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Abstract

Immunotherapy has changed the standard of care for multiple deadly cancers including lung, head 

and neck, gastric, and some colorectal cancers. However, single agent immunotherapy has had 

little effect in pancreatic adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC 

microenvironment is comprised of an intricate network of signals between immune cells, PDAC 

cells, and stroma, resulting in an immunosuppressive environment resistant to single agent 

immunotherapies. In this review, we discuss differences between immunotherapy sensitive cancers 

and PDAC, the complex interactions between PDAC stroma and suppressive tumor infiltrating 

cells that facilitate PDAC development and progression, the immunologic targets within these 

complex networks that are drugable, and data supporting combination drug approaches that 

modulate multiple PDAC signals, which should lead to improved clinical outcomes.
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Introduction

Current estimates predict PDAC to overtake breast cancer and become the third most 

common cause of cancer-related death in the United States (1,2). Only 20–30% of patients 

with PDAC have resectable disease at diagnosis, and the majority of patients who undergo 

surgical resection subsequently relapse (3–7). Most patients present with metastatic disease 

at diagnosis and have only a 2% five-year survival (2). To date, the rate of successful clinical 

trials in pancreatic cancer remains low (8). Of the many therapies investigated in large 

clinical trials over the past two decades, only two systemic therapies have demonstrated a 

statistically significant and clinically meaningful improvement in overall survival (OS) as 
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compared to gemcitabine alone (9,10). As a result, the five year survival rate for PDAC has 

improved only marginally since the 1970s, from 3% to 7% (2). This highlights the continued 

need for new and effective therapies in PDAC.

Immune checkpoint immunotherapies have produced unprecedented clinical benefits in a 

variety of different cancers, including lung cancer, which was previously thought to be non-

immune responsive (11). However clinical trials using single agent checkpoint 

immunotherapy in PDAC have been unsuccessful thus far. This may be explained by 

increasing evidence which suggests that PDAC creates a potently immunosuppressive 

microenvironment via activation of multiple regulatory mechanisms (12,13), whereby 

interactions between the tumor, stroma, and immune cells in the pancreatic tumor 

microenvironment (TME) result in cancer progression (Figure 1). In this review, we discuss 

potential approaches to increasing immunogenicity, or immune responsiveness, to PDAC. 

Specifically, we will (1) examine the challenges in developing successful immunotherapies 

for PDAC, (2) describe the complex immune components of the TME and discuss how the 

immune system, pancreatic tumor cells, microbiome, and stromal signals suppress immune-

mediated attack, and (3) discuss novel multi-agent therapeutic strategies to target signals 

within this integrated immunosuppressive network that are under development in clinical 

trials. Current standard of care therapy and clinical trials in progress are also reviewed by 

Manji et al. in this CCR Focus issue (14).

Clinical Challenges in Developing Immunotherapies for PDAC

There is mounting evidence that immune mediated inflammation is an integral component of 

the environment that supports PDAC development and progression (15). Genomic analyses 

show that PDAC frequently upregulates multiple pathways involved in acquired immune 

suppression, and upregulation of these pathways is associated with poor survival (16). This 

may explain why early human clinical studies involving immunotherapy monotherapy in 

PDAC have been discouraging. While treatment with single agent immune checkpoint 

inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed 

cell death protein 1 (PD-1) cause meaningful objective responses in many tumor types 

(11,17–20), only 1 of 27 patients with PDAC responded to the CTLA-4 inhibitor ipilimumab 

(21), and 0 of 14 patients with PDAC had an objective response to anti-PD-L1 therapy (22). 

Recently completed and planned immunotherapy clinical trials for patients with PDAC have 

been reviewed in detail elsewhere (23–27). Although single-agent immunotherapies have 

failed to show benefit in PDAC, increasing data support the testing of combinatorial 

approaches that target multiple suppressive mechanisms. In addition to examining genetic 

mutations in PDAC tumor samples, which is reviewed by Dreyer and colleagues in this CCR 

Focus Issue (28), performing RNA sequencing to determine which immune escape 

mechanisms are upregulated (e.g. PD-1, IDO) may allow us to further personalize therapy 

for patients by combining immunotherapy agents with chemotherapy to reset the immune 

system (29). This may be critical specifically in patients with PDAC as the failure of single 

agent checkpoint therapy indicates that the PDAC tumor microenvironment is more 

complicated and suppressive than in other more immunogenic cancers. This would also have 

the advantage of being able to determine a tumor’s immunogenicity upfront before initiating 

treatment. As we better understand the role of the multiple immunologic contributors to 
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PDAC growth, it should be possible to design multi-agent immunotherapies that target 

multiple pathways, leading to increased antitumor immunity.

