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Summary

Prostate cancer patients are closely followed after the initial therapy and salvage treatment may be 

prescribed to prevent or delay cancer recurrence. The salvage treatment decision is usually made 

dynamically based on the patient's evolving history of disease status and other time-dependent 

clinical covariates. A multi-center prostate cancer observational study has provided us data on 

longitudinal prostate specific antigen (PSA) measurements, time-varying salvage treatment and 

cancer recurrence time. These data enable us to estimate the best dynamic regime of salvage 

treatment, while accounting for the complicated confounding of time-varying covariates present in 

the data. A Random Forest based method is used to model the probability of regime adherence and 

inverse probability weights are used to account for the complexity of selection bias in regime 

adherence. The optimal regime is then identified by the largest restricted mean survival time. We 

conduct simulation studies with different PSA trends to mimic both simple and complex regime 

adherence mechanisms. The proposed method can efficiently accommodate complex and possibly 

unknown adherence mechanisms, and it is robust to cases where the proportional hazards 

assumption is violated. We apply the method to data collected from the observational study and 

estimate the best salvage treatment regime in managing the risk of prostate cancer recurrence.
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1. Introduction

Usually after initial treatment, patients with clinically localized prostate cancer are actively 

monitored for possible cancer recurrence by measuring prostate-specific antigen (PSA). A 

noticeable rise in the levels of PSA is considered as an indicator for increased risk of cancer 

recurrence and in these situations salvage androgen deprivation therapy (SADT) would 

typically be applied to delay the recurrence. The reduction in the hazard of recurrence due to 
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SADT has been estimated using various regression approaches (Kennedy et al., 2010; Taylor 

et al., 2014). Clinically, “when to start SADT” is hard to determine because early initiation 

of SADT has both benefits and harms. If SADT is given too early when PSA values are still 

low, it is wasted during the time when the patient is at low risk, while later on the beneficial 

effect may wear off as the patient develops resistance. On the other hand if the patient waits 

to start SADT until PSA is very high, it becomes less effective because by that time the 

cancer is already well established and may have already spread to other sites.

In this paper, we try to directly address the above question and make recommendations on 

when would be the optimal time to start SADT in terms of prolonging a patient's cancer 

recurrence free survival. We use flexible weighting models based on longitudinally collected 

PSA data to estimate an optimal regime. This situation can be framed as a dynamic 

treatment regime (DTR) (Murphy, 2003; Robins, 2004), in which dose or treatment is 

frequently modified according to a patient's current history and disease status. Identifying 

such optimal dynamic decision rules offers an effective vehicle for personalized 

management of chronic diseases, for which a patient typically has to be treated at multiple 

stages.

Although data from sequential multiple assignment randomized trials (SMARTs) are 

desirable (Murphy, 2005) to evaluate the performance of different DTRs, observational 

studies are the most common source of data. Careful formulation and assumptions are 

required to make valid causal inference, especially on how the observational data may 

restrict the set of DTRs that can be assessed, which are called the feasible (Robins, 1994) or 

viable (Wang et al., 2012) DTRs. A variety of estimation approaches have been developed 

for this situation. Murphy (2003) and Robins (2004) generalized the G-estimation method of 

structural nested models (Robins, 1986) for optimal treatment regime estimation. 

Furthermore, Q-learning (Watkins, 1989; Watkins and Dayan, 1992; Murphy et al., 2007) 

and advantage learning (A-learning, Murphy, 2003; Robins, 2004; Blatt et al., 2004) became 

more and more popular in this field, which are closely related to reinforcement learning 

methods (Sutton and Barto, 1998) for sequential decision-making in computer science. 

However, the computational burden of these methods also increases substantially as the 

number of decision-making stages increases. For chronic diseases, it is common to have a 

long follow-up period with many clinical visits where new treatment could be initiated 

dynamically. In these situations, methods based on inverse probability weighting (IPW) are 

easier to conduct and provide certain robustness against model mis-specifications (Hernán et 

al., 2006; Robins et al., 2008). But the validity of these approaches still relies on correct 

model assumptions of the treatment assignment mechanism. This is especially challenging 

in our prostate cancer study, because the treatment assignment in this observational study is 

not completely understood, and the nonlinear PSA trend makes it difficult to model the 

treatment time. Furthermore, the typical proportional hazard assumption is also likely to be 

violated when comparing different regimes; thus causal differences between regimes may 

not be well summarized by a single hazard ratio parameter.

The robustness of estimation and model selection for both treatment and outcome models 

have been discussed in the literature (Mortimer et al., 2005; Neugebauer et al., 2012; Zhang 

et al., 2013). Nonparametric modeling has been suggested for doubly robust estimators to 
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increase model flexibility and stability (Stitelman et al., 2012). Among which, the successful 

implementation of Super Learner (Van der Laan et al., 2007) has suggested the potential of 

machine learning methods to account for the complexity in the underlying mechanism 

(Neugebauer et al., 2013, 2014). Following the spirit of these researches, we propose to use 

a flexible approach that imposes minimal model assumptions for the unknown and 

potentially complicated treatment assignment mechanism. Specifically, we focus on 

evaluating a class of pre-specified viable DTRs for a time-to-event outcome, with the goal of 

estimating, from the observational data, the optimal regime to initiate SADT for prolonging 

the time before cancer recurrence, and we compare different regimes without assuming that 

the hazards are proportional across regimes. We proceed by artificially censoring subjects 

when they become noncompliant with a specific regime under investigation (Robins, 2002; 

Hernán et al., 2006). This censoring potentially induces a bias which we correct using a 

modified Inverse Probability of Censoring Weighting (IPCW) (Robins, 1993). Then we 

employ a modified version of Nelson-Aalen estimator with a Random Forest based flexible 

data driven weighting scheme to (1) accurately estimate the survival distribution under a pre-

defined DTR of interest; and (2) compare the survival distribution under different viable 

DTRs.

