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Abstract

Researchers estimating causal effects are increasingly challenged with decisions on how to best 

control for a potentially high-dimensional set of confounders. Typically, a single propensity score 

model is chosen and used to adjust for confounding, while the uncertainty surrounding which 

covariates to include into the propensity score model is often ignored, and failure to include even 

one important confounder will results in bias. We propose a practical and generalizable approach 

that overcomes the limitations described above through the use of model averaging. We develop 

and evaluate this approach in the context of double robust estimation. More specifically, we 

introduce the model averaged double robust (MA-DR) estimators, which account for model 

uncertainty in both the propensity score and outcome model through the use of model averaging. 

The MA-DR estimators are defined as weighted averages of double robust estimators, where each 

double robust estimator corresponds to a specific choice of the outcome model and the propensity 

score model. The MA-DR estimators extend the desirable double robustness property by achieving 

consistency under the much weaker assumption that either the true propensity score model or the 

true outcome model be within a specified, possibly large, class of models. Using simulation 

studies, we also assessed small sample properties, and found that MA-DR estimators can reduce 

mean squared error substantially, particularly when the set of potential confounders is large 

relative to the sample size. We apply the methodology to estimate the average causal effect of 

temozolomide plus radiotherapy versus radiotherapy alone on one-year survival in a cohort of 

1887 Medicare enrollees who were diagnosed with glioblastoma between June 2005 and 

December 2009.

1 Introduction

Methods for causal inference are predicated on knowledge of the covariates necessary to 

satisfy the no unmeasured confounding assumption, but the exact set of covariates needed to 

control confounding is rarely known. With the growing use of causal inference methods in 
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large observational studies, such as administrative databases used in comparative 

effectiveness research, the set of potential confounders can be quite large. Practical tools that 

acknowledge uncertainty in confounder selection and are robust to model misspecification 

are imperative for correct estimation of the average causal effect (Vansteelandt et al., 2012; 

Wang et al., 2012; Zigler and Dominici, 2014; Wang et al., 2015). Extracting the minimal 

and necessary set of covariates for confounding adjustment in the final data analysis 

becomes more difficult as the set of potential confounders grows. Failure to adjust for even 

one important confounder may lead to a biased estimate of the causal effect of interest.

Several attempts have been made to develop methods for confounder selection in causal 

inference (Joffe et al., 2004; Brookhart et al., 2006; Schneeweiss et al., 2009; Wang et al., 

2012; De Luna et al., 2011; Gruber and van der Laan, 2012; Shahar, 2013; Vansteelandt et 

al., 2012; VanderWeele and Shpitser, 2011; Wilson and Reich, 2014; Zigler and Dominici, 

2014; Wang et al., 2015). Most of these authors note that statistical methods to select 

confounders pose unique challenges, and methods designed for prediction may not be 

directly applicable. Statistical methods to select potential confounders based on the outcome 

model prioritize covariates strongly associated with the outcome, while variable selection 

based on a treatment model prioritize covariates that are strongly associated with the 

treatment. Both these approaches can result in inefficient and biased inferences because they 

can fail to identify the full set of necessary confounders.

One set of methods for confounder selection builds on Bayesian model averaging (Wang et 

al., 2012, 2015). These authors propose an approach, called Bayesian adjustment for 

confounding (BAC), to estimate the effect of a continuous exposure (or treatment) on an 

outcome, while accounting for the uncertainty in the choice of confounders. Their approach 

is based on specifying two models: (1) the outcome as a function of the exposure and the 

potential confounders; and (2) the exposure as a function of the potential confounders. They 

assume a priori that if a covariate is highly predictive of the exposure then the same 

covariate will have a large prior probability of being included into the outcome model.

Zigler and Dominici (2014) use similar ideas in the context of a propensity score analysis for 

binary treatment (Rosenbaum and Rubin, 1983). They propose a Bayesian model averaging 

approach that adjusts for confounding by using the propensity score as a linear predictor in 

an outcome model. To handle the so-called “feedback” issue (McCandless et al., 2010; 

Zigler et al., 2013), the proposed method forces variables that are included in the propensity 

score model to also be included as linear predictors in the outcome model.

Although these methods have, in our view, formulated the problem of confounder selection 

soundly and proposed workable solutions, they rely on parametric assumptions to estimate 

causal effects. For example, the methods of Wang et al. (2012), Zigler and Dominici (2014), 

and Wang et al. (2015) specify a sampling distribution for the outcome model and rely on 

covariate adjustment through a linear predictor in an outcome model. Also, these methods 

do not provide an easily generalizable procedure for extending widely used non-Bayesian 

causal inference methodologies, including useful nonparametric and semi-parametric 

methodologies that rely on on selection of confounders. The goal of this paper is to provide 

a practical and generalizable strategy for robustifying a broad range of causal inference 
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methodologies with regard to model choice. Our approach borrows and simplifies Bayesian 

ideas, but strays from a fully coherent Bayesian specification.

We wish to leverage existing non-Bayesian tools to mitigate the negative effects of 

overlooking the uncertainity due to model selection. We are particularly interested in 

applications presenting a large number of potential confounders relative to the sample size. 

In this setting, uncertainty on confounder selection is especially important. In a setting 

where we estimate a regression coefficient, we often make several assumptions regarding the 

sampling distribution of the outcome, the functional form relating the covariates to the 

outcome, and which covariates we include into the the regression model. In causal inference, 

it is common to assume a model for the propensity score, thus leading to uncertainty 

regarding which covariates the analyst decides to include into the propensity score model, 

including the functional form.