The multiple immunosuppressive components of the PDAC TME collectively suppress 

effector T cells (cells that recognize and kill tumor cells), preventing immune mediated 

destruction (Figure 1). Accumulation of effector CD4+ and CD8+ T cells in human PDAC 

are associated with improved overall survival (30–32). As pancreatic lesions progress, tumor 

infiltrating CD8+ effector T cells decrease while suppressive regulatory T cells (Tregs) 

comprise a higher percentage of the CD4+ T cell compartment (33), leading to a low number 

of tumor infiltrating effector lymphocytes (TILs) and a high number of immunosuppressive 

cells (13). Thus PDAC is considered to be a poorly immune responsive cancer. By contrast, 

highly immune responsive solid tumors are characterized by a high number of TILs at 

baseline and a high response rate to immune checkpoint inhibitors (34). Although PDAC is 

poorly immunogenic, that is likely due to having a more complex and suppressive tumor 

microenvironment, not because the immune system does not recognize the tumor. Discovery 

of the complex immune pathways involved in PDAC progression and immune escape 

(summarized in Figure 1) has led to additional novel PDAC immunotherapy targets (Table 

1). Increasing data suggest that poorly immune responsive cancers like PDAC require 

multiagent therapy to elicit an immune response. One multipronged approach involves 

vaccines, which stimulate accumulation of lymphoid aggregates in PDAC (35) (Figure 2). 

One likely reason why vaccines have not stimulated effective antitumor responses, despite 

inducing lymphoid infiltration, is that vaccines also upregulate T cell inhibitory pathways 

such as the PD-1/PD-L1 pathway (36). Although vaccine therapy has thus far been 

unsuccessful, we believe that these lymphoid infiltrates represent increased immunogenicity, 

and speculatively, patients with vaccine-induced infiltration of lymphoid aggregates may 

benefit from a combination approach involving vaccine plus costimulatory blockade. Also, 

upregulation of immune checkpoint pathways after vaccine therapy may be a biomarker of 

increased immunogenicity and suggest these patients may also respond to checkpoint 

blockade. It is also possible that vaccines upregulate multiple immune escape mechanisms, 

and elucidation of these would be necessary to ensure vaccine efficacy. As chemotherapy 

transiently depletes suppressive Tregs in PDAC patients (37–39), chemotherapy should be 

considered in addition to administration of an immunomodulatory agent to attempt to 

overcome the potent immunosuppressive TME.

The TME’s Role in PDAC Development and Progression

Immune Checkpoints andImmune Checkpoint Inhibitors

There are many immune signaling pathways that regulate antitumor immunity, which 

involve costimulatory and inhibitory receptors (immune checkpoints) on T cells. Most 

studies of immunomodulatory agents in PDAC have examined the role of the inhibitory 

costimulatory receptors CTLA-4 and PD-1. Both receptors are critical in activation and 

suppressive activity of Tregs (40), and exist primarily to prevent autoimmunity and excessive 

immune responses to infection (41). However, tumors also induce Treg activation and 

suppression via these pathways, leading to dampened antitumor immune responses (40). 

This concept is critical, because it suggests that the immune system is not ignorant of PDAC; 
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rather, the immune system detects PDAC, but is instructed by the tumor not to attack it (42). 

Thus inhibition of immunosuppression, rather than immune activation alone, is critical to 

achieve durable clinical responses. Consistent with this, CTLA-4 and PD-pathway 

expression are upregulated in PDAC (43–45), and both are associated with worse survival 

(44,46). Furthermore, PD-1 is expressed on multiple PDAC infiltrating T cell subsets, 

including Tregs, and CD4+ and CD8+ effector T cells (37). Additionally, PDAC-infiltrating 

γδ T cells were recently identified, which represent a subset of suppressive T cells that 

express PD-L1 and suppress effector T cell activation (47). Collectively these studies 

indicate that immune checkpoint inhibition may be a target for PDAC related 

immunotherapy.