In Section 2, we describe the prostate cancer study. In Section 3, we introduce notation 

under the counterfactual framework of causal inference, followed by the description of the 

class of DTRs of clinical interest. In Section 4, we present our method of the weighted 

Nelson-Aalen estimator, where the weights are derived from Random Forest regression. In 

Section 5, we demonstrate the validity of the proposed method in various simulation 

scenarios that mimic different treatment/adherence mechanisms, and then we present the 

analysis results from the prostate cancer data example in Section 6, followed by a discussion 

in Section 7.

2. The prospective cohort study on prostate cancer recurrence

The data used in this paper come from a prospective study of prostate cancer recurrence. The 

study enrolled a total of 2781 patients with clinically localized prostate cancer, all of whom 

were initially treated with external beam radiation therapy (EBRT). Patients came from four 

cohorts: University of Michigan (Michigan, U.S.A.); Radiation Therapy Oncology Group; 

Peter MacCallum Cancer Center (Melbourne, Australia); and William Beaumont Hospital 

(Michigan, U.S.A.). Pretreatment prognostic factors PSA (ng/ml) and T-stages (with value 

1-4) were recorded prior to initial EBRT, and then PSAs were monitored at periodic visits 

throughout follow-up. Each patient enrolled in the study was followed up for at least one 

year with a minimal of two visits. The median follow-up was 5.2 years, and the median 

number of PSA measurements (visits) prior to recurrence or SADT was 9. Further 

description of the data can be found in Proust-Lima et al. (2008). Overall, 11% of the 

patients received SADT and 12% experienced a recurrence of prostate cancer. A higher level 

of PSA is considered an important indicator of increasing risk of cancer recurrence; thus a 

typical regime in clinical practice would be to treat a patient with SADT when his PSA 

value is increasing and the first time it goes above a certain threshold. However, it is likely 

that different physicians will have different criteria for when to begin SADT treatment. 

Moreover, the typical PSA trajectories after initial treatment also have varying and 
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complicated shapes over time, which contribute to the heterogeneity of the observed 

treatment times in the dataset. We will rely on statistical tools to connect the observed data 

to various regimes of clinical interest, and to find the optimal one that can be used to guide 

future clinical practice.

3. Notation and Dynamic Treatment Regimens

Consider a cohort of n patients at baseline t0 = 0. Prior to the cancer recurrence or the 

patient's dropping out, each patient visits the clinic at regular intervals t1, t2, ⋯, tk, ⋯ until 

the study end (tK) and has their time-dependent covariates (the PSA level) measured. 

Treatment decisions, i.e. whether to start SADT, were made soon after each clinic visit and 

at no other time. Assume that the subjects in the cohort are a random sample from a large 

population of interest. For patient i at time tk, with i = 1, ⋯, n and k = 0, ⋯, K, let Lk,i = 

PSAk,i denote the time-dependent covariate observed at tk. In particular, L0,i = (PSA0,i, V0,i) 

includes baseline PSA as well as other baseline covariates V0,i for patient i. In our study, V0,i 

denotes indicators for the patient's baseline T-stage. Let Rk,i denote a binary indicator for 

event occurrence, which takes value 1 if the patient has experienced prostate cancer 

recurrence by time tk and 0 otherwise. Let Ak,i denote the kth-specific SADT prescription 

which takes values in a finite set k = {0,1}. We further assume that a patient would stay on 

the treatment once initiated. Following the convention in the literature, we use overbars to 

denote the history of the variable up to the indexed time. Capital letters are used to refer to 

random variables or vectors, while lower-case letters are employed to denote the observed 

values of the corresponding random variables. For example, the observational data for a 

given patient i up to time tk is denoted as Ōk,i = (O0,i, ⋯, Ok,i) = (R0,i, L0,i, R1,i, L1,i, R2,i, ⋯, 

Lk−1,i, Rk,i) and a possible observed treatment history up to time tk is denoted as āk,i = (a0,i, 

⋯, ak,i) ∈ 0 × ⋯ × k = 𝒜̄
k. For simplicity, we will suppress the patient index i in the 

future when no confusion exists.

Since our interest lies in the outcome when everyone follows the same regime, we define the 

treatment regime specific counterfactual outcomes under the framework of causal inference 

(Robins, 1986). For k = 1, ⋯, K, let  denote the counterfactual event status that 

would be observed at time tk were the patient to receive treatment history āk−1 regardless 

what treatment sequence he actually followed up to tk, and similarly let  denote the 

corresponding counterfactual covariate information at time tk under treatment history āk−1. 

Then all the counterfactual random variables up to time tK can be denoted as

In our survival outcome setting, the counterfactual observation would only be meaningful up 

to the time when the counterfactual event occurs, if the counterfactual event happens before 

tK. So we only include them in Zc for ease of notation.
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The SADT treatment process can be formulated as a dynamic treatment regime g = {gk : k = 

0, ⋯, K − 1}. The rule for determining the treatment prescription at each time tk, gk ∈ k, 

may depend on part or all of the recorded health information about the patient up to and 

including time tk. The optimal regime would be a regime that maximizes the expected utility 

function if all patients in the population follow g. Note that the expected utility can depend 

on both the rule g as well as the subject-specific ōk, thus it provides a personalized treatment 

decision. For time-to-event outcomes with right censoring, the Cox model (Cox, 1972) is the 

most popular choice. However, in our case, it may be unrealistic to expect the proportional 

hazard assumption to hold across all regimes. Thus, we propose to estimate each regime 

specific survival curve directly and use the restricted mean survival time (RMST) as the 

utility function. If we denote the survival time by T, then for some arbitrary time bound 

Tmax, the RMST can be represented as μ ≡ E {min (T, Tmax)} which equals the area under 

the survival curve up to Tmax, . Here a large value is commonly chosen for 

Tmax such as tK. We consider a set of clinically relevant regimes as described earlier where a 

patient starts SADT when his PSA is increasing and the first time it goes above a threshold 

b. Practically, we define increasing PSA by its empirical slope, , 

for k = 1, ⋯, K, i.e. the current PSA value needs to be larger than the value at the previous 

visit. To formalize this, we consider the class of regimes indexed by b, 

 where at baseline t0 = 0, no salvage treatment 

would be initiated, i.e. . For tk, k = 1, ⋯, K − 1, the treatment indicator is defined 

as

(1)

where again the superscript b is used to denote the regime gb specific counterfactuals, 

, , , 

 and . In this setting, a treatment regimen gb is 

fully defined by cut-off value b. The counterfactual data used in the definition of  in (1) is 

specific to the case where all patients follow gb. If we denote the RMST under regime gb to 

be μb, then the optimal regime is gopt = arg max{gb∈ } μb.