We develop and evaluate our model averaging approach focusing on the double robust 

estimator. The result is a newly proposed family of estimators, the model averaged double 
robust estimators, formally accounting for model uncertainty through the use of model 

averaging while extending the desirable double robustness property. We consider a model 

space including a large collection of combinations of the outcome model and propensity 

score model, where each of these models can include a different subset of all the potential 

confounders. We compute model-specific double robust estimators as a function of the 

outcome model and a propensity score model, and then average over these using weights 

that are motivated by posterior model probabilities, though not always interpretable as such. 

We introduce a prior distribution on the model space that (1) a priori links the outcome and 

the propensity score model, (2) assigns higher prior probabilities to propensity score models 

that include necessary confounders (i.e. covariates that are associated with both the 

treatment and the outcome), and (3) assigns low prior probability to propensity score models 

that include covariates that are only associated with the treatment. By conducting several 

simulation studies with varying sample sizes, number of potential confounders, and strength 

of confounding bias, we show that by specifying this prior distribution, and using the 

resulting posterior model probabilities as weights in a model averaged double robust 

estimate, we substantially increase efficiency.

In Section 2, we introduce a general framework for model averaging in causal inference and 

model averaged double robust estimation. In Section 3, we provide asymptotic results about 

our proposed estimators. In Section 4, we provide a simulation study that illustrates the finite 

sample performance of model averaged double robust estimators. In Section 5, we apply the 

model averaged double robust estimator to estimate the comparative effectiveness of 

temazolomide on 1-year survival after diagnosis with glioblastoma.

2 Methods

2.1 Notation and General Approach

To facilitate the presentation of our framework for model averaging in causal inference, 

consider first the estimation of the causal effect Δ of a binary treatment using an inverse 

probability of treatment weighted estimator (IPW). Instead of selecting a single propensity 
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score model, let’s consider the class of propensity score models ℳ that includes logistic and 

probit regression models with all possible subsets of the potential confounders as linear 

predictors. If, within class ℳ, we choose the ith model ℳi ∈ ℳ for analysis, then the 

resulting estimator of the causal effect will inherit properties that depend on that choice, a 

fact we record via the notation Δ̂(ℳi). To robustify the estimation process with respect to 

choice of model, a generic approach is to compute a weighted average of model specific 

estimates Δ̂(ℳi):

(1)

where wi ∈ [0, 1] is the weight assigned to model ℳi and ∑i wi = 1.

Beyond the IPW example, this defines a general class of model averaged estimators built 

using any desired combination of estimated weights and estimated model-specific causal 

effects. In Section 3, we will show that, under standard regularity conditions, if the 

underlying causal estimate is consistent under the true model ℳtrue, then the weighted 

version will also be consistent, as long as the true model belongs to the model class ℳ and 

the weights converge to a degenearte distribution on the true model. This provides the 

general motivation for the approach. In this paper, we investigate it specifically for double 

robust estimation.

Looking ahead, the implementation of a model averaged estimate requires a strategy for 

assigning weights wi to models. The focus of this paper will be on the case where the 

weights wi corresponds to the posterior model probabilities, but one could consider model 

weights derived from other criteria such as minimizing mean squared error (Longford, 

2006).

2.2 Double robust estimator

Let Y (x) be the potential outcome that would have been observed under treatment X = x, x 
∈ {0, 1}. The observed outcome Y is related to the potential outcomes Y (x) by Y = I(X = 

x)Y (x), where I(X = x) is the indicator that X = x. Consider a p-dimensional set of potential 

confounders C, and assume strong ignorable treatment assignment (Rosenbaum and Rubin, 

1983), so that (Y (0), Y (1)) ╨ X|C. Let (Yh, Xh, Ch) be independent observations for h = 1, 

…, n. We are interested in estimating the average causal effect:

(2)

Given a model for the propensity score, P(X = 1|C) = e(C), and models for the outcome 

under each treatment, E(Y|X = 1, C) = m1(C) and E(Y|X = 0, C) = m0(C), we define the well 

known double robust (Δ ̂DR) estimator as:

Cefalu et al. Page 4

Biometrics. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where m̂1h, m̂0h, and êh are the estimates of m1(C), m0(C), and e(C) for individual h (Bang 

and Robins, 2005). The double robust estimator is regarded as semi-parametric because the 

estimation procedure only depends on the specification of the conditional means P(X = 1|C), 

E(Y|X = 1, C), and E(Y|X = 0, C) and does not rely on a fully parametric specification of the 

models.

The propensity score model and the outcome models can be selected in any number of ways. 

A researcher may rely on expert knowledge to decide both the functional form and the 

confounders to include in each model, or may rely on a model selection procedure that 

chooses the best model from a set of candidate models. For the remainder of this paper, we 

will refer to  as the “model selected double robust estimate” in which both the 

propensity score and the outcome models have been selected independently using BIC.

2.3 A model averaged double robust estimator

Next we apply the model averaging outlined in Section 2.1 to the double robust estimator. 

We chose to consider the double robust estimator because of its wide use and strong 

asymptotic properties. Also, it will highlight the flexibility of our approach because it relies 

on the specification of multiple models.

