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Abstract

We introduce phylodyn, an R package for phylodynamic analysis based on gene genealogies. The 

package main functionality is Bayesian nonparametric estimation of effective population size 

fluctuations over time. Our implementation includes several Markov chain Monte Carlo-based 

methods and an integrated nested Laplace approximation-based approach for phylodynamic 

inference that have been developed in recent years. Genealogical data describe the timed ancestral 

relationships of individuals sampled from a population of interest. Here, individuals are assumed 

to be sampled at the same point in time (isochronous sampling) or at different points in time 

(heterochronous sampling); in addition, sampling events can be modeled with preferential 

sampling, which means that the intensity of sampling events is allowed to depend on the effective 

population size trajectory. We assume the coalescent and the sequentially Markov coalescent 

processes as generative models of genealogies. We include several coalescent simulation functions 

that are useful for testing our phylodynamics methods via simulation studies. We compare the 

performance and outputs of various methods implemented in phylodyn and outline their strengths 

and weaknesses. R package phylodyn is available at https://github.com/mdkarcher/phylodyn.

Introduction

In the last several decades, phylodynamic inference has demonstrated its usefulness in 

ecology and epidemiology [Grenfell et al., 2004, Holmes and Grenfell, 2009]. The key 

inferential insight of phylodynamics is that population dynamics leave their mark in the 

shape of gene genealogies and thereby the sequence data sampled. Kingman’s coalescent 

models the relationship between effective population size Ne(t) and the likelihood of 

observing a particular genealogy [Kingman, 1982]. In order to be computationally feasible, 
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early coalescent-based models required strong parametric assumptions on the effective 

population size trajectory [Griffiths and Tavaré, 1994, Drummond et al., 2002, Kuhner et al., 

1998]. More recently, nonparametric models have allowed a much more diverse class of 

effective population size trajectories to be inferred, at the cost of estimating many more 

parameters. Methods have emerged that compromise between the two extremes, maintaining 

a tractable number of parameters while allowing for a diverse class of estimable trajectories 

[Drummond et al., 2005, Minin et al., 2008, Palacios and Minin, 2013, Gill et al., 2013]. See 

the review by Ho and Shapiro [2011] for a detailed comparison.

Here we unify user interfaces for three different but related Bayesian nonparametric 

methods. These methods assume a log Gaussian process prior on Ne (t). The first comes 

from the work by Lan et al. [2015]. They implement a number of Markov chain Monte Carlo 

(MCMC) algorithms for inferring effective population size trajectories from a fixed 

genealogy. They compare different algorithms’ computational efficiency and MCMC 

diagnostics.

The second methodology comes from the work by Palacios and Minin [2012] and Karcher et 

al. [2016]. They target the same posterior as in [Lan et al., 2015], but implement an 

integrated nested Laplace approximation (INLA) based approach. Utilizing INLA allows for 

a significant computational speedup at the cost of only having access to the latent 

parameters’ approximate marginal distributions (as opposed to MCMC algorithms which 

approximate the full joint distribution). Karcher et al. [2016] have an additional focus of 

accounting for potential preferential sampling, which incorporates a likelihood relating the 

sampling times of the genealogy to the effective population size trajectory.

The last methodology comes from the work by Palacios et al. [2015]. They implement an 

MCMC algorithm for inferring effective population size trajectories from a sequence of 

local genealogies. Here, genealogies are correlated and are assumed to be a realization of the 

sequentially Markov coalescent (SMC’) [Marjoram and Wall, 2006].

The R package phylodyn encapsulates all the above work. We integrated all of the above 

methods in a unified user-friendly format, added detailed tutorials, included more features 

such as simulation of genealogies from the coalescent model that accepts arbitrary but 

positive effective population size function [Palacios and Minin, 2013], and added features 

for data manipulation and interaction with other data formats such as BEAST-XML 

[Drummond et al., 2012]. These features greatly expand available phylodynamics methods 

in R. For example, the R package ape [Paradis et al., 2004] has a function skyline that 

implements the generalized skyline method for isochronous genealogies. To the best of our 

knowledge, no other R package infers effective population size trajectories from 

heterochronous genealogies. Other R packages for simulation of genealogical data exist (e.g. 

phyclust [Chen, 2011] and ape) but they are limited to very specific demographic 

scenarios such as piece-wise constant and exponential growth functions. Our addition of 

inference from a sequence of local genealogies expands the range of phylodyn to a broader 

class of models that have not been implemented in the previous versions of the package.
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Functionality

Genealogical simulation

A genealogy is a rooted bifurcating tree with labeled tips. Branching events are called 

coalescent events which occur at coalescent times, and tips are located at sampling times. 

