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Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood.
The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug
screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular
pathways. Here, we discuss zebrafishmodels of selected human neuropsychiatric disorders and drug-induced phenotypes. As well
as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent
developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the
discovery of novel drug targets.
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Introduction: zebrafish as an emerging
animal model
Widespread and debilitating, neuropsychiatric disorders
have poorly understood mechanisms and often lack effective
therapies (Garakani et al., 2006; Griebel and Holmes, 2013).
The identification of clinically relevant biomarkers, the
underlying neurobiological mechanisms and genetic and
environmental factors of psychopathology, are critical steps
in discovering efficacious treatments (Caspi and Moffitt,
2006; Nestler, 2013). While rodent models of human brain
disorders have long been employed in this effort, they are
often impeded by high-costs and experimental inefficiency
(Cryan and Holmes, 2005).

The zebrafish (Danio rerio) has recently received attention
as a powerful animal model for a wide range of human brain
disorders (Kalueff et al., 2014a,b; Stewart et al., 2015c).
Zebrafish is a small, low-cost and genetically tractable aquatic
vertebrate species with a high degree of morphological,
physiological and genetic homology to humans (Kalueff
et al., 2014a,b). The zebrafish genome, fully sequenced,
shows orthologues corresponding to ~82% of disease-related
genes in humans (Howe et al., 2013). Gene expression
databases (e.g. http://zfin.org/) and atlases of zebrafish brain
are also available to explore the genomics and neuroanatomy
of brain areas associated with neuropsychiatric disorders
(Ullmann et al., 2010; Wulliman et al., 2012; Mueller and
Wullimann, 2015).

Modelling human conditions in zebrafish enables the
discovery of potential therapeutic targets and their
underlying molecular interactions (Table 1). For example, in
a recent study the therapeutic potential of methylene blue
(MB) was revealed in a mutant mTDP-43 zebrafish; this was
found by analysing the efficacy of various compounds to
ameliorate the amyotrophic lateral sclerosis (ALS)-like
phenotype (Vaccaro et al., 2012). Likewise, the mTDP-43
mutant zebrafish presents with short, abnormally branched
motor axons, increased oxidative stress and an aberrant
escape response (Vaccaro et al., 2012). The administration of
MB, a neuroprotective agent, corrects the swimming and
axonal phenotypes, while reducing the endoplasmic
reticulum (ER) stress that occurs as a result of an
accumulation of unfolded mutant proteins (Vaccaro et al.,

2012, 2013). The identification of ER stress as a potential
target for ALS drug treatment prompted further testing of
the efficacy of several related agents in a G93A mtSOD1
transgenic mouse model, which led to the identification
and repositioning of guanabenz, an approved drug for
hypertension, as a potential new treatment for ALS (Vaccaro
et al., 2013). Clearly, the zebrafish mutant model played a
critical role in the identification of new ALS treatment
options.

Another example of bringing laboratory findings to the
bedside includes two modulators of haematopoietic stem
cells (HSC) recently discovered in zebrafish (Zon, 2014),
which have now become therapies in patients (North et al.,
2007). The original screening of nearly 2500 small molecules
in zebrafish identified 35 ‘leads’ that up-regulate vital HSC
genes, runx1 and c-myb, 10 of which modulate the
prostaglandin pathway, indicating that it is involved in HSC
regulation. One of these potent candidates, 16,16-dimethyl
PGE2 (dmPGE2), was next tested in a mouse model where it
was shown to increase the number of HSC grafted (North
et al., 2007; Zon, 2014). Subsequent preclinical testing using
a primate blood model yielded successful results, allowing
the drug to move to an approved Phase I clinical trial
(Goessling et al., 2011). These studies have recently yielded
positive results in leukaemia patients and demonstrated the
safety of the treatment, allowing it to move to Phase II testing
(Cutler et al., 2013). Thus, the translatability of original
zebrafish results was critical for the application of this drug
in mice and in humans (see other examples of translational
approaches in Table 1).

Both larval and adult zebrafish are useful preclinical
in vivo models highly amenable to experimental,
pharmacological and genetic manipulations (Barros et al.,
2008; Brennan, 2011; Bruni et al., 2016). Due to their
transparency and small size, larval zebrafish are particularly
useful for optical manipulation and imaging of neural
activity, as well as for large-scale high-throughput screens of
molecular drug targets and candidate genes (Brennan, 2011;
Wyart and Del Bene, 2011; Stewart et al., 2015a). Together
with recent developments in genome editing techniques
(e.g. CRISPR/Cas) and automated 3D behavioural
phenotyping, this makes zebrafish an ideal model to
study genotype–phenotype and genotype-drug-phenotype

Tables of Links

TARGETS

Other protein targetsa Enzymesd

TNF-α AChE

Nuclear hormone receptorsb COX-2

GR PSEN1

Transportersc PSEN2

VMAT2

LIGANDS

ACTH Kainic acid (KA)

Amyloid β (APP) MK-801

CRH Methylene blue (MB)

GABA NMDA

IL-6

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (a,b,c,dAlexander et al., 2015a,b,c,d).
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relationships (Kokel et al., 2010; Cachat et al., 2011b; Hwang
et al., 2013; Stewart et al., 2015b). Furthermore, zebrafish
develop externally to the maternal organism, reach sexual
maturity fast (in ~90 days) and live for ~4–5 years in the
laboratory, allowing for direct and easy analyses of
pathogenetic trajectories (Kalueff et al., 2014b; Fonseka
et al., 2016). Complementing larval models, adult zebrafish
exhibit complex behaviours (Kalueff et al., 2013) relevant to
cognition (Blaser and Vira, 2014; Gerlai, 2016), reward
(Collier et al., 2014; von Trotha et al., 2014), social behaviour
(Gerlai, 2014; Qin et al., 2014) and effects (Jesuthasan, 2012;
Gerlai, 2013; Wang et al., 2016a). Numerous experimental
paradigms have been converted for aquatic models to
investigate major behavioural phenotypes, which are well-
conserved in zebrafish and mammals (Renier et al., 2007;
Stewart et al., 2014a).

Rats and mice are currently the most commonly
employed animals to study normal and abnormal brain
functioning; nearly 1/3 of all published neuroscience
papers in 2015 utilized rodent models, and <11% used
other animal models, including zebrafish (Keifer and
Summers, 2016). However, the rate of zebrafish publications
is growing faster than any other model organisms, and
experimental tools and resources for this organism are
becoming increasingly available (Kalueff et al., 2014a;
Wyatt et al., 2015). As a new animal model that still
requires validation across multiple domains, the zebrafish
has a growing utility in high-throughput phenotyping,
gene and drug screening, thus becoming increasingly useful
in neuropsychopharmacology and drug discovery research.
Here, we highlight recent successes and challenges in this
rapidly expanding field.

Zebrafish CNS
The overall architecture, neuroanatomical features and
cellular morphology of the zebrafish CNS are generally
similar to those of mammals (Kalueff et al., 2014b). For
example, the medial teleost pallium contains homologous
structures to the mammalian amygdala (Martín et al., 2011;
Mueller et al., 2011; Portavella et al., 2004; von Trotha et al.,
2014) – the brain structure key for affective processing and
emotionality in humans. The amygdala is pathologically
hyperactivated in clinical anxiety (Rauch et al., 2000; Shin
et al., 2006), social anxiety disorders (Stein et al., 2002;
Furmark et al., 2004) and drug abuse (Mead et al., 1999;
Buffalari and See, 2010). The zebrafish medial pallium shows
increased Fos protein expression, a measure of neuronal
activation, following both acute administration of
D-amphetamine and during drug-seeking behaviour in a
conditioned place preference (CPP) assay (von Trotha et al.,
2014), collectively supporting the role of zebrafish medial
pallium as a homologous structure to the mammalian
amygdala, with evolutionarily conserved functions in
modulating key behaviours.