Let  and 

 be finite collections of models for the observed data likelihoods 

p(X = 1|C), p(Y|X = 0, C), and p(Y|X = 1, C), respectively. In this paper, the models can 

vary depending on inclusion of potential confounders in linear predictors. Similar 

approaches could consider distributional assumptions, link functions, specification of the 

functional form of the predictors (e.g. inclusion of interactions) and more. Let ℳom = ℳ1 × 

ℳ0 denote all combinations of models in ℳ1 and ℳ0. Further, define  as the double 

robust estimate corresponding to the models  and . Similarly to (1), we define the 

model average double robust estimate  as a weighted average of model specific double 

robust estimates , that is:

(4)

Here  is the joint (approximate) posterior probability of models 

and  and  is the double robust estimate that uses the plug in estimates of m̂1h, m̂0h, 
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and êh corresponding to  and . The estimation of the weights wij is performed 

independently of the estimation of .

Posterior model probabilities depend on the likelihoods of the models in the model space, 

along with the prior distribution on the model space. The specification of the likelihood used 

in deriving the weights plays no role (except through the conditional means) in the 

estimation of the model specific effects , which remains semiparametric and robust to 

higher order moments of the true data generating mechanism.

2.4 Priors on the model space

2.4.1 Uniform prior on the model space—To derive weights, we specify a prior 

distribution on the model class, and compute approximate posterior probabilities. The 

simplest choice is to assume that all models are independent and equally likely a priori, 

which we will refer to as a uniform prior on the model space. This implies that the prior 

odds of each model is 1, and that the prior distribution on the propensity score model class is 

independent of the prior distribution on the outcome model class. Because of the 

independence assumption, the posterior model probabilities factor as 

. Therefore,  and  can be 

computed separately, which substantially simplifies the computation.

The resulting posterior distribution assigns high weights to propensity score models that 

include Cs strongly associated with X and does not consider relationships with Y. The 

current literature in causal inference suggests that inclusion of covariates that are only 

related to the treatment into a propensity score model adds to the variance of the resulting 

estimator (Rubin et al., 1997; Hahn, 2004; Brookhart et al., 2006; Wooldridge, 2009; Pearl, 

2009; Vansteelandt et al., 2012).

2.4.2 Dependent prior on the model space—In view of this consideration, efficiency 

can be gained through the use of a prior distribution on the propensity score model space 

that favors inclusion of potential confounders that are associated with both treatment and 

outcome, instead of predictors associated only with treatment (Rubin et al., 1997; Hahn, 

2004; Brookhart et al., 2006; Wooldridge, 2009; Pearl, 2009; Groenwold et al., 2011; 

Vansteelandt et al., 2012). With this goal in mind, we propose an alternative prior 

distribution on the model space that links the propensity score model to the outcome model 

through prior model dependence. We assume that the prior odds of including a potential 

confounder in the propensity score model given that it is included in the outcome model is 1, 

and that the prior odds of including a potential confounder in the propensity score model 

given that it is excluded from the outcome model is small. This dependence also implies that 

the prior odds of including a potential confounder in the outcome model given that it is 

included in the propensity score model is high.

Specifically, we assume that both ℳps and ℳom contain models with linear preditors 

comprising potential confounders. We let  indicate that the terms in the linear 

predictor of  are a subset of those of . Since ℳom is the product space of ℳ0 and 
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ℳ1, we evaluate the inclusion relation above using the union of terms in the linear predictors 

from the corresponding models in ℳ0 and ℳ1. To specify the prior, we choose a reference 

propensity score model  such that  for all j. Thus,  is either a null 

model or a model that includes the potential confounders that will be included in all models. 

We set the prior odds of propensity score model  to model  conditional on the 

outcome model  to be:

(5)

for τ ∈ [0, 1]. Lastly, we assume that the prior distribution on the outcome model space is 

uniform.

The choice of τ is important. First, τ = 1 corresponds to the uniform prior on the model 

space of the previous section. Second, when τ = 0, the prior model dependency given by (5) 

restricts the set of potential confounders included in the propensity score model to be a 

subset of those included in the outcome model.

Third, when τ is nonzero but smaller than 1, the prior dependency of (5) gives small weight 

a priori to propensity score models including terms that are not included in the outcome 

model. Finally, when τ > 1, the prior assigns small weights to outcome models including a 

larger set of covariates than that included into the propensity score model. We generally 

avoid this choice, as terms that are predictive of the outcome but not the treatment can still 

contribute to more efficient estimation of the causel effect.

2.5 Estimation of model weights

2.5.1 BIC approximation of posterior model probabilities—The posterior model 

probabilities, which are used as model weights in (4), are a function of the Bayes factors and 

the choice of prior distribution on the model space. In general, the Bayes factor for 

comparing model ℳi to model ℳj is defined as Bij = p( |ℳi)/p( |ℳj), where  denotes the 

data and p( |ℳi) = ∫ p( |ℳi, ηi)p(ηi|ℳi)∂ηi is the integrated likelihood over all model-

specific parameters ηi within ℳi. A simple transformation of the Bayes factors gives the 

posterior model probabilities, P(ℳi| ) = AiBi1/∑j:ℳj∈ℳ AjBj1, where Ai is the prior odds of 

ℳi versus a reference model ℳ1. Outside of a few special cases, the Bayes factor Bij will not 

have a closed form, and an approximation will be necessary. A widely used approximation 

of Bayes factors is based on the Bayesian Information Criterion (BIC) (Schwarz, 1978), 

which we adopt in this paper. Other information criteria can be used to derive model 

weights, such as the Akaike Information Criteria (AIC) (Akaike, 1998). See Yang (2003, 

