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ABSTRACT The gap between the nonlocalized lattice-
phonon description and the localized Einstein oscillator treat-
ment is filled by transforming the phonon Hamiltonian back to
the particle variables. The particle-coordinate, normalized,
wave function for the phonon vacuum state is exhibited.

The lattice phonon is a spatially nonlocalized concept. There
are circumstances, however, that require its combination
with other, localized, phenomena. Then, one might wish to
return to a description that uses the more localized interac-
tions among the lattice constituents. Such interactions may
not be very well known, however, and, in contrast with the
phonon spectrum, are not subject to direct measurement. It
would be of some utility, therefore, to transform back from
the phonon description in order to realize the localized
treatment of the lattice particles.

In the interests of minimizing notational problems, the
distinction between longitudinal and transverse polarizations
will be set aside, so that each phonon mode, labeled 4, and
characterized by angular frequency wct, and propagation vec-
tor kt, will be three-dimensionally degenerate. This is con-
veyed by the following Hamiltonian, referring to the linear
displacement regime, which is expressed in terms of the
phonon annihilation operator yO, and the adjoint creation
operator yt,, as

X hwcOyty4,. [1]

Given N equilibrium positions, r,, one introduces the
dynamical position vectors

ra = r~a + I p,(el* ro"y4 + e "y

along with the momenta for particles of mass M,

Pa = I MWOp,4- (e1Y.rOay4,-'Iei

[2]

[3]

1
- [rak, Pbl] = 6kl6ab'fth

[6]

as a consequence of the phonon property

11en (rO- rob) = (ik-(rO.-rOb) = ,ab [7]

The notation introduced here for a spectral average, (), will
occur again.
The inverses of the relations 2 and 3 are given by

[8]Ye =4AX[(r-ro)a +M-pe-w4Ia _Mop
along with its adjoint,

ye= a Z[(r-ro)a - pale,
a MWO

where

o-,o= -12_p(M\=

[9]

[10]

The new form ofthe Hamiltonian 1 that Eqs. 8 and 9 supply
is

/2
IPa 3 M

N= ---ti(CO) + - (r-ro)afl2 (r-rob,
a \2M 2 / ab 2

where

a2 = ((,,2 'k (ro.-rob)).~ab el~

The notation C12 has a matrix significance, based on

fab = (wel(r-rOb)).

[11]

[12]

[13]

Indeed, with the assistance of the lattice property that is
complementary to Eq. 7,

h 1/2

PO :--2MwpV [4]

From the commutation relations of the non-Hermitian pho-
non operators, as illustrated by (k, I = xI y, z),

[YVsk, Y i] = &1k600' [5]

one gets the required coordinate-momentum commutation
relations,

1
- I eik-#,-o 60,
N a

one gets

a2 flabbcb E

1 1
=

- E dao-Nb (O-rbe4"rbrl

1
=-

e
X

- r. odI
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[14]

[15]

where
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which is the content of Eq. 12. The immediate generalization
to any positive integer n is

fab = (wnelt(rO. -rOb).

The specializations

a2 = (W2)

and

fab(a # b) = ((w2 - )el

convert Eq. 11 into

we= [2, + (w(r -rO)- -A(w)

M
+ > -- (r -ro)a * fab(r - ro)b.

a~b 2

[16]

Now the normalization condition reads

=

7rhi\ 3N/2

1 = C~t-J (det Q)-3"2 [24]

The differential definition of the determinant in terms of the
trace is

8 log (det fl) = tr(W'8Q). [25]

[17] With the permissible extension of Eq. 16 to n = -1, one gets

[18]

This directs attention to the limit in which the spectrum is
monochromatic: w,)2 = (wI)2) = (W)2, where the Einstein de-
scription in terms of independent oscillators emerges. The
phonon vacuum state for this circumstance is known from the
oscillator ground-state wave function:

1Mw 3/4 Mw~~~~~~~~~({r}O1=Hy-)H exp -- (r - ro)a] [19]

What replaces this for a general phonon spectrum?
According to Eq. 8, the vacuum condition, yg,10) = 0,

implies that

X [Mwh (r - rO)b + i pb1eh11'rObIo) = 0. [20]

With the aid of the phonon property (Eq. 7), this is converted
into

or

[aPa + Xfab(r ro)b 10) =

[Va +
ir E flab(r - rO)bj({r}01) = 0,

[21]

[22]

in the notation of Eq. 13. The solution of the latter set of
equations is

(jr}0) = C exp[-2h
>

(r - ro)a * flb(r - r [)b[23]
which, in the monochromatic situation-where Qab equals
w(8ab-reproduces the structure of Eq. 19.

[26](flY )ab = -el (rO. - rob))

and then

tr(W1l^Q) = NK-) = (N(Iog w)).

The outcome,

detf(= (wNexp(N)log-)

[27]

[28]

is independent of (w), which appears as a matter of conve-
nience.
Thus, one finds that

C = N(,== exp( 3 log(-)
4 [29]

where the logarithm is so written in the anticipation that its
spectral average is positive. Consider, for example, the
situation of a narrow spectral range that is symmetrical about
(w). Then, if one writes w = (w)(1 + x), the symmetry implies
that

log log

[30]

On the other hand, consider the asymmetrical Debye spec-
trum, with a spectral density proportional to w2, up to a cutoff
frequency. With the latter chosen as the w unit, one has

( ) w 3o
log dw w3 o

1 4
= - - log - = 0.046 > 0.

3 3
[31]
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