Given a vector of sampling times s and an effective population size function Ne(t), 
Kingman’s coalescent provides the following likelihood of observing a particular genealogy 

g with coalescent times :

where , ni,k is the number of lineages present during time interval Ii,k and Ii,k 

is a time interval defined by coalescent times and sampling times and I0,k is a time interval 

that ends at coalescent time tk−1. See [Lan et al., 2015] for notational details. The coalsim 

function simulates coalescent times according to this distribution, given a vector of sampling 

times and an arbitrary effective population size function traj(t). The function gives the 

option of using a time-transformation method or a thinning method for simulating the 

coalescent times. The time-transformation method scales better but involves numerical 

integration, while the thinning method is faster with small samples and is an exact method. 

The generate_newick function takes the output generated with coalsim and returns the 

corresponding genealogy in ape’s phylo format [Paradis et al., 2004]. We are not aware of 

another R package that allows for simulating the coalescent process while allowing for 

arbitrary sampling times as well as arbitrary positive effective population size trajectories. 

phylodyn also provides functionality for easily simulating sampling times under 

preferential sampling according to an arbitrary positive function f. The pref_sample 

function simulates sampling times according to an inhomogeneous Poisson process with 

intensity , where parameters c and β control the expected number of sampled 

sequences and the strength of preferential sampling, respectively. Currently the function only 

allows a thinning method, but a time-transformation method is forthcoming.

Markov chain Monte Carlo methods

Following the approach of Gill et al. [2013] and Palacios and Minin [2012], Lan et al. [2015] 

approximate Ne(t) by a piece-wise linear function , defined 

over a regular grid with end points , where x1 equals the most recent sampling 

time, and xD = t2, the time when the last two lineages coalesce. Hence, we seek to estimate 

the posterior

(1)
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where Pr[g|f] is the coalescent likelihood, Pr[f|τ] is a Gaussian process prior on 

with precision τ, and Pr(τ) is a Gamma hyperprior on τ. Our implementation assumes a 

Gaussian process prior on f with inverse covariance function , where C−1 

corresponds to a modified inverse covariance matrix of Brownian motion (see [Lan et al., 

2015] for details).

The mcmc_sampling function implements a variety of MCMC algorithms for estimating 

the posterior (1), given the sufficient statistics for a genealogy (sampling times and 

coalescent times). Available methods are Hamiltonian Monte Carlo (HMC) [Duane et al., 

1987, Neal, 2011], split HMC [Leimkuhler and Reich, 2004, Neal, 2011, Shahbaba et al., 

2014], Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996], 

adaptive MALA [Knorr-Held and Rue, 2002], and Elliptical Slice Sampler (ESS) [Murray et 

al., 2010]. For a comparison of the computational efficiency of the different methods see 

[Lan et al., 2015].

We illustrate phylodyn’s capabilities with a simulation example. We let Ne(t) have a 

seasonal boom-and-bust trajectory (provided by the logistic_traj function), and we 

simulate a sequence of sampling times according to an inhomogeneous Poisson process with 

intensity proportional to Ne(t) using the pref_sample function. We simulate a genealogy 

from the coalescent using the coalsim function, and supply it to the different sampling 

algorithms of the mcmc_sampling function. We summarize the results in Figure 1.

Palacios et al. [2015] infer Ne(t) from a sequence of m local genealogies under the SMC’ 

model [Marjoram and Wall, 2006]. The SMC’ process is an approximation to the ancestral 

recombination graph (ARG) which models the set of ancestral relationships and 

recombination events of multilocus sequences [Griffiths and Marjoram, 1997]. In our 

implementation, we assume that our data consist of a sequence of genealogies that represent 

the ancestral relationships at consecutive loci separated by recombination events. These 

consecutive genealogies are modeled as a continuous-time Markov chain along a 

chromosomal segment. Here, we also approximate Ne(t) by the piece-wise linear function Nf 

(t) and rely on split HMC [Shahbaba et al., 2014] to sample from the posterior:

(2)

where Pr[g0,…, gm−1 | f] is the sequentially Markov coalescent likelihood [Palacios et al., 

2015]. Our mcmc_smc function samples from the posterior distribution (2). Figure 2 shows 

our estimate of Ne(t) from 100 and 1000 local genealogies of n = 20 individuals simulated 

under a bottleneck demographic scenario. Palacios et al. [2015] show that our method 

recovers the bottleneck best when increasing the number of local genealogies.
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INLA-based methods

We implement the INLA-based methods of Palacios and Minin [2012] and Karcher et al. 