The visualization of CNS activity through imaging
methods is an important step to discern how the brain
contributes to normal and abnormal behaviour. The small
size and optical transparency of larval zebrafish allows for
high resolution in vivo imaging and manipulation of neural
activity in behaviourally active animals (Orger and
Portugues, 2016). For example, the imaging of neuronal
activity of larval zebrafish behaviour has been achieved by
expressing a genetically-encoded calcium indicator and
recording whole-brain activity using light-sheet microscopy

Table 1
Particular examples of translational successes using the zebrafish model for drug discovery

Human disease Zebrafish model Outcome References

Pontocerebellar
hyperplasia

Tsen54 antisense morpholino Linking a loss-of-function mutation in the
tsen54 gene to brain hypoplasia

(Kasher et al., 2011)

R44X-loss-of-function mutant Linking homozygous mutation of CLP1
(a member of the tRNA splicing
endonuclease complex, TSEN) to abnormal
spinal neurons, curved body, small head and
eyes, and an early death in fish helped identify
this mutation as a risk factor for human
conditions

(Schaffer et al., 2014)

Spinal cord injury Heat shock transgenic lines Zebrafish show high capacity for axonal
regeneration following spinal cord injury,
especially through the activation of Fgf
signalling. Increasing Fgf signalling in
mammalian spinal injury sites may encourage
glial cell differentiation and lead to favourable
conditions for axonal regeneration

(Goldshmit et al., 2012)

Schizophrenia Tg(huC:eGFP) The Rgs4 gene is associated with the onset and
development of schizophrenia. Using the
transgenic zebrafish line, rgs4 was found to be
essential for axon formation, providing the first
in vivo evidence supporting the role of rgs4 in
schizophrenia

(Cheng et al., 2013)
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(Ahrens et al., 2013). Optogenetic neuromodulation of the
transparent and genetically accessible larval zebrafish is
particularly useful for investigating the neural circuitry
underlying behaviours relevant to brain disorders (Knafo
and Wyart, 2015). Neuronal excitation and inhibition of
targeted neuronal populations has been successfully triggered
in behaving larval zebrafish by expressing optogenetic
actuators, including channelrhodopsin-2 and halorhodopsin
(Douglass et al., 2008; Arrenberg et al., 2009). To date,
optogenetic studies in zebrafish have largely focused on
several simpler behaviours, such as escape (Douglass et al.,
2008), locomotion (Arrenberg et al., 2009; Ljunggren et al.,
2014) and sensory processing (Kubo et al., 2014). However,
optogenetic neuromodulation in zebrafish helps future
research to create robust models of complex human
neuropsychiatric disorders (Tye and Deisseroth, 2012;
Stewart et al., 2015c). Furthermore, the imaging of neural
activity in adult zebrafish is more challenging due to their
larger and opaque brains. Contrast-enhanced X-ray micro-
computer tomography with iodine as a contrasting agent
has been recently applied in adult zebrafish, and this
provided 3D visualization of zebrafish brain anatomy in
intact animals (Babaei et al., 2016). Optical coherence
tomography has also recently been used in vivo in adult
zebrafish to non-invasively generate real-time cross-sectional
images at high resolution, that are then reconstructed in 3D
(Rao et al., 2009; Zhang and Yuan, 2015).

Neurochemistry is generally conserved across vertebrate
species, as they share major neurotransmitters, receptors
and transporters (Panula et al., 2006, 2010; Alsop and
Vijayan, 2008). Thus, zebrafish are sensitive to major classes
of pharmacological agents, such as psychostimulants
(Ninkovic and Bally-Cuif, 2006), opiates (Lau et al., 2006),
ethanol (Tran et al., 2015), hallucinogens (Stewart et al.,
2013), anxiolytics (Bencan et al., 2009), antidepressants
(Stewart et al., 2014b) and antiopsychotics (Bruni et al.,
2016). The spatial and temporal distribution of major
neurotransmitter systems in zebrafish is also similar to that
of mammals and has been well described in zebrafish for
glutamate, GABA, acetylcholine, dopamine, 5-HT,
noradrenaline and histamine (Stewart et al., 2015c). For
instance, the major pathways and receptor subtypes of the
dopamine system are all present in zebrafish, with the
exception of the D5 receptor (Panula et al., 2006, 2010;
Maximino and Herculano, 2010). The amino acid sequence
recently compared between zebrafish and humans for
D1–D4 receptors shows 100% amino acid homology in the
binding site for D1 and D3, and 85–95% for D2 and D4

receptors (Ek et al., 2016). Consequently, pharmacological
agents that act on the dopamine system produce similar
phenotypes, as dopamine antagonists or depletors impair
locomotion (Giacomini et al., 2006; Kyzar et al., 2014) and
agonists predictably increase zebrafish locomotion (Irons
et al., 2013), paralleling similar effects in rodents (Mobini
et al., 2000; Akhisaroglu et al., 2005). The dopamine
agonist apomorphine produces a U-shaped dose–response
relationship for distance travelled in larval zebrafish, with
low-doses increasing time spent in the centre (anxiolytic
effect) and high-doses increasing thigmotaxis (anxiogenic
effect) (Ek et al., 2016). Strikingly, by paralleling similar drug
actions in rats (Ek et al., 2016), these findings further support

the translational value of neuropharmacological studies in
zebrafish.

There is mounting evidence implicating alterations in
the neuroendocrine system in various brain disorders,
including depression (Herbert, 2013; Holsboer, 2001),
anxiety (Hek et al., 2013; Korte, 2001), addiction (Keedwell
et al., 2001; Lovallo, 2006) and Alzheimer’s disease (AD)
(Belanoff et al., 2001; Wahbeh et al., 2008). Activation of
the neuroendocrine hypothalamus-pituitary-interrenal
(HPI) axis of zebrafish releases cortisol that acts
on glucocorticoid receptors (GR), similar to the
hypothalamus-pituitary-adrenal (HPA) axis in humans
(Alsop and Vijayan, 2009; Griffiths et al., 2012b; Pavlidis
et al., 2015). The zebrafish neuroendocrine system can be
easily modulated by experimental, pharmacological and
genetic manipulations, and fish cortisol can be sampled
using various invasive and non-invasive methods
(Canavello et al., 2011; Pavlidis et al., 2011; Félix et al.,
2013). For example, genetic mutation of the GR gene in
adult grs357 mutant zebrafish disrupts negative feedback
and cortisol signalling by abolishing the transcriptional
activity of GR upon cortisol binding (Ziv et al., 2013). This
elevates blood cortisol levels and evokes aberrant
phenotypes, such as freezing, reduced exploration,
impaired habituation and potentiated startle, most of
which can be rescued in grs357 mutants by a selective 5-
HT (serotonin) reuptake inhibitor (SSRI) fluoxetine. This
also emphasizes the high degree of evolutionarily
conservation between the neuroendocrine system and its
modulation between zebrafish and humans (Griffiths
et al., 2012b; Ziv et al., 2013).