Definition (1) is based on the assumption that we observe the counterfactual data under all 

regimes gb ∈ . In practice, not all of them can be observed for each patient, because each 

patient is observed to experience one and only one treatment history. So instead of 

calculating μb from the counterfactual data , we need to estimate it from the observed 

data Ōk. To make this possible, we follow Robins (1993) and make the following 

assumptions. (i) The consistency assumption: 

 for k = 1, ⋯,K; that is, a patient's 

observed covariates and outcomes are the same as the potential ones in the counterfactual 
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world as long as this person has the same treatment history he actually received. (ii) No 

unmeasured confounder assumption (NUCA) implies that Ak is independent of ZC 

conditional on (Ōk, Āk−1) for k = 1, ⋯, K. (iii) The positivity assumption: for a viable 

regime gb ∈ ,  for k = 1, ⋯, K with 

probability 1 for an arbitrary small positive constant ε. This essentially guarantees that in the 

counterfactual world where everyone follows regime gb, if there were patients with history 

ōk and āk−1 who would be assigned to treatment , then, in the observational 

world, there must be some actual patients as counterparts who have the same history (ōk and 

āk−1) and received treatment . Because the treatment can only go from 0 to 1 in our 

case, we only need to assume the positivity when the patient is not on treatment until tk−1. 

With the above assumptions, for k = 1, ⋯, K with any fixed 

 under regime gb, we have

where p(·) denotes the probability function, and thus we are able to make inferences on μb 

using the observational data (Ōk, Āk−1). The validity of this inference can be proved using 

the similar approach as for a continuous outcome (Robins, 1993; Pearl and Robins, 1995), 

and the details are provided in Web Appendix A.

4. Method

The assumptions from last section enable us to connect the observational data to the 

counterfactuals of interest. However, we usually do not know if the decision about treatment 

initiation was based on a pre-planned regime, instead, we can only judge whether their 

observed data are compatible with a certain regime at each longitudinal visit. Thus we need 

to use causal inference tools to estimate the counterfactual survival experiences that the 

whole cohort of patients would have had if they had truly been adherent to gb.

4.1 Inverse Probability of Adherence Weighting

For a specific regime gb, we proceed by artificially censoring patients at their first 

nonadherent visit. Let  be the 

indicator of adherence at time tk, k = 0, ⋯, K − 1, which is 1 if the patient's observed 

treatment status at time tk is the same as the treatment assignment if he followed regime gb 

(adherent), and 0 otherwise. The patient's data is compatible with regime gb until time tk if 

, where 1̄ is a vector of 1's with the same length as . The patient is censored at time 

 to create the regime gb adherence dataset, i.e. for a patient 

who partially follows the regime of interest, we will include him only up to the first time his 

data is not compatible with following that regime.
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Following Robins (1993), we adjust for the bias induced from this artificial censoring by 

weighting each patient by their Inverse Probability of Adherence Weights as following:

(2)

Each adhering patient is essentially weighted at each time point by the inverse probability 

that he remains adherent given his covariates history, and thus accounts for himself as well 

as other similar patients who were non-adherent and artificially censored. The probability of 

adherence for a patient at time tk is calculated as the multiplication of the conditional 

probabilities of adherence at each time point tj given that he remains adherent up to time tj−1 

(j = 1, ⋯, k). A numerator term, which modeled only with baseline covariates, is included to 

reduce the variability of the weights (Robins and Finkelstein, 2000; Cain et al., 2010).

4.2 Random Forest Regression

Traditionally, the probability models in the numerator and denominator of Equation (2) are 

estimated by fitting logistic regression models, and if there are multiple time points, the 

models are usually fitted by pooling data from all possible person-time pieces together 

(Hernán et al., 2006). In our case, the regime rules are defined based on the PSA value. The 

non-linear trajectory of PSA and the wide spectrum of regimes from different physicians and 

different centers leads to some complexity of the treatment mechanism. Although a time-

dependent intercept is commonly used in such cases to provide more flexibility for the 

logistic regression models, it may fail to fully capture the association between adherence and 

covariates. To this end, we propose to use Random Forest regression to model the 

probability of treatment in our case and account for things like nonlinear dependence on 

PSA and interaction between PSA and time.

Random Forests (Breiman, 2001) is a non-parametric classification and regression method. 

It employs a combination of resampling and ensembles of single tree based models to give 

superior performance in both classification and regression. Compared to parametric logistic 

regression, the tree-based regression provides more flexibility in capturing the non-linear 

effects of the covariates. Furthermore, the resampling in Random Forests also helps to 

achieve smooth estimates and avoids very extreme probabilities, which is a common 

problem in using a logistic model to estimate the weights. As a relatively large number of 

decision points are considered in our case, the number of patients at risk decreases 

dramatically over time. Thus, it may not be efficient to fit separate conditional probability 

models at each time point. With Random Forest regression, we can follow the same strategy 

as in traditional approaches to pool the data of all person-time pieces together, and fit a 

single model for conditional probabilities at all stages by directly including time as a 

covariate to account for their variability over stages. Specifically, for the denominator in 

Equation (2), we fit the model for the observed treatment assignment mechanism, P(Ak = 1|

Ōk = ōk, Āk−1 = 0̄), with all the observed data available up to the first time point when the 

patient is on treatment, i.e. person-time pieces up to t = max{tk : Ak−1 = 0, k ≤ K}. The 
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following property connects the treatment probabilities with the model for the adherence to 

regime gb.