2005) for a discussion of the relative merits of using AIC versus BIC in model averaging. As 

the number of models in ℳ increases, evaluating the Bayes’ factor for every model becomes 

computationally infeasible. Instead, we can use a Markov chain Monte Carlo algorithm such 

as MC3 (Madigan et al., 1995) to search the model space.
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2.5.2 Two-stage posterior weights—Model weights based on the prior given in (5) still 

have the potential limitation that the resulting posterior model probabilities will favor 

outcome models that include potential confounders that are only associated with the 

treatment. This can result in a loss of efficiency. Specifically, the prior was described with 

the goal of limiting the inclusion of potential confounders in the propensity score model to 

covariates associated to both the treatment and the outcome. However, the prior can have a 

different effect: potential confounders strongly associated with only treatment are included 

in both the propensity score and outcome models. As previously discussed, inclusion of such 

covariates reduces efficiency.

As an alternative, we propose a two-stage approach for calculating the model weights 

motivated by De Luna et al. (2011), who suggested to first identify the covariates associated 

with the outcome, and then identify the covariates associated with the treatment among those 

associated with the outcome. First, they suggest to find a reduced covariate vector, CY, such 

that p(Y0, Y1|C) = p(Y0, Y1|CY) holds. Second, CY is further reduced into Z such that p(X = 

1|CY) = p(X = 1|Z) holds. They show that the covariate sets CY and Z are sufficient for the 

identification of the average causal effect, and that using Z in nonparametric estimation 

improves efficiency.

With this in mind, we propose the following two-stage approach for calculating model 

weights:

1. Compute the marginal posterior probability qj of the jth outcome model, 

assuming a uniform prior and without considering the propensity score model;

2. Compute the conditional posterior probability  of the ith 

propensity score model, conditional on knowing the terms included in the linear 

predictor of the outcome model, using prior model dependence given by (5);

3. Multiply the estimates from Stage 1 and 2 to calculate model weight 

.

The model weights under this two-stage approach can be calculated easily because they are a 

transformation of the model probabilities assuming a uniform prior on the model space. The 

difference between the two-stage model weights  and the proper posterior model 

probabilities under the same prior is that the two-stage approach restricts the marginal 

outcome model weights to be equal to the marginal posterior outcome model probabilities 

under a uniform prior on the model space. Thus the qj in Stage 1 of the two-stage method 

does not correspond to the marginal posterior  under the dependent prior, while 

the estimation of  in Stage 2 does correspond to the conditional posterior 

under this prior. A further discussion of this two-stage procedure can be found in Web 

Appendix A.
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3 Asymptotic properties

For a general Δ̂MA defined in (1), we show that, if the underlying causal estimate is 

consistent under the true model ℳtrue, and the true model belongs to the model class ℳ, then 

the model averaged estimator will also be consistent:

Theorem 1

Let ℳ be a finite collection of models. Assume: (1) ℳ contains the true model, ℳtrue, (2) the 

regularity conditions necessary for , are met and (3) Δ̂(ℳi) is bounded in 

probability for all i. Then .

For the model averaged double robust estimator, we show that if the posterior model 

probabilities are converging to the true models and if the true propensity score model OR the 

true outcome model is contained in the corresponding model space, then  is consistent 

for the average causal effect (2). We regard this as an important relaxation of the robustness 

properties of the double robust estimator, as we only need the true models to be included in a 

potentially large collection of models.

Theorem 2

Assume conditions (2) and (3) of Theorem 1. Let ℳom, ℳps be collections of models. If

(1) ℳom contains the true models, , for both E(Y|X = 1, C) and E(Y|X = 0, C), 

and ,

or (2) ℳps contains the true model, , for P(X = 1|C), and 

, then, .

For proofs, see Web Appendix B.

We chose to specify conditions of Theorem 2 in relation to the true data generating models 

to be consistent with the literature on double robustness. However, the same conclusion 

could be reached using weaker conditions, as long as the model space includes a model pair 

that produces a consistent effect estimate. One such example may be a model that is 

sufficient for controlling confounding (Greenland et al., 1999; De Luna et al., 2011; 

Vansteelandt et al., 2012). To see this, consider Lemma 2. First, we note that the true 

propensity model is not necessary to maintain the consistency of the doubly robust estimator. 

Instead, we only require a propensity score model, , such that 

. Assume that the model class ℳps contains 

this consistent model, . If , then . A similar 

argument can be made with regard to the outcome model, to relax Theorem 2.
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4 Simulation study

4.1 Setup

In this section, we illustrate the finite sample behavior of  relative to alternatives. We 

consider: (1) the double robust estimate using model selection separately for the propensity 

score and the outcome model ( ); (2) the model averaged double robust estimate that 

assumes the prior model dependence of (5) with τ ∈ {1, 0.1, 0.01, 0} ( ); (3) the model 

averaged double robust estimate that uses the two-stage approach for calculating model 

weights with τ ∈ {1, 0.1, 0.01, 0} ( ); and (4) the collaborative double robust 

targeted maximum likelihood estimator (van der Laan and Gruber, 2010; Gruber and van der 

Laan, 2010) (Δ̂C−TMLE). See Table 1 for a description of the estimators considered in these 

simulations. A description of the C-TMLE algorithm can be found in Web Appendix C.