Zebrafish models of major CNS
disorders
A clear advantage of non-human animals (like zebrafish) for
modelling brain disorders is, as already mentioned, their
amenability to experimental, genetic and pharmacological
manipulations. Furthermore, the behavioural phenotypes,
genetic factors and pharmacological sensitivity of zebrafish
often show a high degree of similarity to those reported in
rodent models of brain disorders and in human clinical
populations (see further).

Depression and anxiety
Stress is a common risk factor for developing affective
disorders, including major depressive disorder (Strüber et al.,
2014; Lucassen et al., 2016) and anxiety (Bystritsky, 2006).
In mammals, the stress response is mainly mediated by the
interplay between the hypothalamus, the pituitary and
adrenal glands, which, collectively, form the HPA axis (Smith
and Vale, 2006). Prolonged stress and hyperactivation of the
HPA axis have the potential to lower GR expression,
ultimately reducing the ability to adapt and cope with stress
events (Howell et al., 2011) and thereby triggering depression
(Zhou et al., 2011).

Depression has been extensively modelled in rodents
(Deussing, 2006; Krishnan and Nestler, 2011) utilizing early
life (Fumagalli et al., 2007) and adulthood stresses (Seligman
et al., 1975) as well as pharmacological interventions (Barr
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and Markou, 2005), selective breeding or genetic engineering
(Deussing, 2006). Several hallmark depression symptoms
(e.g. low self-esteem and depressed mood) are difficult to
evaluate in animals, as they do not clearly display a sense of
self (Deussing, 2006). In contrast, evaluation of other
phenotypes, including anhedonia, comorbid anxiety or sleep
and neuroendocrine disturbances, can be easily modelled in
animals (Seligman and Beagley, 1975; Porsolt, 2000). In
zebrafish, depressive-like states can be evoked by a battery
of unpredictable chronic mild stressors (UCMS) applied for
an extended period of time (Fulcher et al., 2017; Marcon
et al., 2016; Piato et al., 2011). Adult fish exposed to
7–14 days of UCMS exhibit reduced locomotion, altered
shoaling behaviour and body colour (Gerlai et al., 2000).
When applied to zebrafish raised in social isolation for
5 months, UCMS increases anxiety-like behaviours in the
novel tank test and reduces body weight and whole-brain
dopamine and 5-HT metabolite, 5-HIAA, levels, compared
with zebrafish raised in groups (Fulcher et al., 2017). The
effects of UCMS on exploratory and group/shoaling
behaviours are reversed by fluoxetine (an SSRI) and
bromazepam, a benzodiazepine anxiolytic (Marcon et al.,
2016). In addition, several key pro-inflammatory molecules,
such as TNF-α, IL-6 and COX-2, are differentially regulated
in the zebrafish following 7 days of UCMS (Marcon et al.,
2016). COX-2 transcription is greater in individuals with
recurrent depressive disorder and is hypothesized to
negatively affect cognitive functioning, emotionality and
synaptic homeostasis (Galecki et al., 2014). Treatment with
psychotropic drugs (fluoxetine, bromazepam and
nortriptyline) reduces the expression of IL-6 and TNF-α
(Marcon et al., 2016), highlighting the sensitivity of this
model to established, clinically active antidepressants. Other
pharmacological interventions, such as the administration of
reserpine, produce depressive-like responses in zebrafish,
including social withdrawal, motor retardation and elevated
cortisol that parallel clinical symptoms of depression
(Nguyen et al., 2014). Finally, several genetic models have
been used to study depression in the zebrafish. For instance,
larval zebrafish with mutant GR (gr/s357) display heightened
physiological responses (e.g. higher whole body cortisol
levels) and dysfunctional HPI axis (Griffiths et al., 2012a),
similar to the effect observed in humans.

Anxiety disorders are debilitating psychiatric diseases
with a lifetime prevalence of ~30%, higher than any other
mental disorder (Kessler et al., 2005; Kessler, 2007). There are
several types of anxiety disorder, including panic disorder,
post-traumatic stress disorder, generalized anxiety disorder
and specific phobias (American Psychiatric Association,
2013). The hallmark symptom of anxiety disorders is an
overwhelming and exaggerated sense of worry in response
to perceived threats (American Psychiatric Association,
2013), dramatically lowering patients’ quality of life andwork
productivity (Anxiety Disorders Association of America,
2016). The first line of treatment for anxiety disorders is
typically a regimen of SSRIs or cognitive behavioural therapy
(Bystritsky, 2006). Patients who do not respond to these
treatments are then given selective noradrenaline reuptake
inhibitors (SNRIs) or tricyclic antidepressants (Bystritsky,
2006). However, SNRIs or tricyclics increase the risk for
tolerance and dependence (Otto et al., 1993), thereby limiting

their use. Furthermore, althoughmany treatments for anxiety
disorders exist, approximately 30% of patients show no
improvement (Brown et al., 1996). This necessitates the
identification and development of treatments that are devoid
of these limitations in efficacy and tolerance (Griebel and
Holmes, 2013).

One of the problems with developing new treatments has
been the identification of biochemical targets, genetic
variants or mechanisms of action for the onset of the disorder
(Bystritsky, 2006; Insel et al., 2011; Griebel and Holmes,
2013), indicating the need for animal models. The zebrafish
model is particularly amenable to high-throughput
anxiolytic drug screens (Lundegaard et al., 2015). The larval
zebrafish hatch from its chorion within 3 days post
fertilization (dpf) and are able to inflate their swim bladder
by 5 dpf and produce a broad range of behaviours
(Richendrfer et al., 2012); see Figure 1. For instance, staying
near the periphery of the arena (thigmotaxis) reflects
anxiety-like behaviour and is heightened following exposure
to anxiogenic stimuli or drugs (Stewart et al., 2012). In adult
fish, measures of anxiety include a latency to explore the
top or higher tendency to remain in the bottom (Stewart
et al., 2012) in the novel tank test (Figure 2). In the
light–dark test, the fish are allowed to freely explore brightly
light and dark arenas, but when zebrafish spend more time
in the dark (scototaxis) this is indicative of an anxiety-like
response, which can be bidirectionally influenced by
anxiolytic or anxiogenic treatments (Kalueff et al., 2013).
Genetic models of anxiety in zebrafish are also available,
including the knockdown of vesicular monoamine
transporter 2 (VMAT2), which produces an anxiety-like
profile with social withdrawal and reduced exploration
(Wang et al., 2016b).

In the endeavour to identify new treatments for anxiety
and related disorders, there has also been a call to repurpose
available drugs for novel applications (Lundegaard et al.,
2015). This method of drug discovery has the advantage of
reducing uncertainty regarding pharmacokinetic issues or
safety of the drug (Ashburn and Thor, 2004; Insel et al.,
2011), thereby allowing for a more rapid drug screen and
testing. For instance, N-acetylcysteine (NAC), a common
mucolytic agent and antidote for paracetamol overdose, has
shown promise in the treatment of several neuropsychiatric
disorders (Berk et al., 2013). NAC plays a role in maintaining
oxidative balance germane to anxiety and has been shown
to modulate central glutamatergic pathways (Dean et al.,
2011). While a growing body of evidence supports the role
of glutamate in the anxiety response, there is a clear deficit
of approved glutamatergic anxiolytics (Cortese and Phan,
2005). NAC administration to adult zebrafish prevents
stress-induced anxiety (Mocelin et al., 2015), which is in line
with previous reports of its clinical efficacy in depressed
patients (Berk et al., 2013). In another example of drug
repositioning, potential anxiolytic targets were identified
using traditional cancer treatments, as cAMP mediated
anxiety in the zebrafish via crosstalk of the RAS-MAPK
pathway (Lundegaard et al., 2015). This heightened anxiety-
like response is attenuated by exposure to MEK inhibitors,
anti-cancer treatment (Lundegaard et al., 2015), suggesting
the MEK crosstalk as a potential alternative target for
treatments of anxiety.

