amine
group by a carboxylic acid or hydroxyl group led to total loss
of activity at mM concentrations at all GABA receptors. This
indicates that a basic moiety such as an amine or guanidine
group is essential for the affinity and potency of GABA
(Gavande et al., 2011).

Subunit-selectivity of ligands at GABA-ρ
receptors
The GABA-ρ1 receptors are the most studied of the GABA-ρ
subfamily, while ρ2 and ρ3 receptors have been much less
studied. Although the three subunits are highly similar in
their amino acid sequences across most regions, there are
some important differences between them. However, a
detailed study of these differences has not yet been
undertaken.

Some ligands that bind in the orthosteric binding site can
differentiate between different GABA-ρ subunits. Imidazole-
4-acetic acid (I4AA) (Figure 7, Table 1) is a partial agonist at
both ρ1 and ρ2 homomeric receptors expressed in oocytes.
This ligand is aweak, low-efficacy partial agonist (EC50 = 60μM,
Im = 8%) at ρ1 receptors, while it is potent and moderately
efficacious (EC50 = 3 μM, Im = 40%) at ρ2 receptors (Kusama
et al., 1993b; Chebib et al., 1998; Madsen et al., 2007). As a
partial agonist at GABA-ρ receptors, I4AA also acts as an
antagonist and shows a similar potency at both ρ subtypes
(Table 1). Consistent with its weaker agonist potency and
efficacy, I4AA is more efficacious as an antagonist at GABA-ρ1
receptors, inhibiting 97 and 20% of GABA responses at
GABA-ρ1 and GABA-ρ2 homomeric receptors respectively
(MN Nafaa et al., unpublished data).

trans-2-Methyl-4-aminocrotonic acid (Figure 7, Table 1) is
a moderate antagonist at ρ1 receptors, a partial agonist at ρ2
receptors (Chebib et al., 1998), but inactive at ρ3
receptors (Vien et al., 2002). However, trans-2-
aminomethylcyclopropane carboxylic acid (�)-TAMP
(Table 1) is a partial agonist at both human ρ1 and ρ2
receptors but an antagonist at ρ3 receptors (Vien et al.,
2002), although it should be noted that the only data
available for (�)-TAMP at ρ3 receptors is from rat subunits.

Figure 7
Chemical structures of ligands demonstrate subunit selectivity
between homomeric receptors composed of different GABA ρ
subunits.

Figure 8
Chemical structures of ligands used to study structure activity
relationships at GABA-ρ receptors.
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(S)-4-Amino-2-methylbutanoic acid ((S)-2MeGABA) (Figure 8)
is an agonist at ρ1 and ρ2 receptors and a partial agonist (90%)
at ρ3 receptors. The stereoisomer, (R)-4-amino-2-
methylbutanoic acid ((R)-2MeGABA) (Figure 8), is an
antagonist at all three receptor subtypes. Furthermore, the
stereoisomers showed selective potencies at ρ1 and ρ2
receptors as (S)-2MeGABA is a more potent agonist at ρ2
whereas (R)-2MeGABA is a more potent antagonist at ρ1
(Crittenden et al., 2006).

The achiral antagonist, TPMPA (Table 1), is
approximately equipotent at all GABA-ρ receptor subtypes.
However, (S)- and (R)-aminocyclopentenyl-butylphosphinic
acids ((S)-/(R)-ACPBPA) (Figure 8, Table 1) are potent
stereoisomeric antagonists with differential selectivity at ρ1
and ρ2 receptors. (R)-ACPBPA, the only antagonist known at
this time to be selective for ρ2 over ρ1 receptors, shows
10-fold selectivity at ρ2 receptors, while (S)-ACPBPA is a
weakly selective for ρ1 over ρ2 receptors showing twofold
selectivity (Kim et al., 2008).

Conclusions
The testing of conformationally restricted GABA analogues
led to the initial discovery of a distinct class of GABA
receptors that did not fit the pharmacology of the sub-types
known at that time. Following the naming strategy, these
new receptors were termed GABAC and shown later to be
composed of ρ subunits that were first cloned from the
retina (ρ indicating retina) and later shown to form
homopentameric LGICs. Although ρ subunits showed clear
sequence homology to GABAA subunits, both the structure
and pharmacology of these GABAC receptors were found to
be much simpler than the complex heteromeric GABAA

receptors with multiple subunit combinations. Many initial
studies on these receptors focused on their physiological role
in the retina, and many in the ophthalmic physiology field
refer to the receptors simply as GABA-ρ, indicating that they
are GABA-sensitive receptors composed of ρ subunits. The
potential confusion through the identification of this class
of receptor as either GABAC or GABA-ρ led the IUPHAR to
review the nomenclature of GABA receptors (Olsen and
Sieghart, 2008; Alexander et al., 2015). It was ‘especially
recommended that the name GABAC receptor should not be
used as the sole name for the ρ-receptors in an article
including, especially, the title and abstract’ (Olsen and
Sieghart, 2008). Instead, GABAC/GABA-ρ receptors should
be referred to as a sub-class of GABAA receptor ‘GABAA-ρ’.
Rather than removing the confusion around the identity of
these homomeric GABA LGICs, the classification of GABAA-
ρ has introduced a third term for these receptors, one that is
in fact used by few researchers active in the field. This has
further increased the possibility for confusion, complicating
literature searches, and suggests that it may be time for a
further review of GABA receptor nomenclature.

Despite confusion regarding the nomenclature, it is the
lack of a GABA-ρ receptor crystal structure that has
significantly hampered efforts to design selective ligands.
However, the availability of X-ray crystal structures of related
LGIC receptors has led to the development of GABA-ρ
homology models that have been used to study interactions

between the receptor and ligands. The development of
ligands that are selective either for GABA-ρ over GABAA/B

receptors or between different ρ subunit homomeric
receptors has led to some understanding of the different
structural features required for activity at the different
receptors. It is particularly difficult to determine the binding
conformation adopted in the receptor, as many ligands are
able to exist in a number of low-energy conformations. The
use of conformationally restricted GABA analogues and
mutational studies combined with computational docking
studies using homologymodels has facilitated understanding
binding interactions and the conformational changes that
may be required for receptors activation. However, there has
not yet been any detailed study examining differences in
interactions between conformationally restricted ligands at
different ρ subunits.

Although the physiological function of GABA-ρ receptors
is not fully understood, the selective distribution of ρ
subunits indicates that GABA-ρ are specifically involved in
visual image processing. The limited distribution and lower
abundance of GABA-ρ receptors relative to heteromeric
GABAA receptors suggests that GABA-ρ ligands are promising
leads for developing agents with improved selectivity and
therefore reduced unwanted effects. Further studies are
encouraged to understand that the binding interactions and
development of ligands with improved selectivity will
facilitate greater knowledge of GABA-ρ receptors at both the
molecular and physiological levels.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetophar-
macology.org, the common portal for data from the
IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al.,
2016), and are permanently archived in the Concise Guide
to PHARMACOLOGY 2015/16 (Alexander et al., 2015).
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