We generate the data as follows: (1) ; (2) X ~ Bernoulli(p = 

expit(Cαps)); and (3) Y ~ N(βX + Cαom, σ2). We consider different values of the unknown 

parameters αps and αom to capture different levels of confounding, and vary both the sample 

size n and the number of potential confounders p. In all simulations, β = 1, implying that Δ = 

1. The simulation scenarios are defined in Table 2. We restrict ℳps and ℳom to only include 

linear combinations of the p potential confounders so that there are 2p models for both the 

propensity score and the outcome. The number of models in each class may be large 

depending on the number of potential confounders.

4.2 Results for n = 200, p = 5, and σ2 = 4

The simulations of this section are intended to explore whether, even in simple scenarios 

with only 5 covariates and strong signals (i.e. αom and αps), model averaging has benefits 

over model selection. We consider as gold standard the results obtained using the true 

outcome model. For each of the simulation scenarios defined in Table 2, Table 3 provides 

the mean, standard error, bootstrapped 95% confidence interval coverage, and relative 

efficiency compared to the gold standard. All estimators show very small bias compared to 

the true Δ = 1. The proposed model averaged estimators tend to have smaller standard errors 

than their model selected counterparts.

Model averaging assuming prior model independence,  with τ = 1, is comparable to 

model selection across all four simulation scenarios, with only negligible gains in efficiency. 

This suggests that even a relatively unsophisticated implementation of model averaging to 

account for model uncertainty may do no worse than model selection. The estimators 

assuming prior model dependence have standard errors that are generally smaller than that 

of .

Scenario 3 is worth further discussion as it illustrates a substantial difference in the relative 

performance of the model averaged estimators. Here only C1 and C2 are confounders, while 

C3, C4, and C5 are strongly associated with the exposure only (i.e. they are instruments). The 
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model averaged estimators (except  with τ = 0) have relative efficiencies less than 

0:6, Δ̂C−TMLE has relative efficiency of 0.74, and  with τ = 0 has relative efficiency 

of 0:98. Here, all potential confounders are linear in both the propensity score and the 

outcome model, yet model averaging can reduce the variance of the double robust estimator 

dramatically if we assume prior model dependence and use the two-stage approach for 

estimating the model weights with τ = 0. Also, note that using model selection on the 

propensity score model independently of the outcome model will tend to choose propensity 

score models that include C3, C4, and C5. As these three potential confounders are unrelated 

to the outcome, their inclusion in the propensity score model only adds to the variance of the 

model selected estimator.

To better characterize the relative performance of the model averaged estimates, Table 5 

provides the mean posterior inclusion probability of the covariates in the outcome model and 

in the propensity score model. First, considering , we observe that as τ goes to zero, the 

posterior concentrates on outcome models that include C3, C4, and C5. This is an unintended 

consequence of the prior model dependence, which was designed in the hope that it would 

exclude these instruments from the propensity score model instead of including them in the 

outcome model. Inclusion of instruments in the outcome model can inflate the variance of 

the estimated causal effect. Next observe that, for  where we use the two-stage 

procedure for calculating the model weights, the inclusion probabilities for the instruments 

are 0.12 when τ = 0. For other choices of τ, there is no change in the inclusion probabilities. 

This occurs because these three covariates are strong predictors of treatment and the signal 

overwhelms the prior. Only very small choices of τ will influence the posterior inclusion 

probabilities in this scenario. The estimator  with τ = 0 has smaller variance than 

the other estimators because it effectively down weights propensity score models that 

include C3, C4, and C5.

These simulations demonstrate that the model averaged double robust estimator with a two-

stage dependent prior with τ = 0 performs nearly as well as the gold standard in many of the 

scenarios considered and performs substantially better than all of the competitors in 

Scenario 3.

4.3 Results for n = 200, p = 100, and σ2 = 1

An important motivation for model averaging approaches is their applicability to analyses 

with a large sets of potential confounders, where substantive knowledge can be of limited 

help in specifying models, and where several models receive support from the data. Rather 

than ignoring model uncertainty, we can leverage information from the data to reduce the set 

of potential confounders to a manageable size through the use of model averaging and a 

carefully chosen prior distribution on the model space.

To illustrate, we now consider a set of potential confounders that is half the size of the 

number of observations (p = 100 and n = 200). The model space of the propensity score 

alone has 2100 = 1.27 * 1030 potential models while the joint model space has 2200 models. 
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It is impossible to enumerate a set of models this large, and evaluating balance within even a 

small set of these models can be challenging. Instead, our prior distribution on the model 

space prioritizes propensity score and outcome models that share potential confounders. We 

then search for these models stochastically using a Markov chain Monte Carlo model 

composition (MC3) (Madigan et al., 1995). For computational efficiency, we focus on 

 with τ = 0 and do not consider any of the other model averaged estimators with 

the dependent prior.

Overall, the prior model dependence given by (5) with τ = 0 in the two-stage approach 

appears to be very effective at reducing the propensity score model space. This reduction 

increases both statistical and computational efficiency, while promoting inclusion of the 

correct confounders. By searching a smaller space of models, we may also be more likely to 

find regions of the model space with higher posterior probabilities. The resulting estimator 

 dramatically improves efficiency when compared with model selection.