Zebrafish models in neuropsychopharmacology BJP
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Epilepsy
Epilepsy, which affects approximately 50 million people
worldwide (WHO, 2016), is characterized by recurrent
convulsions/seizures, behavioural impairments, pathological
neural activity and endocrine dysfunction (Andrea
Galimberti et al., 2005; Zhang and Liu, 2008; Green et al.,
2012; Engel, 2013). Epilepsy can be modelled in larval and
adult zebrafish (primarily by administration of convulsant
drugs and genetic modifications) and evaluated by various
behavioural and physiological endpoints (Wong et al., 2010;
Desmond et al., 2012; Cunliffe, 2015). Characteristic
behaviours for epilepsy-like states in adult zebrafish are
hyperactivity, erratic swimming, loss of body posture,
spasm-like corkscrew swimming (Desmond et al., 2012) and
electrical discharges in the CNS (Baraban et al., 2005; Zdebik
et al., 2013). Experimental seizures in zebrafish can be
induced by acute caffeine (250 mg·L�1), pentylenetetrazole
(PTZ, 2.5 g·L�1) and picrotoxin (100 mg·L�1), causing
hyperactivity, circular/corkscrew swimming, spasms and
elevated whole-body cortisol levels (Wong et al., 2010). These
symptoms are suppressed by antiepileptic drugs in both larval
and adult zebrafish (Green et al., 2012), enabling the
discovery of more efficacious treatments for epilepsy (Alfaro
et al., 2011). For instance, PTZ administration not only evokes
characteristic seizures but is also accompanied by the rapid
transcription of c-fos and npas4 (Cunliffe et al., 2015),
paralleling responses observed in seizure onset in mammals
(Loebrich and Nedivi, 2009; Cunliffe et al., 2015). Finally,
various genetic techniques enable the greater exploration of
function for specific candidate genes (Teng et al., 2010;
Mahmood et al., 2013; Cunliffe, 2015) or anti-epileptic
treatments using high-throughput and rapid screening in
zebrafish (Baxendale et al., 2012; Baraban et al., 2013;
Cunliffe, 2015).

Psychosis
Psychosis manifests as disturbances in cognition, affect,
motor activity and social behaviour (American Psychiatric
Association, 2013) and is often accompanied by aberrant
glutamatergic signalling (Merritt et al., 2013; Schobel et al.,
2013). The glutamate NMDA receptor antagonists
phencyclidine and ketamine produce psychotic symptoms
in healthy volunteers and worsen the positive, negative and
cognitive symptoms of patients with schizophrenia (Merritt
et al., 2013). MK-801 is a potent NMDA antagonist used to
model schizophrenia in rodents, zebrafish and other animal
models (Moghaddam and Jackson, 2003; Swain et al., 2004).
Likewise, pre-pulse inhibition (PPI) is the attenuation of
startle response, when a weak non-startling response is
presented before the startling stimulus (Swerdlow et al.,
2001). Schizophrenia patients show impaired PPI (Braff
et al., 2001), which can be rescued by antipsychotic therapy
(Kumari et al., 1999; Geyer et al., 2001). PPI is reliably
reproduced in larval zebrafish, including genetic mutants
with reduced PPI currently available (Burgess and Granato,
2007). Overall, the similarity in neural pathways and startle
response in the zebrafish demonstrate their utility as an
unbiased platform for the discovery of regulatory genes and
drugs for antipsychotic treatment.

Alzheimer’s disease
AD is a progressive neurodegenerative disease resulting in
cognitive deficits, delusions, hallucinations and changes in
mood and behaviour (Voisin and Vellas, 2009). One of the
hallmark symptoms of AD is the development of
neurofibrillary tangles and amyloid β plaques (Newman
et al., 2011). There are two broad classes of AD: sporadic AD
(developing at age > 65), and familial AD (fAD), developing
much earlier (Rossor et al., 1984). Sporadic AD accounts for

Figure 1
The use of automated video tracking to simultaneously assess multiple phenotypes in larval zebrafish. Panel (A) shows a 96-well holding plate to
administer several compounds to larval zebrafish. Fish behaviours are recorded by an overhead camera, and images are processed through
tracking software. Swim traces garnered from the tracking software allow the researcher to assess the effects of the compounds administered.
Panel (B) shows an example of a swim trace in which the larval zebrafish stay close to the walls (wall-hugging behaviour). Panel (C) shows an
example of the opposite swim pattern in which the larval zebrafish actively explore their environment, including the centre of the tank.
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more than 95% of all AD cases (Newman et al., 2011) and is
linked to the apolipoprotein E ε4 allele (Selkoe, 2001). The
zebrafish orthologue of this gene is apoE (Babin et al., 1997).
Early onset fAD is hereditary and has been linked to
mutations in the presenilin1 (PSEN1), presenlinin2 (PSEN2)

and amyloid β a4 precursor protein (APP) genes, orthologous
to the zebrafish psen1, psen2, appa and appb genes (Newman
et al., 2011). The injection of transcription-blocking
morpholinos for psen1 disrupts notch signalling and results
in aberrant somite formation (Nornes et al., 2003, 2009;

Figure 2
The use of computational techniques to identify novel therapeutic targets in adult zebrafish. Testing psychoactive compounds across various
strains and transgenic lines of zebrafish in a wide range of behavioural and cognitive tasks can be used to generate a data library. Computational
tools, such as hierarchical modelling and similarity ensemble approach (SEA), can help identify target hits, enabling the predictions about the
effects of various drug combinations. The hypotheses generated may then be tested in vivo using larval or adult animals.
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Campbell et al., 2006). Psen2 blocking produces notch-
signalling defects (Campbell et al., 2006) and alters the
production of spinal cord interneurons in zebrafish (Nornes
et al., 2009), paralleling phenotypes observed in psen1�/�

and psen2�/� mice (Shen et al., 1997).
Zebrafish are also valuable for studying the aetiology of

AD, especially the role of hypoxia as a putative risk factor
(Newman et al., 2011). Under low-oxygen conditions,
mitochondriamay release free radicals that increase oxidative
stress (Bell et al., 2007; Moussavi Nik et al., 2014). Hypoxic
conditions are easily reproduced in the zebrafish by reducing
water oxygen levels or via chemical mimicry of hypoxia by
sodium azide (Moussavi Nik et al., 2011). Similar to humans,
hypoxic conditions in the larval and adult zebrafish up-
regulate several AD-related genes, including sen1, psen2, appa,
appb and bace1 (Moussavi Nik et al., 2011).