Property 1: For any patient i = 1, ⋯, n, and k = 1, ⋯, K − 1, we have

A brief derivation of Property 1 is outlined in Web Appendix B. It allows us to calculate the 

probability of regime adherence from the probabilities of initiating treatment. Since the 

treatment model for the observational data is the same regardless of which regime is under 

investigation, this allows us to obtain the probability of adherence for various regimes while 

only fitting a single pooled Random Forest model. Besides, the treatment model can 

incorporate information from all the pre-treatment person-time pieces available, which will 

be more efficient than modeling the regime specific censoring mechanism. However, for the 

numerator, we may not be able to do the same thing, or the numerator will also depend on 

the time-dependent confounder Āk. Thus, we proceed by directly modeling 

 in the adherence cohort for each regime of interest. The 

Random Forest regression is done using the R function randomForest with all default 

settings except for the number of trees to grow (ntree) and number of candidate variables to 

include at each split (mtry). We set ntree = 1000, and perform a grid search for mtry from 

{1, 2, 4} based on the “out-of-bag” prediction error. In both simulation and data application, 

we end up using mtry = 2. Following the suggestion in Foster et al. (2011), we also include 

the two-way interactions of all variables in the model for better numerical performance. The 

treatment/adherence probability estimates are then obtained from the “out-of-bag” 

predictions.

4.3 Weighted Nelson-Aalen Estimator

For the regime gb adherent cohort, we assign a time-dependent weight  to each person-

time piece. Then we define the following weighted number of events and the weighted 

number at risk at time tk (k = 1, ⋯, K) as
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and employ the weighted Nelson-Aalen formula for the regime gb-specific survival function 

as Ŝb(t) = exp{−Λ̂b(t)}, where  is the cumulative hazard function. The 

estimated counterfactual RMST is then given by . Since we have discrete 

visit times, the integral can be written as .

As a widely used flexible modeling approach, the theoretical properties of Random Forests 

have been intensively studied and discussed (Lin and Jeon, 2006; Biau and Devroye, 2010; 

Scornet et al., 2015). They have provided valuable insights on the consistency of the method. 

Based on the consistency results of Random Forest regression, we have the following 

property for the weight estimator  in Section 4.2.

Property 2: The time-dependent weights estimated through Random Forests are consistent 

estimators of the true weights given the observed history Ōk,i at tk (k = 1, …, K). That is, 

 as n → ∞, where  denotes the measure 

generated by counterfactual variables observed until tk under the given regime gb, and k 

denotes the corresponding measure generated by observational data Ōk,i up to time tK.

With Properties 1 and 2, we can further investigate the consistency property of the proposed 

estimator for the counterfactual quantities of interest as following:

Proposition 1: Under assumptions (i) - (iii) and the following regularity conditions:

a. The observational data (Ōk,i, ĀK−1,i) are independent and identically distributed,

b.  where  is the true marginal hazard for any regime gb ∈ ,

c. For the true marginal survival function , we assume there exist continuous 

first-order derivatives in t and bounded second partial derivatives (uniformly in t 

∈ (0, tK]).  can thus be consistently estimated by the proposed estimator 

Ŝb(t), and μ̂b is a consistent estimator for true regime specific RMST .

Web Appendix C provides a brief derivation of this proposition. Property 1, Property 2, and 

Proposition 1 assure that the weights are able to be consistently estimated through the 

proposed procedure, and then the weighted Nelson-Aalen estimator is consistent for the 

regime specific counterfactual survival function. Furthermore, the estimation of the utility 

is also consistent. Thus, we can identify the optimal DTR by maximizing μ̂b within all the 

gb's that are considered, that is, .

So far we consider the data with only administrative censoring. For more complicated 

censoring mechanisms, inverse probability of censoring weights could be applied in addition 

to correct for the possible bias related to censoring. More specifically, one can first model 

the time-dependent censoring probability in the full dataset using similar strategy via 

Random Forest regression, then the overall weight for each person-time piece would be the 

product of the adherence weight and the censoring weight.
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5. Simulation

In order to evaluate the performances of the proposed method, we conduct simulation 

studies where we explicitly model the relationship among time to recurrence, SADT free 

PSA, and treatment effect. In the simulation studies, we have the fully adherent data 

available for each defined regime, and thus we can use these simulated counterfactual data 

as the “gold standard”. Two scenarios are considered, one to mimic a simple case with linear 

PSA trajectories and the second with a more complicated but more realistic pattern of PSA 

trajectories. We compare the performance of our proposed method with a naive unweighted 

estimator and the logistic regression based estimator, where for the denominator of the 

weight in Equation (2), the treatment probabilities are estimated from

(3)

and for the numerator, one fits the regime specific adherence model as

(4)

Here, following Hernán et al. (2006), the time-dependent intercepts h1(tj) and h2(tj) are 

included in (3) and (4) to increase the modeling flexibility. We use cubic splines with 2 

internal knots to non-parametrically estimate these intercept terms. The observational data, 

Ok, include PSAk and the empirical slope  at time tk (for Scenario 1, we only consider 

PSAk). Similar as in Proust-Lima et al. (2008), the PSA values are log-transformed. T-stage 

at baseline (V0) is represented as a 2-dimensional vector of indicators V0 = (I(T-stage = 2), 

I(T-stage ≥ 3))T. For each scenario, we simulate 500 datasets each with 2000 subjects.