Specifically, we repeated the simulations from Section 4.2, but generate a total of p = 100 

potential confounders and reduced σ2 to be 1. We consider the same four scenarios given in 

Table 2, but include an additional 95 covariates that are unrelated to both the treatment and 

outcome. In addition to these simulations, we consider one additional scenario (Scenario 5) 

to mimic a situation where the sets of covariates associated with only the outcome or only 

the exposure are large, but the overlap between these two sets is small. Specifically, we 

generate 20 covariates only related to the outcome, 10 related to both the outcome and the 

exposure (and hence confounders), 20 covariates related only to the exposure, and 50 

additional noise covariates. This adds to a total of p = 100 potential confounders, while the 

sample size remains n = 200. The strength of the relationships between the potential 

confounders, the outcome, and the exposure were randomly generated. Details can be found 

in Web Appendix D.

Table 4 provides the mean, standard error, bootstrapped 95% confidence interval coverage, 

and relative efficiency compared to the gold standard for each simulation scenario defined in 

Table 2 but with p = 100. The superiority of  compared to alternatives is even more 

striking when p = 100. Relative efficiencie is above 0.80 for all five scenarios, while the 

other estimators suffer from a severe loss of efficiency. The model averaged double robust 

estimator assuming prior model independence continues to have smaller standard error when 

compared with model selection. However, the differences in efficiency between the two are 

no longer negligible, with  with τ = 1 having less variance.

The gains in efficiency of the model averaged double robust estimator over the model 

selected estimator illustrates that with n = 200 observations, the sample size is not large 

enough to reflect the fact that model selection and model averaging are asymptotically 

equivalent. With  and τ = 0 specifically, the use of the two-stage approach for 

calculating model weights is effective at identifying the models that include potential 

confounders that are associated with both the treatment and the outcome. This feature 
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becomes increasingly important as the set of potential confounders increases. In Scenario 5, 

there are p = 100 potential confounders but only 10 are actual confounders, while 30 are 

related to only the exposure. Therefore, the gains in efficiency observed in Scenario 5 are 

likely due to placing higher weights on the propensity score models that include the 10 

confounders, as opposed to selecting a propensity score model that includes all 30 potential 

confounders only associated with the exposure.

We have focused our simulations on situations where the model classes include models that 

vary only by the confounders that are selected, and the data generating model is included in 

the class. More work is needed to determine the relative merits of the model averaged double 

robust estimators when these assumptions are relaxed. With regard to the first, suppose that 

the set of confounders was known, but the exact functional forms relating the confounders to 

the outcome and treatment are unknown. The model averaged double robust estimator can be 

used in this setting as well; the model classes would contain various specifications of how 

the confounders appear in the models (e.g. interactions, polynomials, splines, etc.). In this 

setting, we expect the model averaged double robust estimator to perform well provided that 

the model classes are flexible enough to capture important features of the data.

5 Comparative effectiveness of temozolomide for treating glioblastoma

The SEER linked Medicare database was used to construct a cohort of 1887 Medicare 

beneficiaries who were diagnosed with glioblastoma from June 2005 to December 2009 to 

compare the effectiveness of temozolomide plus radiotherapy (X = 1) vs. radiotherapy alone 

(X = 0) for lowering the probability of death within 1 year of diagnosis. For more 

background on glioblastoma and temozolomide see Arvold and Reardon (2014) and Arvold 

et al. (2014).

Table 6 summarizes 33 baseline characteristics of patients who were treated with 

temozolomide plus radiotherapy (n = 776) and those who were treated with radiotherapy 

alone (n = 1111). Younger patients were more likely and older patients were less likely to 

received temozolomide. Other differences in baseline characteristics between the treatment 

groups include the use of diagnostic tests (MRI and CT scan), the extent of resection, 

income, race, and the patient comorbidities atherosclerosis and COPD as measured by the 

Hierarchical Condition Categories (Pope et al., 2004). The unadjusted rate of death within 1 

year of diagnosis is 11.7% (7.6–16.0%) lower in the patients receiving temozolomide plus 

radiotherapy compared to radiotherapy alone (63.7% versus 75.4%).

We estimate the average causal effect of temozolomide plus radiotherapy (vs. radiotherapy 

alone) on the probability of death within 1 year of diagnosis using the model averaged 

double robust estimator assuming prior model dependence defined by (5) with τ = 0 and 

using the two stage approach for calculating model weights. We specify logistic regression 

models for both the propensity score model and outcome model. The propensity score model 

class contains logistic regressions with all possible subsets of the covariates as main effects. 

The outcome model class contains logistic regressions that include the treatment and all 

possible subsets of the covariates as main effects. With 33 covariates, the joint model space 

has 22*33 = 7.4 * 1014 possible models. MCMC chains were run for 10,000 iterations. We 
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estimate the rate of death within 1 year of diagnosis is 6.7% (2.4–10.7%) lower in the 

patients receiving temozolomide using the model averaged double robust estimator. This 

compares with the double robust estimator that includes all covariates in both the outcome 

and propensity score models that estimates a 6.4% (2.5–10.4%) lower mortality rate within 1 

year of diagnosis for the patients receiving temozolomide. We also performed model 

selection, where we selected the propensity score and outcome model independently using 

BIC, and estimated the effect of temozolomide at 7.3% (3.5–11.1%). Notice that the 95% 

confidence intervals are slightly wider for the model averaged double robust estimator. This 

is expected, as the model averaged double robust estimator accounts for model uncertainty. 