Pharmacological interventions may also help model the
cognitive deficits associated with AD. For example, the
cholinergic system (which mediates learning and memory)
is affected by AD (Fibiger, 1991), as AD patients show reduced
nicotinic (nAChR) and muscarinic (mAChR) binding sites, as
well as reduced AChE activity (Perry et al., 1978; Lombardo
and Maskos, 2015). The muscarinic antagonist scopolamine
impairs zebrafishmemory without causing locomotor deficits
or anxiety-like behaviour (Richetti et al., 2011; Cognato et al.,
2012; Gupta, 2014). Pretreatment with quercetin and rutin,
two flavonoids, protects against scopolamine-induced
memory impairment (Richetti et al., 2011). Flavonoids act as
AChE inhibitors and can enhance learning/memory and
synaptic plasticity (Havsteen, 2002; Spencer, 2008; Ahmed
and Gilani, 2009). Scopolamine-induced memory
impairment in zebrafish is also ameliorated by pretreatment
with physostigmine, an AChE inhibitor (Kim et al., 2010).
The ability of scopolamine to produce amnesia while
preserving normal locomotor activity provides evidence
contributing to the involvement of the cholinergic system
in fish learning and memory and lends credence to the use
of the zebrafish as a tool for drug discovery and medicines
that can treat neurodegenerative diseases, including AD.

Amyotrophic lateral sclerosis
ALS is a debilitating progressive neurodegenerative disorder
affecting motor neurons in the brain and spinal cord
(Rowland and Shneider, 2001). Zebrafish are a particularly
attractive model for studying the function and dysfunction
of spinal cord circuitry, due to visual transparency at early
stages of life, and because there is a high degree of functional
and anatomical similarity between the zebrafish spinal cord
and humans (Fetcho and O’Malley, 1995; Friedrich et al.,
2010; McGown et al., 2013). Similar to AD, there are two
broad types of ALS: familial and sporadic ALS (Kiernan et al.,
2011). Roughly 10% of ALS cases are inherited. The aetiology
of ALS is poorly understood, with a high degree of variability
in genetic mutations that contribute to ALS. Nevertheless,
SOD1 is the most well-understood gene to be associated with
ALS (Rosen et al., 1993), and mutations in the SOD1 gene
account for 20% of familial ALS cases (Valdmanis and
Rouleau, 2008).

Larval zebrafish over-expressing mutant Sod1 have
abnormal neuromuscular junctions (NMJ) that worsen as
the fish matures (Ramesh et al., 2010). Larval mutant fish

present a progressive decrease in NMJ volume (Ramesh
et al., 2010), poorer performance in the forced swim test
(Plaut, 2000; Ramesh et al., 2010) and reduced responses to
repeated stimulation (Ramesh et al., 2010). Together, this
indicates a defect in the neural input to the muscle, rather
than defects in the intrinsic properties of the muscle (Ramesh
et al., 2010). Early identification of the pathogenic processes
is also possible in the zebrafish through the heat-shock stress
response (HSR). The HSR mechanism refolds damaged
proteins in stressed cells and is a useful tool for monitoring
cellular perturbations (McGown et al., 2013). In sod1 mutant
zebrafish harbouring the HSR reporter gene (hsp70-DsRed),
fluorescence facilitates disease mapping and spread
throughout the brain (McGown et al., 2013). This method
has also been used to identify neuroprotective compounds
and biological targets with the potential to ameliorate early
disease processes that are not yet fully understood (McGown
et al., 2013).

In addition to the utility of the zebrafish in monitoring
the progress of ALS symptoms, genetic mutants and
pharmacological models also help identify the molecular
mechanisms of this disease. For instance, the loss of function
of the zebrafish orthologue C9orf72 leads to axonal
degeneration of motor neurons and is accompanied by
decreased swim speed and motility of larval zebrafish (Ciura
et al., 2013). The motor deficits caused by knockdown of
C9orf72 implicate it in ALS and related neurodegenerative
disorders (Ciura et al., 2013). Gene-editing techniques, such
as TALEN- or CRISPR, may also be used to insert point
mutations in the zebrafish genome (Armstrong et al., 2016),
resulting inmutant zebrafish lines replicating ALS. This novel
methodology also shows promise in the development of
mutant models for other neuropsychiatric diseases
(Armstrong et al., 2016). Pharmacological intervention with
neurotoxins like β-mythylamino-alanin (BMAA) can also be
relevant to modelling ALS. Pericardiac injection of BMAA
during embryonic development alters protein homeostasis
and glutamate signalling, whereas fish exposed to a sublethal
dose of BMAA display reduced heart rate and abnormal spinal
axis formation, but can be rescued pharmacologically (e.g. by
inhibiting the endocannabinoid enzyme fatty acid amide
hydrolase) (Purdie et al., 2009; Froyset et al., 2016).

Zebrafish sensitivity to CNS drug classes
The well-documented similarity of zebrafish and mammalian
neurotransmitter systems (Panula et al., 2006, 2010)
contributes to the fact that zebrafish models display similar
pharmacology and sensitivity to various CNS drugs. Using
particular classes of neuroactive drugs as examples, we will
further illustrate this aspect of zebrafish models and its
relevance to the search for novel therapeutic approaches.

Antiepileptic drugs
PTZ is one of the most widely used convulsant agents in
rodents and zebrafish and produces robust seizure
phenotypes suppressed to varying degrees by a wide range
of known anti-epileptic drugs (Cunliffe, 2016). PTZ induction
of seizures is also an effective way of medium-throughput
testing for the discovery of new anti-epileptic treatments
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(Baxendale et al., 2012; Cunliffe, 2016). As small molecule
screens may be conducted in zebrafish as early as 2 dpf, the
efficacy of potential treatments is evaluated not only through
behavioural testing but also through the monitoring of
neural responses (e.g. c-fos) (Baxendale et al., 2012). Exposure
to PTZ increases C-fos expression, which is attenuated by
classic anti-convulsant agents, as well as anti-inflammatory
agents, natural and synthetic steroids, antioxidants,
vasodilators, pesticides and herbicides (Baxendale et al.,
2012). However, while these drugs attenuate PTZ-induced
seizures, the mechanism of their action remains unclear. In
addition to PTZ, other drugs evoke seizure-like states in
zebrafish (Winter et al., 2008). Kainic acid (KA) is a common
convulsant agent in rodents and is able to produce similar
effects in zebrafish (Alfaro et al., 2011). Glutamate receptor
antagonists diminish KA-induced seizures, underscoring the
utility of the zebrafish model to study glutamatergic
excitatory neurotransmission. Also pertinent to the study of
anti-epileptic treatment is the combination of genetic
manipulation with pharmacological interventions (Cunliffe,
2015). For instance, clemizole (a histamine receptor
antagonist) is effective at treating genetically-evoked seizures
in scn1lab zebrafish (Grone and Baraban, 2015), a model of
Dravet syndrome (Baraban et al., 2013) caused by SCN1A
mutations with spontaneous seizures insensitive to major
anti-epileptic drugs.