A number of principles have emerged that characterize immune checkpoint pathways. First, 

these pathways develop in response to the genetic changes that occur within developing 

tumors and are shaped by the evolving inflammatory response to these genetic changes. 

Second, there are many inhibitory and activating signaling pathways (48,49), but much still 

needs to be learned about their role in different cancer types. While melanoma, lung 

carcinoma, and renal cell carcinoma respond to blockade of one checkpoint pathway (i.e. 

PD-1/PD-L1 or CTLA-4) (11,17–20), most cancers will likely require combination therapy 

to fully activate T cell responses. Figure 1 depicts a non-exhaustive description ofthe broad 

range of suppressive mechanisms in PDAC, which account for single agent immunotherapy 

having limited clinical activity. Increasing preclinical evidence (see below) suggests that 

combining checkpoint inhibition with other targeted therapy may improve clinical efficacy. 

Third, additional studies are needed to understand primary (patients who do not respond) 

and secondary (patients who initially respond but then recur) resistance to these agents.

Although immune checkpoint inhibitors have thus far failed as single agents to demonstrate 

convincing clinical activity in PDAC, there may be subgroups of PDAC that are more likely 

to respond to these agents as monotherapy. Predictive biomarkers have now been used in 

multiple cancer types to identify patients who may be more likely to respond to immune 

checkpoint inhibitors. For example, expression of PD-L1 is used to identify patients who 

should receive frontline PD-1 inhibitor immunotherapy instead of chemotherapy in non-

small cell lung cancer (NSCLC) (50). In gastrointestinal malignancies including PDAC, one 

emerging biomarker of response to immune checkpoint inhibitors is mismatch repair 

deficiency (MMR-d), which results in a failure to repair errors in base pair mismatches in 

tumor DNA (e.g. C-T instead of C-G), leading to microsatellite instability (MSI) (51). In 

unselected populations of colorectal cancer, little to no clinical activity was reported in the 

initial clinical trials of immune checkpoint inhibitors. However, the PD-1 inhibitor 

pembrolizumab demonstrated significant clinical activity in the small subset of colorectal 

cancers (≤5% of advanced disease, (52)) with MMR-d (53). This activity is likely due to the 

high baseline immunogenicity of the MMR-d cancer subtype, as evidenced by the increased 

lymphoid infiltration in MMR-d colorectal carcinomas at baseline, as well as the high 

expression of multiple immune checkpoints, including PD-L1 (54,55).

Mismatch repair status is not routinely checked in PDAC, and we are aware of only four 

reported cases of MMR-d pancreatic cancer treated with a PD-1 inhibitor. Of these four 

cases, one patient had a partial response to pembrolizumab, and the other three achieved 
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stable disease (56). Additional basket trials of single-agent PD-1 inhibition in MMR-d 

cancers (including PDAC) are ongoing. Although MMR-d PDAC is a small subset of all 

PDAC, (13–17.4% in prior studies (57–59)), these preliminary data suggest that single agent 

immune checkpoint inhibitors may have meaningful clinical activity in such cases. These 

studies also suggest that it is important to perform genetic sequencing studies on all patient 

tumors to better define each cancer’s biology and to identify potential therapeutic options 

that may otherwise be missed.

Stroma

The dense stroma surrounding pancreatic cancers creates a hypovascular environment that 

can block the penetration of chemotherapeutics and facilitate immune escape. T cells were 

first demonstrated in the late 1990s to form aggregates in the fibrotic tissue of pancreatic 

cancer samples (60), leading to the current hypothesis that interactions between stroma, 

lymphocytes, and antigen presenting cells (APC) create a complex TME that makes 

overcoming immunosuppression difficult. Initial studies demonstrated that tumor incidence 

and metastasis increased when an increased proportion of pancreatic stellate cells were co-

injected with PDAC cells, identifying the stroma as a potential target for therapeutic 

intervention (61). However, in preclinical models of PDAC, simple depletion of fibroblasts 

lead to increased regulatory T cell (Treg) accumulation and decreased survival, suggesting 

that the relationship between PDAC and stroma may be more complex than previously 

appreciated (62). This may explain why depletion of fibroblasts via inhibition of Hedgehog 

signaling, while leading to disease stabilization in some preclinical studies, ultimately failed 

in other preclinical models and clinical trials (63–65). This conflicting data are described in 

more detail elsewhere (66), and may reflect heterogeneity between fibroblasts (67) or 

different systems used.