[2016], using the same log-Gaussian prior on Ne(t) as in the MCMC methods. The BNPR 

function implements the INLA approximation to obtain posterior medians and 95% 

Bayesian credible intervals (BCIs) of Nf(t). Being a numerical approximation, this method 

runs extremely quickly. However, the method only estimates the marginals of the posterior 

of the effective population size and hyperparameters, rather than the full joint posterior 

distribution of MCMC-based methods. This is frequently sufficient for most purposes 

involving phylodynamic inference, but offers significant improvement in computational 

efficiency.

We also implement the BNPR-PS method of Karcher et al. [2016]. In cases where the 

frequency of sampling times is related to effective population size, including a sampling 

time model provides additional accuracy and precision. We model the sampling times as an 

inhomogeneous Poisson process with intensity proportional to a power of the effective 

population size, with the following log-likelihood:

This leads to the posterior that conditions on both coalescent and sampling times:

(3)

To illustrate, we use the same genealogy under seasonal boom-and-bust population size 

trajectory as in Figure 1. We apply BNPR and BNPR-PS to this genealogy, and summarize 

the results in Figure 3. Since our sampling times and genealogy were simulated with 

preferential sampling, we notice improved performance from BNPR-PS, which correctly 

models the sampling times.

Discussion

Phylodynamic inference aims to enhance our understanding of infectious disease dynamics 

that involves a combination of evolutionary, epidemiological, and immunological processes 

[Grenfell et al., 2004]. Although phylodynamic methods have been developed and 

successfully employed over the last 15 years, there are still many challenges in extending 

these methods to incorporate different types of information and evolutionary complexities of 

certain pathogens [Frost et al., 2015]. The tools developed in phylodyn currently 

concentrate on estimation of population dynamics from genealogical and sampling 

information — a subset of phylodynamics problems. Phylodynamic inference from sequence 

data alone is challenging because the state spaces of genealogies g and effective population 

size trajectories Ne(t) are large. The MCMC tools implemented in phylodyn allow for an 

efficient exploration of the state space of effective population size trajectories Ne(t) when 

either a single genealogy is available or multiple local sequential genealogies are available. 
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Future implementation in phylodyn will involve the exploration of the joint space of 

genealogies, population size trajectories and other epidemiological processes. We envision 

that the increasing popularity of R will allow researchers to integrate different packages with 

phylodyn. For instance, phylodyn can be used in combination with the Rpackage 

coalescentMCMC to account for genealogical uncertainty. In addition, our coalescent 

simulation functions should be of interest to a wide range of users of the coalescent.
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Figure 1. 
Seasonal boom-and-bust population size trajectory recovered with three different MCMC 

estimation methods: HMC, MALA and ESS. The dashed black lines represent the true 

population size trajectory. The solid blue lines represent the posterior median estimates, and 

the shaded regions represent the 95% credible regions. At bottom, the upper and lower 

heatmaps represent frequencies of sampling events and coalescent events, respectively. Time 

in simulated units of weeks.
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Figure 2. 
SMC’ inference of Ne(t) from m = 100 and m = 1000 simulated local genealogies of n = 20 

individuals. The dashed black line represents the true population size trajectory, the solid 

black line represents the posterior median estimates, and the shaded regions represent the 

95% credible regions. Estimation improves with larger number of genealogies.

Karcher et al. Page 9

Mol Ecol Resour. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Graphical representation of the output of a single genealogy simulation and different BNPR 

estimation methods. The dashed black lines represent the true population size trajectory. The 

solid blue lines represent the posterior median estimates, and the shaded regions represent 

the 95% credible regions. The bottom upper and lower heatmaps represent frequencies of 

sampling events and coalescent events, respectively. For this figure, we sampled individuals 

according to an inhomogeneous Poisson process with intensity proportional to effective 

population size Ne(t) (β1 = 1). The plot on the left is generated by Bayesian nonparametric 

phylodynamic reconstruction (BNPR) that does not account for preferential sampling, while 

the plot on the right is generated by Bayesian nonparametric phylodynamic reconstruction 

with preferential sampling (BNPR-PS) and incorporates our sampling time model. Time is 

in months.
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