As we will now discuss, the confidence intervals for the model averaged double robust 

estimator are only slightly wider because there is very little uncertainty in the selection of 

confounders in this example.

One benefit of utilizing model averaging is that the posterior probability of inclusion can be 

calculated for each potential confounder. Included in Table 6 are posterior inclusion 

probabilities in both the propensity score and outcome models. One can loosely interpret the 

probability of inclusion in the propensity score model as the probability of being a 

confounder because of the prior distribution and the two stage method used for calculating 

the model weights. Note that the age category 80+ years has a posterior inclusion probability 

in the propensity score model of 0.95, and the indicator of a home discharge after diagnosis 

has a posterior inclusion probability of 0.94. These large inclusion probabilities suggest that 

the data indicates that age and initial discharge location are related to both 1-year survival 

and receipt of temozolomide; therefore, age and discharge type are important confounders. 

The only other patient characteristic to have considerable posterior probability in the 

propensity score model is an indicator of resection, with a probability of 0.48.

These results suggest that there are only a few important confounders of the relationship 

between 1-year survival and receipt of temozolomide. This is not completely unexpected, as 

glioblastoma patients have poor prognosis and complications tend to arise from disease 

progression. This is reflected in the decision to treat with temozolomide, where the youngest 

and the healthiest patients are more likely to receive treatment.

Figure 1 provides the model specific double robust estimators and corresponding 95% 

confidence intervals for 1000 randomly chosen outcome models and 1000 randomly chosen 

propensity score models. The unadjusted estimator of 11.7% (7.6–16.0%) is beyond the 

upper end of the distribution of the model specific estimates, while the model averaged 

double robust estimator of 6.7% (2.4–10.7%) is near the lower end of distribution. All of the 

model specific estimates are lower in magnitude than the unadjusted estimator, suggesting 

that any choice of models leads to a more conservative estimate of the difference in 1-year 

mortality when compared to the unadjusted estimator. The model averaged double robust 

estimator allows us to incorporate this model uncertainty into our final estimator by taking a 

weighted average of these model specific estimates. Figure 1 nicely provides a fully 

transparent illustration of the sensitivity of Δ ̂DR to the choice of potential confounders in the 

outcome and propensity score models. We also see that the model selected estimate is anti-

conservative when compared to the model averaged estimate or the double robust estimate 

that includes all of the covariates.

Cefalu et al. Page 14

Biometrics. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These results highlight the usefulness of the estimator at providing researchers with data-

driven indications of the uncertainty surrounding the choice of confounders while returning 

consistent estimation of the causal effect of interest.

6 Discussion

In this paper we present a model averaging framework that can be used to robustify any 

causal estimator that depends on the specification of a model. We focused on the double 

robust estimator to highlight that model averaging is possible in contexts not yet explored in 

causal inference. The model weights used in this paper were derived from approximate 

posterior model probabilities, but one could consider weights derived from other criteria 

(e.g. model weights based on the balance of covariates between treatment groups). Studying 

the properties of alternate weights and the use of model averaging on other estimators in 

causal inference is an exciting line of research.

Our results build on the most basic double robust estimator for the average causal effect. It 

has been demonstrated elsewhere that this double robust estimator can be biased especially 

when some of the estimated propensity scores are close to zero or are highly variable, and 

several adjustments to the estimator have been proposed (Robins et al., 2007; Cao et al., 

2009; Tan, 2010). We expect that results similar to those presented here may hold for these 

other estimators. Additionally, the model averaged double robust estimator does not assume 

that the confounders’ effect on the potential outcomes is the same between treatment groups, 

as a model for the outcome under each treatment can be specified.

Our model averaged double robust estimator shares some similarities with the work of Han 

and Wang (2013) who propose a method that allows the specification of multiple models for 

both the propensity score and the outcome regression. One difference in the methods lies in 

how the models are combined to produce the final estimator. We propose to take a weighted 

average of the model specific estimates, whereas Han and Wang (2013) combine the models 

to produce a subject specific weight, ŵi and define their estimator as μ̂ = ∑ŵiYi. While we 

propose a general procedure for model averaging in causal inference, it is not immediately 

clear to us whether the method of Han and Wang (2013) extends to other estimators.

A central piece in the construction of a model averaged estimator is the prior placed on the 

space of possible models. In this area there are opportunities to expand our work and 

potentially improve it substantially. For example, while our prior guarantees consistency in 

asymptotics with fixed p and increasing n, it would be interesting to investigate consistency 

when both p and n grow; in this setting a uniform prior on the model space can lead to 

inconsistency and priors that penalize model complexity may have better properties. The 

prior of (5) controls the prior probability of model combinations that do not meet the 

restriction ℳps ⊂ ℳom through τ. However, model combinations that do not meet this 

restriction have the same prior probability. This implies that, given an outcome model, the 

prior probability of a propensity score model that includes all the potential confounders 

included in the outcome model plus one additional potential confounder is the same as that 

of a propensity score model that includes all of the potential confounders that were excluded 

from the outcome model. In other words there is no prior penalization for complexity within 
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these subspaces. In related work we have explored selecting priors that achieve a good 

balance between confounding adjustment and model parsimony. See Wang et al. (2012, 

2015).