However, targeting other factors that drive stromal fibrosis have elicited encouraging 

preclinical data in PDAC that may overcome the limitations of targeting fibroblasts alone 

and also facilitate effector T cell access and activation the TME. As one example, inhibition 

of focal adhesion kinase-1 (FAK1), a tyrosine kinase expressed on PDAC cells and stroma 

that drives stromal fibrosis, with the selective inhibitor VS-4718, can improve responses to 

chemotherapy and immunotherapy in a preclinical model of PDAC (68). Unfortunately, 

three previous clinical trials studying single agent FAK inhibition in patients with solid 

tumors, including PDAC, demonstrated no objective responses (69–71). However, several 

trials of combination FAK inhibition with gemcitabine and/or PD-1 blockade are now 

ongoing (NCT02758587, NCT02651727, NCT02546531). Additionally, targeting 

hyaluronic acid (HA) restored vascular patency in a preclinical model, and improved overall 

survival in patients with high HA content (72–74). Ongoing trials are examining PEGPH20 

plus standard of care chemotherapy for PDAC (NCT02715804, NCT02487277, 

NCT01959139).

The stroma also produces factors, such as the proinflammatory cytokine IL-6, which are 

associated with poorer survival when expressed in peripheral blood of patients with PDAC 

(46,75). Unfortunately no objective responses were noted in any patients who received 

single agent IL-6 blockade in a phase I trial of patients with solid tumors, including nine 
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patients with PDAC (76). More recently, Lesinski and colleagues demonstrated that 

blockade of IL-6, which upregulates PD-L1 in viral models (77), synergized with PD-L1 

inhibition to increase lymphocyte infiltration and improve CD8+ T cell dependent antitumor 

immunity (78). This suggests that in addition to the stroma functioning as a physical barrier 

for immune infiltration, the stroma actively suppresses T cell infiltration via production of 

soluble factors, and blocking IL-6 may increase PDAC immunogenicity via upregulation of 

PD-L1. Speculatively, instead of complete stromal depletion, targeting the soluble factors 

produced may lead to improved outcomes. As IL-6 is known to promote chronic 

inflammation (79), targeting other mechanisms driving chronic inflammation, such as IL-17, 

may also be relevant (80,81). Overall the stroma is complex and requires further study to 

determine which components support and which suppress antitumor immune responses.

The Microbiome

Systemic factors also appear to impact the development and progression of PDAC, and 

several reviews have examined the relationship between the oral microbiome and PDAC 

(82,83). Multiple studies have found a possible relationship between tooth loss, self-reported 

periodontal disease, or clinically documented periodontitis (respectively) and PDAC or 

PDAC-associated mortality (84–86). This association between periodontitis and PDAC 

appears to remain even after controlling for multiple risk factors (87,88). Certain bacteria, 

such as Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, are 

frequently linked with the development of periodontal disease (89), and RNA sequencing 

from pre-diagnostic oral washings have demonstrated that the presence of these two bacteria 

are also significantly associated with developing PDAC (90). In contrast, oral bacteria of the 

genus Leptotrichia has been associated with decreased PDAC risk. Notably, P. gingivalis and 

Leptotrichia levels collected more than 2 years prior to PDAC diagnosis retained their 

respective positive and negative associations with PDAC, suggesting that the altered oral 

microbiome may have been present prior to PDAC carcinogenesis (90). Another bacteria, 

Fusobacterium, was associated with decreased risk of acquiring PDAC when it was found in 

the oral cavity (90), but was associated with decreased survival when it was found in human 

PDAC tissues (91). Fusobacterium may therefore have differential effects pre- and post-

diagnosis, or its carcinogenic effects may be dependent on its location.

Several explanations have been proposed to explain why certain oral microorganisms 

correlate with PDAC development. The altered oral microbiota may simply be a 

consequence of systemic inflammation, as patients with diabetes, a risk factor for PDAC 

(92), also has a significantly different oral microbiome than normal controls (93). 