Antipsychotics
First-generation (typical) antipsychotics are high-affinity
antagonists of dopamine D2 receptors and are the most
effective treatment of psychoses (Lieberman et al., 2005).
However, they produce severe side effects, including tremors,
paranoia and anxiety (Miyamoto et al., 2005). The second-
generation ‘atypical’ antipsychotics demonstrate a lower
affinity for D2 receptors and fewer side effects, relative to
typical antipsychotics (Kane et al., 1988). However, there
remains a great need for the identification of novel
treatments for psychoses, and zebrafish models can be highly
useful in this endeavour. For example, the administration of
MK-801 induces hyper-locomotion [similar to psychomotor
agitation, a characteristic symptom of schizophrenia (Seibt
et al., 2010)] and social and cognitive deficits (Seibt et al.,
2011). MK-801-induced locomotor effects are reversed by
typical (haloperidol) and atypical (olanzapine and sulpiride)
antipsychotics (Seibt et al., 2010). However, fish exposed to
MK-801 perform poorly in an inhibitory avoidance task,
and their social and cognitive deficits are restored by atypical,
but not typical, antipsychotics (Seibt et al., 2011).
Importantly, atypical antipsychotics have affinities for
dopaminergic as well as serotonergic, glutamatergic and other
neurosignalling pathways. For example, resperidone acts via
D2 and 5-HT2 receptors and shows promise as an anxiolytic
substance (Idalencio et al., 2015). Stressed fish exposed to
resperidone spendmore time in the top of the novel tank test,
have fewer transitions to the dark in the light–dark test
(Magno et al., 2015) and show lower cortisol levels (Idalencio
et al., 2015). The purinergic system has been recently
implicated in schizophrenia (Lara and Souza, 2000),
especially since adenosine, the final product in the
ectonucleotidase cascade, modulates dopamine and
glutamate (Lara and Souza, 2000). In zebrafish, haloperidol

reduces ATP hydrolysis and adenosine deamination, thereby
reducing synaptic adenosine levels (Seibt et al., 2015). The
sensitivity of zebrafish ATP hydrolysis to haloperidol suggests
an extracellular mechanism of action, potentially relevant to
pharmacological targets (Seibt et al., 2015).

Drugs of abuse
Substance abuse and addiction are easily modelled in larval
and adult zebrafish (Stewart et al., 2011). For example,
addiction, tolerance and withdrawal can be studied using
aquatic CPP paradigms (Mathur and Guo, 2010; Collier and
Echevarria, 2013; Collier et al., 2014). A typical CPP set-up
consists of two distinct environments, which differ in their
colours, visual patterns or environmental cues (Darland and
Dowling, 2001). The protocol consists of three steps: initial
determination of environment preference, conditioning
session and testing of final place preference. From the
conditioning session, three outcomes are possible: preference
for the non-preferred side, aversion of the preferred side or no
change. In zebrafish, CPP protocols generally take ~3 days
(Collier et al., 2014), but may also run for several weeks (Kily
et al., 2008). This protocol is widely used in zebrafish, rodents
and other model organisms to investigate the behavioural
effects of psychoactive compounds and associative learning
(Lucke-Wold, 2011) but, despite the ability to elucidate
reward-seeking behaviour, does not measure the drug’s abuse
potential (see further).

Alcohol and nicotine. Ethanol produces a characteristic dose-
dependent effect on zebrafish. At low doses (<0.5%), ethanol
increases locomotion, swim speed and shoaling behaviours
(Gerlai et al., 2000). A 20 min exposure to 1.00% ethanol is
anxiolytic in zebrafish, whereas longer exposure to the same
dose (or higher doses) impairs their locomotion and induces
sedation (Gerlai et al., 2000; Rosemberg et al., 2012; Tran
and Gerlai, 2013; Pannia et al., 2014). The rewarding effect
of ethanol in zebrafish is seen after a single exposure to
0.25–1% (Collier et al., 2014) or 1.5% (Mathur et al., 2011),
reliably changing fish CPP. A prolonged CPP paradigm (e.g.
daily conditioning for 4 weeks) produces robust behavioural
responses, which persist following abstinence, indicating
the establishment of dependence-related behaviour (Kily
et al., 2008). Some reports evaluating the chronic ethanol
CPP treatment note the development of tolerance, as
indicated by lower drug-induced hyperactivity and
decreased anxiolytic effects (Gerlai et al., 2006). Drug
abstinence following chronic (1 week) exposure produces
robust withdrawal symptoms in adult zebrafish, including
anxiety-like behaviour and elevated cortisol (Cachat et al.,
2011a).

Zebrafish also produce a wide range of dose-dependent
responses to nicotine (Levin et al., 2007; Kily et al., 2008). At
low to moderate doses (e.g. 3–300 μM), nicotine evokes
anxiolytic responses in the novel tank test (Levin et al.,
2007) and robust CPP that persist following a period of
abstinence (Kily et al., 2008). The behavioural effects of
nicotine are also susceptible to genetic variation, allowing
the researchers to identify genetic candidates for human
nicotine addiction (Petzold et al., 2009). Furthermore,
microarray analyses of whole brain samples from nicotine-
treated fish reveal an up-regulation of several genes
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implicated in the development of drug dependence,
including genes for calcineurin B and the hypocretin
receptor, which have both been previously linked to synaptic
plasticity and neurotransmission in drug dependence (Kily
et al., 2008).

Cocaine and amphetamines. Administration of cocaine (5, 10
and 15 mg·L�1) to adult zebrafish produces robust arousal
states, as indicated by an extension of the fins, slow circling
and remaining low in the water column (Darland and
Dowling, 2001). When surrounded by conspecifics, cocaine-
treated zebrafish engage in aggressive behaviour through
dominance displays and chasing (Darland and Dowling,
2001). Abstinence from the drug results in withdrawal
symptoms within 72 h, wherein animals experience
anxiety-like behaviour and basal hyperlocomotion (López-
Patiño et al., 2008). Withdrawal symptoms are counteracted
by the administration of a non-sedative dose of diazepam
(5 μM) or cocaine (1.5 μM) (López-Patiño et al., 2008).
Cocaine also produces dose-dependent CPP responses, with
10 mg·L�1 causing the most robust response (Darland and
Dowling, 2001). The cross-breeding of wild-type females
with males mutagenized through repeated exposure to
N-ethyl-nitrosourea (ENA) yielded an F1 generation,
outcrossing of which results in F2 generation tested for
cocaine sensitivity in the CPP task. Low-responding F2
siblings were crossbred to yield F3 generation, which display
low sensitivity to cocaine in the CPP task, demonstrating a
genetic basis for the altered behaviour profile (Darland and
Dowling, 2001).

Methamphetamine is a potent psychostimulant with
high addiction potential, and its abuse is comorbid with
psychiatric disorders, including anxiety and depression
(Akindipe et al., 2014). Currently, there are no effective
medications for the treatments of methamphetamine abuse.
The zebrafish demonstrates sensitivity to methamphetamine
and is a useful model to study effective medications and
methamphetamine-related comorbidities (Mi et al., 2016).
For instance, the acute administration of methamphetamine
induces avoidant behaviour and increases swim speed in the
open field and mirror stimulation task (Mi et al., 2016), and
this can effect can be attenuated by I-Scoulerine, an agent
acting on dopaminergic and serotonergic systems (Mi et al.,
2016). The cholinergic system may also play a role in
modulating the rewarding effects of various psychoactive
drugs, and genetic impairment of AChE does reduce
amphetamine-induced CPP in adult zebrafish (Ninkovic
et al., 2006). Finally, the pharmacological inhibition of AChE
reduces the addictive potential of cocaine and morphine in
mice (Hikida et al., 2003), suggesting that targeting the
acetylcholine systemmay lead to a reduction in the addictive
properties of drugs.

Hallucinogens. Hallucinogenic agents can be classified
under three broad categories: (1) classic serotonergic
psychedelics, (2) dissociatives, which primarily act as
NMDA antagonists, and (3) deliriants, which act as
anticholinergic agents (Kyzar and Kalueff, 2016). Classic
serotonergic psychedelics [e.g. lysergic acid diethylamide
(LSD), mescaline and psilocybin] alter zebrafish locomotion,
shoaling and anxiety-like behaviours and whole body

cortisol levels (Kyzar and Kalueff, 2016). Ketamine, a
dissociative psychedelic, produces a dose-dependent
anxiolytic effect in the zebrafish and decreases whole body
cortisol levels (De Campos et al., 2015). The deliriant
psychedelic atropine affects cholinergic neural activity in
the zebrafish (Park et al., 2008). Although hallucinogens
remain understudied in zebrafish, the data available
demonstrate their sensitivity to various known drugs and
may allow for the discovery of therapeutic targets, especially
given the growing recent interest in hallucinogenic agents
(Kyzar and Kalueff, 2016).