5.1 Simulation set-up of Scenario 1

5.1.1 Longitudinal PSA Values—During the follow-up period (0, tK], each patient is 

repeatedly measured every year, and we choose tK = 15 years. Let  denote the 

observed PSA value for patient i measured at tk (tk = k = 0,1, …, 15) if he has not received 

any SADT treatment. We simulate  from the following linear mixed model:

(5)

where Xi(t) = (α0 + α0,i) + (α1 + a1,i)t models the underlying true SADT free PSA for t ∈ 
(0,tK]. (α0, α1) = (−3.0, 0.3) are fixed effect parameters, (a0,i, a1,i) ∼ MVN(0,Σ) are subject-

specific random effects, with . We further truncate any a1,i < −0.1 at -0.1 

to create increasing PSA trends. At a given time tk, we assume the measurement error εk,i ∼ 
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N(0, σ2) with σ2 = 0.1. Note that we observe  before the earliest of either 

SADT initiation or recurrence, and then  will not be observed.

5.1.2 Different Treatment Regimes and Observed Treatment Time—For each 

patient, we consider 10 regimes with regime-specific thresholds of {b1, b2, ⋯, b10} = {−1.0, 

−0.5, ⋯, 3.5}. Based on patient i's SADT free PSA trajectory { }, we 

can calculate the regime specific SADT initiation time as , , ⋯,  for all 10 

regimes, where  is determined from Equation (1) with b = bj (let  if ). We 

generate the index of the observed regime Bi at random from {b1, b2, ⋯,b10} for patient i. 

Thus, the observed treatment time for patient i who is following gBi , which we denote as 

Ui for simplicity of notation. Based on this data generation process, both the counterfactual 

treatment initiation time for each regime of interest and the observed treatment initiation 

time are determined by the SADT free PSA measurements. We show in Web Appendix D 

that this procedure helps us to prevent extreme weights among the regimes of interest.

5.1.3 Model for Recurrence and Fully Compliant Data—We simulate the recurrence 

time for patient i according to a Cox model with hazard function, for t ∈ (0, tK]:

(6)

where λ0 = 0.2, θ0 = (0.2, 0.3)T, and θ1 = 0.3. Patient i's baseline T-stage is sampled from 

{1, 2, 3, 4} with probability p = (0.33, 0.59, 0.07,0.01)T, which is used to generate V0,i. The 

treatment effect, γi(t), is defined as

(7)

where γ0,i = β0 + β1Xi(Ui), with (β0, β1, β2) = (−1.0, −0.4, 0.2). Thus, the initial treatment 

effect γi(Ui) = γ0,i linearly depends on Xi(Ui), the true SADT free PSA value at the time 

point Ui. After that, the magnitude of the treatment effect γi(t) decays over time until it 

shrinks to zero. The time to recurrence is generated for patient i as , where

(8)

and Wi ∼ Uniform(0,1), then  is rounded up to the closest visit time as Ti, or censored at 

tK. Similarly, for each regime gbj, j = 1, ⋯, 10, we calculate the time to recurrence  for 

patient i according to the counterfactual treatment initiation time .
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5.2 Simulation set-up of Scenario 2: Nonlinear PSA trends and more candidate regimes

To better understand the performance of the proposed method in practice, we consider the 

following scenario with more realistic PSA trajectories. In addition, we generate the 

observational data from a larger number of candidate regimes to increase randomness.

5.2.1 PSA Models—In the absence of SADT, a typical trajectory of PSA has three phases 

(0: starting-value, 1: short-term evolution, 2: long-term evolution). Here we consider a 

shorter study length with tK = 12 years. Following Proust-Lima et al. (2008) and Taylor et al. 

(2013), for patient i at t ∈ (0, tK], we simulate SADT free PSA values from the following 

mixed model to recreate these phases as:

(9)

where again Xi(t) is the underlying true SADT free PSA for t ∈ (0, tK], and f(t) = (1 + t)−1.5 

− 1 is used to model the short-term decreasing trend, the linear in t term is used to model the 

long-term increasing trend. (a0,i, a1,i, a2,i) ∼ MVN(0, Σ) are subject-specific random effects 

with . (α0, α11, α12, α21, α22) are fixed effect parameters with 

α0 = 1.0, α11 = 1.5, α12 = (0.2, 0.2)T, α21 = 0.1, and α22 = (0.2, 0.5)T, and V0,i is generated 

the same as in Scenario 1. At a given time tk = k = 0,1, ⋯, 12, we assume εk,i ∼ N(0, σ2) 

with σ2 = 0.2.

5.2.2 Different Treatment Regimes and Observed Treatment Time—To give more 

heterogeneity to the treatment assignment mechanism, we generate the observed treatment 

time and survival outcome for patient i with threshold Bi, which is drawn from a discrete 

uniform distribution with 100 evenly spaced values {−2.00, −1.95, ⋯, 2.95}. The observed 

treatment time for patient i is then . Note that in the analysis we still restrict our 

interest to evaluating the counterfactual outcomes from 10 regimes {b1, b2, ⋯, b10} = {−2.0, 

−1.5, ⋯, 2.5}.

5.2.3 Model for Recurrence and Fully Compliant Data—Following Proust-Lima et 

al. (2008), we let the hazard function depend on both true PSA and its slope, for t ∈ (0, tK],

(10)

where the true slope of SADT free 

 is the derivative of Xi(t) 
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from Model (9). The time to recurrence Ti is then generated from (7), (8) and (10) with λ0 = 

0.15, θ0 = (0.8, 0.9)T, θ1 = 0.1, θ2 = 0.1, β0 = 10.0, β1 = −10.0 and β2 = 0.2. The same 

models are used to define the counterfactual to recurrence  for each regime gbj, j = 1, ⋯, 

10.