Alternatively, it is biologically plausible that certain microbes may directly facilitate PDAC 

carcinogenesis. Consistent with this notion, the colonic bacterium Enterotoxigenic 

Bacteroides fragilis has been implicated in causing colon cancer via IL-17 production (94), 

and Porphyromonas has been implicated in carcinogenesis of oral squamous cell carcinoma 

in preclinical models (95). Although IL-17 has been implicated in facilitating PDAC and 

may emerge as a potential therapeutic target (80,81), further studies are needed to determine 

whether alterations in the oral microbiome play a role in the development of PDAC, which 

immune signals are involved,or if these findings are simply correlative. One potential study 

would be to examine patients with IL-17R overexpressing PDAC, which has been associated 
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with poorer prognosis (80) to see if the microbiome is altered in these patients versus non-

IL-17R overexpressing patients, and then colonization of mice predisposed to obtain PDAC 

with the microbe in question to see if this accelerates PDAC. If the microbiome is 

conclusively shown to affect PDAC tumorigenesis or progression, prospective clinical 

studies of novel therapeutic agents that modify the microbiome as a treatment or prevention 

of PDAC will be warranted. Additionally, understanding the immune mechanisms through 

which the microbiome affect PDAC development and progression could inform the 

development of novel immunotherapies.

Vaccine Immunotherapy Strategies for PDAC Treatment

AsPDAC is a a poorly immunogenic cancer for which single agent vaccines have been 

ineffective, using a vaccine based approach will require at least one additional 

immunotherapeutic agent to optimally achieve an antitumor immune response (Figure 2). 

Optimal vaccine design will require knowledge of immune relevant antigens that are 

recognized by effector T cells that have the potential to be activated, and identification of 

vaccine approaches that effectively activate them. The second step is determining which 

immune escape mechanisms (such as checkpoint pathways) are induced by the vaccine 

itself. Thus, a baseline biopsy before vaccine therapy will not be the best indicator to 

determine which immune checkpoints require modulation.

Tumor antigens and antigen delivery systems for generating anti-PDAC T cells

A few PDAC tumor antigens capable of inducing an anti-tumor immune response have been 

identified. An ideal tumor antigen target should be highly expressed in PDAC cells and 

minimally expressed in normal tissue. Most PDAC antigens fall into one of two categories: 

1) tumor-associated antigens (TAAs), which are found mostly on tumor but have limited 

expression on normal cells, and 2) tumor-specific antigens (TSAs), also called neoantigens, 

which are expressed exclusively on malignant cells and not expressed on normal cells (96). 

TAAs have received the most attention as targets for PDAC immunotherapy because of the 

potential to treat many patients with the same therapy. Epidermal growth factor receptor 

(HER/EGFR/ERBB) family proteins (97,98), and mesothelin (99–101) are examples of 

TAAs that are under clinical investigation as therapeutic targets in PDAC. However, because 

these antigens are also expressed on normal cells, off-target toxicity remains an important 

clinical concern (102,103). Due to their tumor-specific expression, TSAs are particularly 

appealing targets for PDAC immunotherapy. However, most TSAs arise from individual 

tumor mutations and are not shared between most patients. Therefore, while most (if not all) 

PDACs have TSAs (104), therapies targeting TSAs may need to be personalized.

A notable exception in PDAC is the driver oncogene KRAS, which is mutated at codon 12 in 

approximately 90% of PDACs and has been explored as a target for immunotherapy (105–

108). KRAS is often described to be an ‘undruggable’ protein because despite several 

decades of intensive efforts, no pharmacologic inhibitors of KRAS have reached the clinic. 

However, mutated KRAS, like other tumor antigens, is presented on the cell surface of cells 

and thus is accessible to the immune system. Recently, the Rosenberg group provided proof 

of principle for KRAS immune targeting by successfully inducing a durable partial response 
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in a patient with KRAS-mutant colorectal cancer by infusing an enriched population of 

CD8+ T cells that reacted to the specific KRAS mutation expressed by the colorectal cancer 

(109). Although additional studies are still needed to determine which type of antigen induce 

the T cells best equipped to eradicate PDAC, increasing data suggests that immune 

suppressive mechanisms may be more complex and harder to bypass in the case of TAAs 

and mutated driver gene antigens such as mutated Kras because of the extensive length of 

time that they are expressed within the TME, which suggest these antigens have undergone 

immunoediting and subsequent immune escape (96).