Sedatives. Sedatives are generally prescribed for the
treatment of anxiety disorders and produce anxiety
reduction, disinhibition and sedation, mainly modulating
the histaminergic, GABA-ergic and adrenergic systems
(Koob, 1992). Zebrafish share similarities with the
mammalian GABAA and GABAB receptor subunits and
histamine H1 receptor (Renier et al., 2007) and are highly
sensitive to a wide range of sedatives. For example, high
doses of chlordiazepoxide significantly reduce swim speed
(Bencan et al., 2009), whereas diazepam has a biphasic effect
on anxiety, with low-to-moderate doses reducing bottom
dwelling, and higher doses causing sedation (Bencan et al.,
2009). Chronic 2 week exposure to diazepam following by
abstinence produces withdrawal-like symptoms in zebrafish,
including anxiety in the light dark preference task (Cachat
et al., 2011a). While this highlights the utility of zebrafish as
a model for sedative-related withdrawal, there is a clear lack
of studies that evaluate the rewarding or aversive effects of
sedatives in zebrafish (which can easily utilize the CPP
protocol to generate invaluable information on behavioural
effects of these drugs).

Perspectives on small molecule and
genetic screening in zebrafish

Understanding genetic and anatomical
differences from mammalian models
As a member of the teleost group, the zebrafish originated
from a common ancestor ~340 million years ago (Amores
et al., 2011). The ancestor had undergone an additional round
of whole-genome duplication (WGD), an event that is
responsible for the diversification of gene function and
phenotype in zebrafish (Meyer and Schartl, 1999). Of the
homologous genes, 71.4% of human genes have at least one
zebrafish orthologue and 47% of human genes have a one-
to-one zebrafish orthologue (Amores et al., 2011). Of the
genes for which zebrafish have more than one orthologue,
only few have been studied and functionally characterized.
Thus, the current lack of understanding of many zebrafish
orthologues of human genes is a potential problem with this
model. For instance, humans possess three Period (Per) genes:
Per1, Per2 and Per3 (Wang, 2008) encoding regulatory
elements in the circadian clock, which are also responsible
for growth, rest and hormone production (Pando and
Sassone-Corsi, 2002; Danilova et al., 2004; Vatine et al.,
2011). Zebrafish have two per1 genes (per1a and per1b), but
only one per2 and one per3 (Wang, 2008). The per1a and per1b
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genes show distinct temporal and spatial expression, and
their roles in the circadian clock are poorly understood
(Wang, 2008). Transgenic models may help to elucidate the
functions of the zebrafish per1 genes and provide insights
into their role in maintaining circadian rhythms. The 5-HT
transporter (sert) genes have also been duplicated during
WGD in zebrafish, which possess two sert genes: serta and
sertb (Wang et al., 2006). These genes have high homology
to vertebrate 5-HT transporter genes, suggesting a
conservation of function (Wang et al., 2006). Thus, despite
an additional WGD, it does not render the zebrafish model
unusable. Rather, the study and functional identification of
genes may help better understand molecular interactions,
which will further clarify the efficacy of drugs and their
therapeutic targets.

Furthermore, despite significant the neuroanatomical
similarity discussed above, some differences between
zebrafish and mammals must be critically considered. For
example, while several regions in the mammalian brain do
not have clear structural homologous counterparts in
zebrafish, including the substantia nigra and hippocampus
(Mueller et al., 2011; Panula et al., 2010), they share
functional homology with selected groups of zebrafish
neurons. Thus, a small population of dopaminergic cells in
the posterior tuberculum is a strong candidate for the
zebrafish homologue of the substantia nigra (Kaslin and
Panula, 2001), as shown by neurotoxin lesion studies
(Sallinen et al., 2009). Likewise, the lateral part of the
zebrafish pallium contains homologous structures to the
mammalian hippocampus (von Trotha et al., 2014), thereby
fostering further cognitive studies in zebrafish models. One
stark difference from humans is the fact that zebrafish lack a
cortex, its homologue, or even molecular markers that may
be used to identify a cortex region (Northcutt, 2008; Mueller
et al., 2011). This aspect may limit the translation of findings
between zebrafish and humans, especially on aberrant
executive functioning commonly observed in psychiatric
diseases (Parker et al., 2013). However, given the potential
limitations of the model, it is necessary to evaluate its face
and construct validity. Face validity determines whether the
model resembles the disease in question, while construct
validity determines whether the model measures what it has
set out to measure. Because the rodent models often fulfil
these validity criteria, many zebrafish behavioural tasks have
been modified from rodent paradigms (Levin et al., 2007). For
instance, for modelling anxiety disorders, the zebrafish has
become an adept model in the identification of stress-
inducing stimuli and psychoactive agents in various
novelty-based paradigms (Levin et al., 2007; Bencan et al.,
2009; Abreu et al., 2016). Deficits in cognitive and
behavioural flexibility, commonly reported in patients with
psychiatric diagnoses, may also be modelled in zebrafish.
Behavioural flexibility – the ability to adapt responses to
changing environmental conditions – is often studied in
rodents using a reversal of contingencies in choice-
discrimination tasks (Ragozzino et al., 1999; Saus et al.,
2010). These tasks rely on the ability of the animal to
demonstrate a reversal of learning. Zebrafish have
demonstrated the ability to adapt to changing environmental
contingencies, and their capacity for reversal learning shows
similar patterns to that observed in rodents (Colwill et al.,

2005). Thus, although zebrafish may lack a proper cortex,
they retain the ability to perform executive functions, such
as maintaining attention and behavioural flexibility (Parker
et al., 2013). However, we still know relatively little about
the neural circuits and how different neurotransmitter
systems may functionally interact in zebrafish (Parker et al.,
2013). Identifying the function of neural circuits in this fish
and their reciprocity with other systems becomes critical to
understanding the molecular basis of behaviour, and in
identifying therapeutic targets for diseases.

Perspectives on automated and
high-throughput screening
Zebrafish models are highly amenable to behavioural,
genomic and proteomic testing (Jones and Norton, 2015;
Purushothaman et al., 2015), as they combine a relative
neural simplicity with behavioural complexity sufficient for
studying multiple behavioural processes from sleep
(Zhdanova, 2006; Rihel et al., 2010; Purushothaman et al.,
2015) to anxiety (Richendrfer et al., 2012; Stewart et al.,
2012). Custom-made and commercial video-tracking
software can record a wide range of zebrafish behavioural
measures, including velocity, distance travelled, place
preference (e.g. top vs. bottom, light vs. dark, centre vs.
periphery) and specific patterns (e.g. erratic swimming,
stereotypic circling) (Pérez-Escudero et al., 2014; Conklin
et al., 2015). The automation of zebrafish video-tracking
enables several behavioural outcomes to be recorded
simultaneously, removing the need to repeat the experiment
and/or watch and re-watch videos manually each time a new
outcome is measured (Pérez-Escudero et al., 2014; Conklin
et al., 2015). It is also possible to record zebrafish social
groups, for example, assessing fish shoaling behaviours,
presently capable of tracking multiple (e.g. 8–16) animals
per arena (Noldus, 2016b) to extract rich behavioural data
from average inter-fish distance to shoal polarization and
cohesion (Stewart et al., 2014a). Larval zebrafish allow for
recording of even more (e.g. 96) animals, tracking their swim
patterns simultaneously (Noldus, 2016a). An added
advantage of technological advancements in this rapidly
growing field of zebrafish phenomics is the automatization
of drug administration, and the computerization of stimulus
exposure – e.g. in drug addiction or fear conditioning
paradigms (Saverino and Gerlai, 2008), which collectively
improves the standardization of testing procedures, and
provides efficient data collection, increased throughput and
data reproducibility (Love et al., 2004; Stewart et al., 2015a).