Scott et al. (2010) investigate priors that control for multiplicities in Bayesian variable 

selection. They stress that multiplicities are essential when one uses variable selection 

methods as exploratory tools whose resulting list of predictor is more important than the 

final model itself. This differ from what we do in two important ways: first, in our case, the 

final model and associated causal effect estimate are the main focus; secondly we do not 

select, we average. Nonetheless multiplicity properties may be a desirable property for a 

prior, achievable by allowing prior model probabilities to depend upon the data in an 

appropriate way. Our prior does not automatically adjust for multiplicities in this sense.

Causal inference approaches are increasingly used to analyze large observational studies, 

such as administrative databases in comparative effectiveness research. In these applications, 

there seldom is a clear-cut way of determining a priori the precise set of confounders of 

scientific relevance. At the same time, improvements in computing speed and parallelization 

are creating the opportunity for a more systematic investigation of alternative specifications 

for confounding adjustment. In these settings, the proposed model averaging strategy shows 

great promise as a data analysis tool to perform robust and consistent inferences with good 

small sample properties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model specific double robust estimator for the glioblastoma example and corresponding 

95% confidence intervals for 1000 randomly chosen outcome models and 1000 randomly 

chosen propensity score models, sorted by point estimates. The unadjusted estimator (X), the 

model averaged double robust estimator (square), the double robust estimator that includes 

all covariates into both models (circle), and the model selected double robust estimator 

(triangle) are included. Model selection is performed using BIC.
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Table 1

Description of all estimators used in the simulations. Included is (1) the type of estimator; and (2) the choice 

of prior distribution for the model space. All Bayes factors are estimated using the BIC approximation.

Estimator Description

model selected double robust estimator that chooses the propensity score model
and the outcome model separately based on the BIC

MA-DR estimator assuming prior model dependence defined by (5)

MA-DR estimator assuming prior model dependence defined by (5)
and using the two-stage approach for calculating model weights

Δ̂C−TMLE Collaborative double robust targeted maximum likelihood estimator
using the super learner to select the outcome regression with prediction
algorithms including the full model, stepwise selection, and
ridge regression
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Table 2

Summary of Parameters for Simulation Group 1. In each of the 4 scenarios considered, we generate data as 

follows: (1) ; (2) X ~ Bernoulli(p = expit(Cαps)); and (3) Y ~ N(βX + Cαom, σ2) with β 

= 1 and σ2 = 4. All effects of confounders are linear on both the treatment and outcome.

Scenario Description αps (PS model) αom (Outcome model)

1 No confounding (0.4,0.3,0.2,0.1,0) (0,0,0,0,0)

2 Moderate confounding (0.5,0.5,0.1,0,0) (0.5,0,1,0.5,0)

3 Strong predictors of outcome,
weak predictors of treatment

(0.1,0.1,1,1,1) (2,2,0,0,0)

4 Strong confounding (0.5,0.4,0.3,0.2,0.1) (0.5,1,1.5,2,2.5)
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Table 4

The mean, standard error, relative efficiency (variance of the gold standard divided by the variance of the 

estimator), and 95% confidence interval coverage probability of various estimators when n = 200 and p = 100 

for 500 replications of the data.

Scenario 1 Scenario 2

τ Mean Std. Error Rel. Eff. Coverage Mean Std. Error Rel. Eff. Coverage

Gold standard - 1.00 0.14 1.00 0.95 1.00 0.15 1.00 0.94

- 1.00 0.17 0.66 0.93 1.00 0.19 0.62 0.95

Δ̂C−TMLE - 1.01 0.20 0.45 0.93 0.99 0.26 0.34 0.98

1 1.00 0.16 0.72 0.95 1.00 0.18 0.71 0.94

0 1.00 0.14 0.91 0.94 1.00 0.16 0.94 0.93

Scenario 3 Scenario 4

τ Mean Std. Error Rel. Eff. Coverage Mean Std. Error Rel. Eff. Coverage

Gold standard - 1.00 0.14 1.00 0.95 1.00 0.16 1.00 0.95

- 1.00 0.33 0.19 0.95 1.00 0.19 0.70 0.96

Δ̂C−TMLE - 0.97 0.36 0.16 1.00 1.01 0.30 0.27 0.97

1 1.00 0.35 0.17 0.96 1.00 0.17 0.80 0.96

0 1.00 0.15 0.87 0.97 1.01 0.16 0.95 0.95

Scenario 5

τ Mean Std. Error Rel. Eff. Coverage

Gold standard - 0.998 0.162 1.000 0.94

- 1.006 0.189 0.735 0.93

Δ̂C−TMLE - 1.005 0.217 0.555 0.96

1 1.004 0.183 0.787 0.93

0 0.999 0.176 0.851 0.96
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Table 5

Scenario 3: the mean posterior inclusion probabilities when n = 200 and p = 5 for 1000 replications of the 

data.

Outcome Propensity score

τ C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1 1 1 0.12 0.12 0.12 0.15 0.15 1 1 1

0.1 1 1 0.13 0.14 0.13 0.15 0.15 1 1 1

0.01 1 1 0.22 0.23 0.23 0.15 0.15 1 1 0.99

0 1 1 0.99 0.99 0.98 0.15 0.15 0.99 0.99 0.98

1 1 1 0.12 0.12 0.12 0.15 0.15 1 1 1

0.1 1 1 0.12 0.12 0.12 0.15 0.15 1 1 1

0.01 1 1 0.12 0.12 0.12 0.15 0.15 1 1 1

0 1 1 0.12 0.12 0.12 0.14 0.14 0.12 0.12 0.12
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