Many different platforms are available for inducing TAA and TSA specific T cells, including 

various vaccine and adoptive T cell strategies. Notable antigen targets in PDAC and the 

therapies targeting these antigens are reviewed in Table 2. A number of vaccine delivery 

systems under development include plasmid DNA, polypeptide, and modified viral and 

bacterial approaches. In addition, new adjuvants under clinical development activate specific 

innate immune responses, via Toll Like Receptors and STING pathways (110,111). 

Chimeric antigen receptor (CAR) T cells, which are genetically engineered to express an 

antigen receptor specific for a malignancy-related target, are a platform for targeted 

immunotherapy that has shown promise in treating hematologic malignancies (112–114) and 

is now under clinical investigation in PDAC. Recently CAR T cells have been developed that 

target MUC1, a cell membrane protein that is overexpressed in PDAC and other cancers 

(115,116). In preclinical studies, mice harboring pancreatic cancer xenografts had increased 

OS when they received MUC1-specific CAR T cell therapy (116). CAR T cells targeting 

MUC1 are currently in clinical trials for solid tumors, including metastatic PDAC 

(NCT02587689). CAR T cells targeting mesothelin, a glycoprotein overexpressed in PDAC 

(100), are also being explored in human clinical trials for PDAC (NCT01583686) (117). 

However, no objective radiographic responses were reported in the initial PDAC clinical trial 

results for this agent (118). Although additional single-agent studies of these novel targeted 

immunotherapies are ongoing, it is likely that these targeted approaches will need to be 

combined with other therapies to overcome the immunosuppressive signals within the TME.

While most therapeutic cancer vaccines are categorized by their antigen target, whole cell 

vaccines deliver many tumor antigens without the need for specific knowledge of the 

relevant target. Autologous vaccines use the patient’s own tumor as an antigen source, 

whereas allogeneic vaccines are derived from another patient’s tumor. Allogeneic vaccines 

are more convenient and pragmatic because a single vaccine can be used to treat many 

patients, by presenting many relevant PDAC TAAs (119,120), whereas autologous vaccines 

must be personalized from each patient’s individual tumor. It is usually not feasible to utilize 

autologous tumor cells due to the lack of adequate tumor specimen.

The most studied whole cell vaccine platform in human PDAC trials is composed of 2 

allogeneic granulocyte macrophage-colony stimulating factor (GM-CSF) secreting 

pancreatic tumor cell lines (GVAX). The PDAC GVAX has been combined with CRS-207, 

an attenuated Listeria monocytogenes-based vaccine targeting mesothelin. While the 

combination of GVAX plus CRS-207 showed encouraging results in early phase II studies 

(121), unfortunately an interim analysis of Phase 2b data failed to demonstrate improved OS 

compared with chemotherapy alone. A different whole-cell vaccine, algenpantucel-L, also 

Johnson et al. Page 8

Clin Cancer Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recently failed to produce a clinical benefit in a recent phase III study, despite promising 

phase II data (122). These mixed clinical results suggest that although whole cell vaccination 

monotherapy induces TAA specific T cells, it is likely not enough to overcome the potently 

immunosuppressive TME of PDAC (35,123–125).

Despite these recent clinical setbacks, whole cell vaccines may be an important component 

of combination strategies for PDAC immunotherapy. We and others have shown that GVAX 

and other vaccines may prime the TME for treatment with an immune checkpoint inhibitor 

by inducing high levels of PD-L1 expression on epithelial tumor cells and intratumoral 

lymphoid aggregates (35). The upregulation of immunosuppressive regulatory mechanisms 

by PDAC suggest that whole cell vaccines should be combined with other immune therapies 

to maximize anti-tumor efficacy. Combination therapy with GVAX and PD-1 blockade 

improves survival in tumor-bearing mice (36). This hypothesis that whole-cell vaccine 

therapy can convert an immunosuppressive tumor into a tumor responsive to immune 

checkpoint blockade is currently being tested with combination PD-1 inhibitor and GVAX in 

patients with surgically resectable and borderline resectable PDAC (NCT02451982, 

NCT02648282). Additionally, GVAX and CRS-207 are now in clinical development in 

combination with the PD-1 inhibitor nivolumab in a phase 2 trial (STELLAR, 

NCT02243371).