5.3 Simulation Results

Figure 1 shows the average Nelson-Aalen survival curves for given regimes estimated using 

different methods. Figures 1a and 1b show the estimation for regime b = 2.0 in Scenario 1, 

while Figures 1c and 1d show the estimation for b = −1.0 in Scenario 2. As can be seen, the 

survival curves estimated naively from the observational data without using weights are all 

biased away from the fully adherent curves. In contrast, both the pooled logistic regression 

based estimation and the proposed method can help reduce such bias in Scenario 1, where 

the data generation is relatively simple and thus more consistent with pooled logistic 

regression. In Scenario 2, the PSA trajectory has a complicated shape, and therefore the 

treatment adherence mechanism is hard to fit well using the pooled logistic regression 

method. As shown in Figure 1c and 1d, the survival curve estimated by the proposed method 

is very close to the counterfactual fully adherent curve, while the curve estimated by the 

pooled logistic method shows bias compared to the fully adherent curve. Similar results are 

also observed for other regimes.

In both scenarios, we approximate the true RMST, , for any given b by the Monte Carlo 

simulation of a very large regime specific cohort (n = 107). Figure 2 plots  over different b 

for both scenarios. Among the regimes under consideration,  is maximized at around b = 

2.0 with  years for Scenario 1 (Figure 2a). While for Scenario 2, the optimal DTR 

is when b = 1.0, which yields the maximum  at 5.518 years (Figure 2b). Table 1 

summarizes the estimated RMST μ̂ for the regimes of interest. In both scenarios, we can see 

that 1) μ̂ from the fully adherent cohort is close to  in Figure 2, which suggests that these 

estimates can well approximate the true population quantities in our simulations, and 2) the 

proposed estimator yields the maximal average μ̂b at true optimal regime and also correctly 

identifies the true optimal regime with highest frequency.

For Scenario 1, μ̂b from the unweighted dataset shows a notable bias compared to the RMST 

of the fully adherent data, and it is maximized at regime 8 for most of the replications, which 

is incorrect. As shown by the frequency of being identified as the optimal regime, over the 

500 simulations, 99.6% of the fully adherent datasets yield regime 7 as the true optimal, 

while only 3.8% pick regime 7 as the optimal using the unweighted method. Both the pooled 

logistic method and the proposed method can correct the bias and identify regime 7 with b7 

= 2.0 as the optimal one with the highest frequency (92.0% and 93.6% respectively). This is 

not surprising because the data generating process in Scenario 1 can be well approximated 

by the model specification of the pooled logistic regression. In Scenario 2, the fully adherent 

data show that regime 7 has the largest μ̂b, and is the optimal regime in 99.4% of the 500 

simulations. Again, the unweighted estimator prefers a different regime (regime 6) in 80.4% 

of the simulations, which is biased. Since in Scenario 2, the data generating process is more 

complicated and thus the models employed in the pooled logistic regression are 
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misspecified, the pooled logistic method can only identify regime 7 as the optimal in 50.4% 

of the simulations. In contrast, the proposed method has a much higher rate of correctly 

identifying the optimal regime (71.0%). Comparing to the estimation from pooled logistic 

method, the average RMSTs given by the proposed method are also closer to the ones from 

fully adherent data. Thus we can see that the proposed flexible model works more robustly 

in correctly picking up the true optimal regime in different scenarios and reduces the bias 

more effectively when estimating the population survival outcome.

6. Analysis of the Prostate Cancer Data

It is of great interest to learn from the observational data about how different regimes are 

expected to perform in the future and whether some common guidelines could be suggested. 

To this end, we apply the proposed method on our prostate cancer recurrence dataset.

There are 2781 patients in the dataset of which 222 patients (< 8.0%) have follow-up time 

longer than 10 years. Thus, we compare μ̂b with tK = 10 years in the analysis. We consider 

regular visits at every 0.2 years, which was followed by most patients. For patients who 

missed visits and thus had interval longer than 2 years, we restrict to the time period when 

they were actively followed, and arbitrarily censor them at 0.2 years after the last visit before 

such long interval. Other than that, the last observation is carried forward to impute missing 

PSA measures. In total, 245 patients (8.8%) received SADT. We consider DTRs gb as 

defined earlier, where b is the cut-off for the logarithm of (PSA+0.1). In clinical practice, 

PSA may be considered as in the “alert zone” from 3 ng/ml to 30 ng/ml, and a SADT is 

commonly seen to be initiated in that zone. Thus, we focus on regimes in that zone with b ∈ 
{1.1, 1.2, ⋯, 3.5}.

In the dataset, there is a wide range of treatment initiation times and PSA values at the time 

of initiation. This suggests the need for the treatment initiation model to have flexibility in 

order to accommodate the unknown relationships. Thus, we estimate the weights through 

Random Forests with input covariates PSA, empirical slope of PSA (the increment of PSA 

since the previous visit), baseline T-stage, time t and all two-way interactions. In addition to 

the regime specific adherence weight , we also account for possible bias from non-

administrative censoring by IPCW. If we denote the censoring indicator in the original 

observational dataset at time tk by Corg,k, then the IPCW weights for k = 1,…, K are

(11)

where the censoring probability models in both the numerator and denominator are fitted 

with the same covariates as we used in the adherence models using Random Forest 

regression. Thus, the overall weight used in estimation for each person-time piece is 

.
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Figure 3a shows that the regime with b = 1.2 (3.22 ng/ml PSA) is identified as gopt by the 

proposed method, and the corresponding estimated restricted mean time to recurrence under 

this regime is μ̂b = 9.46 years. Figure 3b presents the weighted Nelson-Aalen estimators for 

the estimated optimal regime along with two other regimes. Our results suggest to initiate 

the SADT at an earlier stage when PSA raises to the “alert zone”, which is consistent with 

the common understanding of clinical practice.

7. Discussion

Motivated by the clinical need in prostate cancer treatment, we describe a method to 

estimate the optimal DTR from observational data that can accommodate complex unknown 

dependency of the treatment assignment as well as regime adherence mechanism on time-

dependent and time-independent covariates. The proposed method provides an extension of 

the traditional inverse probability weighting method to allow for flexibilities simultaneously 

in two ways: (1) for the adherence mechanism, the Random Forest regression allows us to 

capture a large range of different treatment models, and (2) for the survival outcome, the 

non-parametric estimation allows us to put minimal structure assumptions on the estimator. 