Zebrafish are further amenable to high-throughput
in vivo screening as their multiple behavioural parameters
can be monitored in 3D (Stewart et al., 2015b). For
example, the X, Y and Z swim trajectories can be traced
by two cameras, generating two 2D trajectory files
integrated to produce a 3D trace of the swim pattern,
which can help identify unique drug-induced phenotypic
profiles (Stewart et al., 2015b). Advances in behavioural
recognitions allow for a more detailed in vivo analysis of
behavioural phenotype (Stewart et al., 2015a). For
instance, software that can discriminate between the tail,
mid-body and nose of the zebrafish are well capable of
quantifying locomotion and interpreting complex

Zebrafish models in neuropsychopharmacology BJP

British Journal of Pharmacology (2017) 174 1925–1944 1935



behaviours such as chasing or nipping, chasing (Kalueff
et al., 2013; Stewart et al., 2015a). These methods are
especially useful in polypharmacology studies using
pharmacological agents that act on multiple targets
(McCarroll et al., 2016). As many psychiatric disorders
are linked to deficits in several neurotransmitter systems
and have multigenic aetiologies (Kendler et al., 2013;
Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014), this possibility in zebrafish
screens becomes particularly important. Computational
techniques, such as hierarchical clustering or similarity
ensemble approach, also help identify target hits and
prediction of target interactions with psychoactive
compounds. The combination of behavioural phenotyping
and computation techniques is useful in the development
and discovery of new medical targets, including in vivo
behavioural phenotyping of single target compounds in
2D or 3D tracking, producing their unique swim traces
(thigmotaxis, scototaxis, average swim speed, etc.),
identifying the compounds that produce the desired
behavioural phenotype (hit compounds) and their
subsequent in-depth analyses with algorithms that predict
their biological target(s) to generate hypotheses of target
combinations (McCarroll et al., 2016). Once identified,
multiple hit compounds can then be tested in
combination in vivo (McCarroll et al., 2016), probing their
ability to work in concert to achieve a desired therapeutic
outcome.

Perspectives on genetic zebrafish models
As already noted, genetic manipulations are critical on
animal studies to identify candidate genes associated in the
aetiology of a disease. Short-term genetic manipulation is
achieved through injection of morpholino-modified
antisense oligonucleotides (MOs) (Nasevicius and Ekker,
2000) or small interfering RNA (siRNA; de Rienzo et al.,
2012) to engage in loss-of-function studies (Kalueff et al.,
2014b). MOs target specific translational inhibitors and
effectively reduce gene expression (Nasevicius and Ekker,
2000). RNA interference (RNAi) is a process in which RNA
molecules inhibit the translation of targeted mRNA
molecules (de Rienzo et al., 2012). These methods
demonstrate efficacy in targeting specific genes and in
producing altered phenotypes, although, recently, the
efficacy of MOs has been questioned (Kok et al., 2015;
McCammon and Sive, 2015).

The development of mutant zebrafish provides a more
stable behavioural phenotype, because rather than produce
a knockdown of a given gene, it completely eliminates the
target gene product (Amsterdam and Hopkins, 2006;
Stewart et al., 2014b). Mutants are created through
retroviral insertional mutagenesis, wherein DNA basepairs
are integrated into the organism’s pre-existing DNA
(Amsterdam and Hopkins, 2006) or through chemical
mutagenesis. Chemical mutagenesis involves exposing the
male zebrafish to the methylating agent ethylnitrosourea
weeks before mating in order to allow the mutation to fix
in the spermatogonia just before they mature to sperm
(Amsterdam and Hopkins, 2006; Wienholds et al., 2003).
Mutant and morphant zebrafish are used in a wide range
of studies and provide a deeper understanding of the roles

and importance of specific receptors and biological targets
(Griffiths et al., 2012a; Haesemeyer and Schier, 2015). For
instance, in developing a mutant model of autism, a highly
active set of genes was discovered with a large genetic
target, providing a deeper look in to the functional changes
associated with gene deletion and duplication (Blaker-Lee
et al., 2012). Furthermore, the size of the genetic target,
which had previously been unknown, was elucidated
allowing for targeted assays in higher vertebrates and
mammals (Blaker-Lee et al., 2012). Similarly, loss of function
mutations for the synaptic machinery genes stxbp1a and
stxbp1b produce robust phenotypes (Grone et al., 2016). In
humans, these genes are linked to various
neurodevelopmental disorders and epilepsy (Saitsu et al.,
2008; Carvill et al., 2014). Homozygous stxbp1a knockdown
results in immobility, reduced heart rate, reduced
metabolism and early death (Grone et al., 2016).
Heterozygous stxbp1a knockdown produces markedly fewer
deleterious effects; aside from a slight reduction in
behavioural response to a startle stimulus, larval zebrafish
demonstrate normal behaviour (Grone et al., 2016).
Homozygous stxbp1b mutations yield zebrafish that present
with epileptic seizures, along with normal mobility,
metabolism and heart rate (Grone et al., 2016). The wide
range of behavioural and physiological effects of the loss
of function mutations for stxbp1a and stxbp1b, coupled
with the functional similarity to the mammalian genes
(Saitsu et al., 2008), highlight the potential for the zebrafish
model to be used in the mechanistic and epigenetic study
of neurodevelopmental and neuropsychiatric diseases.

Conclusion
Neuropsychiatric conditions afflict the human population
globally and have tremendous personal and societal costs
(Garakani et al., 2006; Griebel and Holmes, 2013). Animal
models have long been used in neuropsychiatric studies to
better understand human disease states and play a key role
in the identification of biological and molecular targets, with
the aim of developing safer and more effective treatments
(Krishnan and Nestler, 2011; Keifer and Summers, 2016).
Zebrafish are a promising new animal model, which
continues to provide important insights into the aetiology
of CNS diseases (Kalueff et al., 2014a,b). The homology of
key brain regions between zebrafish and mammals
underscores the utility of zebrafish models in
neurobehavioral and neuropsychiatric studies. Furthermore,
the conservation of neural pathways between zebrafish and
mammals allows for the bi-directional translation of findings
(Renier et al., 2007; Stewart et al., 2014a). The current genetic
tools, tracking techniques and statistical algorithms foster
the gaining of a deeper understanding of molecular
pathways, the development of new compounds or
repurposing of established drugs (Stewart et al., 2015b).
Taken together with the high sensitivity of zebrafish to
known anxiolytic, antipsychotic and other CNS drugs, this
provides researchers with a well-rounded model organism
capable of identifying molecular targets for drug treatment
and empirical testing of their hypotheses (Kokel et al., 2010;
Hwang et al., 2013; Stewart et al., 2015b).
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