Treating PDAC via combination therapy

Other combination approaches are actively being tested in patients with PDAC. These 

approaches include combining immunomodulatory agents with each other or with 

chemotherapy. (Table 1). Gemcitabine-based chemotherapy is often used as the 

chemotherapy backbone in these combination immunotherapy trials because it has been 

shown to increase tumor antigen availability, and transiently deplete immunosuppressive 

Tregs and myeloid derived suppressor cells (MDSC) in the PDAC TME (37–39,126). Lower 

numbers of intratumoral Tregs are associated with increased disease free survival after 

pancreatectomy (30), suggesting that Treg accumulation is an important determinant of 

survival in patients with PDAC. We and others have demonstrated that low dose 

cyclophosphamide can also deplete Tregs, modulate the TME and maximize clinical 

responses to immunotherapy (123,127,128). Another approach is combination therapy with 

epigenetic modulators, as epigenetic therapy appears to be immunomodulatory (129), and 

epigenetic therapy in PDAC is reviewed by Evan and colleagues in this CCR focus issue 

(130). Immunotherapies in clinical development for PDAC in combination with standard 

chemotherapy include the indoleamine 2,3 dioxygenase (IDO) inhibitor indoximod, the 

bruton tyrosine kinase (BTK) inhibitor ibrutinib, CD-40 agonists, and CCR2 inhibitors 

(Table 1). IDO is a tryptophan-catabolizing enzyme that, when activated via tumors or 

another inflammatory stimulus, activates suppressive activity in dendritic cells (DC) and 

leads to Treg activation (40,131,132). In a phase II study of untreated metastatic PDAC, the 

combination of indoximod plus gemcitabine/nab-paclitaxel demonstrated a response rate of 

45% (133). This appears favorable compared to the 23% historical response rate of patients 

treated with gemcitabine/nab-paclitaxel alone in phase III studies (10), but must be tempered 

with phase II data demonstrating a 48% overall response rate with this chemotherapy 

combination (134). Another suppressive cell involved in Treg generation is the regulatory B 
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cell (Breg), which has been implicated in converting resting CD4+ T cells to Tregs in a 

breast cancer model (135), and promotes tumorigenesis in PDAC (136). While identifying a 

specific Breg inhibitor is an area of active study, targeting BTK, which is expressed by 

tumor infiltrating B cells and myeloid cells, with ibrutinib synergizes with gemcitabine to 

inhibit murine PDAC growth (137). Ibrutinib is currently in clinical trials in combination 

with gemcitabine and nab-paclitaxel in the first line setting for metastatic PDAC 

(NCT02562898, NCT02436668).

CD40 is a TNF receptor superfamily member that is expressed by many cells, including B 

cells, DCs, monocytes, endothelial cells, and fibroblasts (138). CD40 agonists have been 

shown to activate APCs and promote tumor regression (139), and synergize with 

gemcitabine in mice to increase intratumoral effector T cell infiltration and induce T cell 

dependent PDAC tumor regression (140). CD40 agonists (NCT02588443, NCT02829099) 

and CCR2 blockade (NCT02732938) are currently being tested in clinical trials in multiple 

settings (141,142).

The presence of tumor infiltrating macrophages (TIMs) are associated with poorer outcomes 

in patients with resected PDAC (143,144). CCR2 is a chemokine receptor involved in the 

recruitment of immunosuppressive macrophages; CCR2 inhibition depletes CCR2 

expressing tumor infiltrating macrophages and improves survival in mouse models (145). 

CCR2 blockade (NCT02732938) is currently being tested in combination with gemcitabine / 

nab-paclitaxel in a phase Ib/II study (142).

Another receptor whose inhibition facilitates depletion of TIMs in preclinical models is the 

colony-stimulating factor-1 receptor (CSF1R), which synergized with gemcitabine to 

increase effector T cell infiltration and slow pancreatic tumor growth (146). CSF1R 

inhibition also increased expression of checkpoint molecules on PDAC tumor cells and T 

cells, and when combined with checkpoint blockade and gemcitabine, further slowed murine 

PDAC growth (147). Multiple human trials are examining whether targeting CSF1R 

synergizes with PD-pathway blockade in solid tumors, including PDAC (NCT02526017, 

NCT02777710).