The proposed estimating procedure can be implemented with most commonly used 

statistical software. Compared to logistic models for treatment initiation, the bootstrap 

procedure within the Random Forest regression can effectively avoid unstable and very 

extreme probability estimates. For example, in the real data application, for the regime b = 

1.2 (the estimated optimal) compliant dataset, the estimated weights have a median of 0.91, 

with 2.5% and 97.5% quantiles as 0.50 and 3.14. Notice that these weights are cumulative 

products of up to 50 conditional probabilities, which means that most of the estimated 

probabilities are close to 1. Furthermore, compared to methods involving dynamic 

programming, the proposed method is computationally feasible even for problems with a 

relatively large number of decision time points. Thus, it is a powerful tool in clinical studies 

and public health practice, where there are more than a handful of possible decision points to 

initiate the treatment or intervention.

One common concern with machine learning based methods is overfitting. Tree size control 

and pruning procedures are used in tree based models to deal with this issue. In Random 

Forests, the bootstrap procedure and random selection of covariates for each tree will also 

help to reduce overfitting. In our simulation studies, we choose the tuning parameters 

according to the “out-of-bag” errors, which come from data not used for fitting each tree. We 

find the results very close to the prediction errors given by 5-fold cross-validation in both 

scenarios. Although larger number of trees are likely to increase accuracy, it will also lead to 

increased computational burden. In our case, there is no obvious improvement when ntree 
goes above 1000, so we set ntree = 1000. In general, we recommend cross-validation to 

select tuning parameters (Van der Laan and Robins, 2002), if there is a large discrepancy 

between the “out-of-bag” prediction error and the cross-validation prediction error.

One needs to be cautious when instrumental variables (IVs) exist, because including IVs in 

the weight models may create practical positivity violations and thereby lead to unstable 

weights, increased variance, and poor confidence interval coverage. From our experience 

with additional simulations, including IVs in the weight model for the proposed method 
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does not severely affect the results. However, in general, if there is prior knowledge that 

allows us to identify a variable as an IV rather than a confounder, then it is better to exclude 

that variable from the weight model.

In this prostate cancer study, the patient's data are only collected at each visit, but the cancer 

recurrence events are more likely to actually happen at some point in the interval between 

adjacent visits. Since we are considering time intervals as small as 0.2 years, the bias 

introduced by treating the events as happening at the visits is likely to be ignorable. 

However, a more precise model would be desired to handle the event time as interval 

censored. This would be of more importance when the interval between visits are longer. 

Additional methodology will also be required to adjust for possible bias in censoring under 

such settings.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The estimated survival curves for different simulation schemes. The regime specific true 

curves (obtained from the counterfactual fully adherent cohorts) are shown in dashed lines. 

The solid lines are unweighted estimates from the observed data (obtained by censoring 

subjects when they are no longer adherent with given regimes), and the dotted lines are for 

the proposed weighted estimates. The upper panels are from regime b = 2.0 in Scenario 1, 

and the lower panels are from regime b = -1.0 in Scenario 2. The two panels on the left show 

estimation from the pooled logistic method, while the panels on the right show results from 

the proposed Random Forest based method. All curves are obtained by averaging over 500 

simulations.
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Figure 2. 

True  under Scenario 1 (Figure 2a) and Scenario 2 (Figure 2b) in the simulation study. In 

each figure, The x-axis stands for the regime specific PSA threshold for SADT initiation b, 

while the y-axis stands for the true regime specific RMST  calculated from Monte Carlo 

method. Each point in the plots above are calculated from 107 Monte Carlo samples.
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Figure 3. 
The survival estimation for regime specific time to recurrence in the prostate cancer dataset. 

Panel (a) shows the relationship between the restricted mean time to recurrence estimated by 

the proposed method μ̂b and the regime specific PSA threshold for SADT initiation b. Panel 

(b) shows the weighted Nelson-Aalen curves estimated for three regimes, which includes the 

estimated optimal regime b = 1.2 (solid line), along with two other regimes b = 1.9 (dashed 

line) and b = 2.7 (dotted line).

Shen et al. Page 21

Biometrics. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen et al. Page 22

Ta
b

le
 1

R
es

tr
ic

te
d 

M
ea

n 
Su

rv
iv

al
 T

im
e 

fo
r 

R
eg

im
es

 o
f 

In
te

re
st

 in
 S

im
ul

at
io

n 
St

ud
ie

s

R
eg

im
e

F
ul

l A
dh

er
en

t
U

nw
ei

gh
te

d
P

oo
le

d 
L

og
is

ti
c

P
ro

po
se

d 
M

et
ho

d

μ
̂

op
t%

μ
̂

op
t%

μ
̂

op
t%

μ
̂

op
t%

Sc
en

ar
io

 1
b 1

 =
 −

1.
0

4.
01

6 
(0

.0
67

)
0%

4.
95

3 
(0

.1
21

)
0%

4.
03

9 
(0

.0
79

)
0%

4.
04

7 
(0

.0
73

)
0%

b 2
 =

 −
0.

5
4.

87
6 

(0
.0

75
)

0%
5.

72
1 

(0
.1

15
)

0%
4.

67
1 

(0
.0

83
)

0%
4.

88
4 

(0
.0

80
)

0%

b 3
 =

 0
.0

5.
92

0 
(0

.0
91

)
0%

6.
57

8 
(0

.1
17

)
0%

5.
56

3 
(0

.1
00

)
0%

5.
91

8 
(0

.0
94

)
0%

b 4
 =

 0
.5

6.
78

7 
(0

.1
03

)
0%

7.
22

5 
(0

.1
24

)
0%

6.
42

5 
(0

.1
21

)
0%

6.
79

7 
(0

.1
07

)
0%

b 5
 =

 1
.0

7.
58

9 
(0

.1
13

)
0%

7.
78

5 
(0

.1
29

)
0%

7.
28

6 
(0

.1
35

)
0%

7.
60

0 
(0

.1
20

)
0%

b 6
 =

 1
.5

8.
34

0 
(0

.1
10

)
0%

8.
40

7 
(0

.1
28

)
0%

8.
15

9 
(0

.1
35

)
0%

8.
33

5 
(0

.1
31

)
0%

b 7
 =

 2
.0

8.
72

9 
(0

.1
14

)
99

.6
%

8.
91

9 
(0

.1
34

)
3.

8%
8.

65
6 

(0
.1

47
)

92
.0

%
8.

71
0 

(0
.1

46
)

93
.6

%

b 8
 =

 2
.5

8.
50

3 
(0

.1
16

)
0.

4%
8.

94
9 

(0
.1

43
)

96
.2

%
8.

42
1 

(0
.1

63
)

8.
0%

8.
48

8 
(0

.1
58

)
6.

4%

b 9
 =

 3
.0

8.
06

8 
(0

.1
14

)
0%

8.
66

8 
(0

.1
48

)
0%

7.
98

4 
(0

.1
75

)
0%

8.
04

5 
(0

.1
71

)
0%

b 1
0 

=
 3

.5
7.

63
2 

(0
.1

11
)

0%
8.

32
4 

(0
.1

56
)

0%
7.

51
9 

(0
.2

15
)

0%
7.

47
2 

(0
.3

10
)

0%

Sc
en

ar
io

 2
b 1

 =
 −

2.
0

4.
87

2 
(0

.0
78

)
0%

5.
41

7 
(0

.0
96

)
0%

4.
15

3 
(0

.1
21

)
0%

4.
63

9 
(0

.1
03

)
0%

b 2
 =

 −
1.

5
4.

92
1 

(0
.0

79
)

0%
5.

40
2 

(0
.0

93
)

0%
4.

29
3 

(0
.1

09
)

0%
4.

68
7 

(0
.0

99
)

0%

b 3
 =

 −
1.

0
4.

99
1 

(0
.0

79
)

0%
5.

41
0 

(0
.0

92
)

0%
4.

54
4 

(0
.1

10
)

0%
4.

82
9 

(0
.0

98
)

0%

b 4
 =

 −
0.

5
5.

09
1 

(0
.0

78
)

0%
5.

45
6 

(0
.0

91
)

0%
4.

86
7 

(0
.1

06
)

0%
5.

04
7 

(0
.0

93
)

0%

b 5
 =

 0
.0

5.
29

4 
(0

.0
79

)
0%

5.
57

2 
(0

.0
91

)
0%

5.
29

8 
(0

.1
17

)
0.

2%
5.

38
0 

(0
.0

95
)

0%

b 6
 =

 0
.5

5.
75

7 
(0

.0
82

)
0.

6%
5.

76
6 

(0
.0

93
)

80
.4

%
5.

89
1 

(0
.1

53
)

30
.0

%
5.

86
2 

(0
.1

01
)

29
.0

%

b 7
 =

 1
.0

5.
84

8 
(0

.0
88

)
99

.4
%

5.
73

6 
(0

.0
96

)
19

.6
%

5.
92

7 
(0

.2
19

)
50

.4
%

5.
89

0 
(0

.1
08

)
71

.0
%

b 8
 =

 1
.5

5.
56

2 
(0

.0
84

)
0%

5.
48

8 
(0

.0
95

)
0%

5.
65

8 
(0

.3
36

)
6.

2%
5.

56
3 

(0
.1

12
)

0%

b 9
 =

 2
.0

5.
31

5 
(0

.0
81

)
0%

5.
28

0 
(0

.0
92

)
0%

5.
49

9 
(0

.4
31

)
4.

8%
5.

30
7 

(0
.1

20
)

0%

b 1
0 

=
 2

.5
5.

13
8 

(0
.0

80
)

0%
5.

13
5 

(0
.0

92
)

0%
5.

37
2 

(0
.5

75
)

8.
4%

5.
10

2 
(0

.1
34

)
0%

N
ot

e:
 T

he
 v

al
ue

s 
in

 p
ar

en
th

es
es

 a
re

 th
e 

em
pi

ri
ca

l s
ta

nd
ar

d 
de

vi
at

io
ns

 c
al

cu
la

te
d 

fr
om

 5
00

 M
C

 r
ep

lic
at

io
ns

, %
op

t i
s 

th
e 

pe
rc

en
ta

ge
 f

or
 th

e 
gi

ve
n 

re
gi

m
e 

to
 b

e 
id

en
tif

ie
d 

as
 th

e 
op

tim
al

 r
eg

im
e 

am
on

g 
th

e 
50

0 
re

pl
ic

at
es

Biometrics. Author manuscript; available in PMC 2017 June 15.


	Summary
	1. Introduction
	2. The prospective cohort study on prostate cancer recurrence
	3. Notation and Dynamic Treatment Regimens
	4. Method
	4.1 Inverse Probability of Adherence Weighting
	4.2 Random Forest Regression
	4.3 Weighted Nelson-Aalen Estimator

	5. Simulation
	5.1 Simulation set-up of Scenario 1
	5.1.1 Longitudinal PSA Values
	5.1.2 Different Treatment Regimes and Observed Treatment Time
	5.1.3 Model for Recurrence and Fully Compliant Data

	5.2 Simulation set-up of Scenario 2: Nonlinear PSA trends and more candidate regimes
	5.2.1 PSA Models
	5.2.2 Different Treatment Regimes and Observed Treatment Time
	5.2.3 Model for Recurrence and Fully Compliant Data

	5.3 Simulation Results

	6. Analysis of the Prostate Cancer Data
	7. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