The C-X-C chemokine receptor 4 (CXCR4) is a chemokine receptor whose expression in 

human pancreatic tissues is associated with a poorer prognosis (148–150). CXCR4 blockade 

abrogated invasion and metastasis (151–153), and transfection of CXCR4 into pancreatic 

tumor cells increased their metastatic potential (154). Gemcitabine upregulates CXCR4 

expression in human pancreatic cancer cells (155), which may be a mechanism of acquired 

resistance to gemcitabine (155–157). Inhibiting CXCR4 synergized with anti-PD-L1 

blockade to decrease tumor size in a mouse PDAC model (158). Based on this encouraging 

preclinical data, clinical trials are examining the combination of CXCR4 inhibition with PD-

pathway blockade in advanced solid tumors, including PDAC (NCT02737072, 

NCT02472977, NCT02826486).

Due to the suppressive nature of the PDAC tumor microenvironment, it is likely that 

multiple suppressive cell types will need to be targeted in order to improve clinical 

outcomes. The Treg, antigen presenting cell, and speculatively, the Breg are the three cell 
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subtypes that appear to most potently suppress immune responses in PDAC. Chemotherapy 

should be the backbone of most trials in metastatic PDAC due to its immunomodulatory 

effect and already proven (although modest) survival benefit. Targeting Treg suppression via 

the PD-pathway is reasonable if done with chemotherapy (to transiently eliminate already 

established Tregs to “reset” the immune system) and in combination with at least one other 

immunomodulatory agent that affects another immune cell type, preferably either 

suppressive APCs or Bregs. Targeting the IDO pathway is attractive due to its induction of 

tolerogenic DCs and Treg activation and the encouraging phase II results in PDAC. Synergy 

with IDO inhibition and PD-pathway inhibitors or chemotherapy in early studies with other 

tumor types suggests that combination therapy with IDO inhibitor, PD-pathway, and 

chemotherapy may be efficacious if not overly toxic (159,160). Similarly, promising data in 

early studies with combination macrophage targeting (via CCR2 inhibition) and 

FOLFIRINOX in patients with borderline resectable or locally advanced PDAC make CCR2 

an appealing target (142).

Future Directions

The failure of single agent immunotherapy in PDAC (21,22) at first glance suggests that 

immunotherapy may not have a role in future management of PDAC. However, the 

documented involvement of an integrated suppressive network of immune cells and stroma 

in PDAC development and progression suggest that a combination approach involving 

chemotherapy, immunotherapy, targeted therapy against stromal elements, and other 

modalities will be necessary in order to improve survival. Combination therapy, including 

strategies to boost adaptive immunity, break systemic tolerance, and increase tumor 

immunogenicity, has the potential to revolutionize PDAC treatment. Increasing our 

understanding of the PDAC TME, and how therapies affect the suppressive milieu, will help 

identify the best potential targets for therapeutic development and testing in clinical trials.
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PD-1 programmed death-1

PD-L1 programmed death ligand 1

TIM tumor infiltrating macrophage

MDSC myeloid derived suppressor cell

BTK Bruton’s tyrosine kinase

γδ T cells gamma delta T cells

CTLA-4 cytotoxic T lymphocyte associated protein 4

CSF1R colony stimulating factor 1 receptor

GM-CSF granulocyte macrophage colony stimulating factor

DC dendritic cell

FAK1 focal adhesion kinase 1

TAA tumor associated antigen

TSA tumor specific antigen

MMR mismatch repair

GVAX granulocyte macrophage colony stimulating factor 

secreting pancreatic tumor cell vaccine

CAR T cells chimeric antigen receptor T cells
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Figure 1. Mechanisms within the PDAC TME drives resistance to therapies
PDAC comprises of complex interactions between T cells, B cells, APCs, pancreatic tumor 

cells, and stromal elements. These interactions result in a profoundly immunosuppressive 

tumor microenvironment, and consequently single agent immunotherapy has been largely 

ineffective. However, emerging preclinical data has suggested that combination therapy may 

dramatically affect overall survival. Current trial design is being driven largely by this data. 

The figure summarizes major pathways in PDAC tumorigenesis that are being manipulated 

in clinical trials for patients with metastatic PDAC. Except for (G.), which represents in part 

IDO activated Tregs in TDLNs from a melanoma model (40), this figure represents data 

known exclusively from PDAC models.

(A.) Tregs and γδ T cells block Teff division and drive PDAC growth, while γδ T cells 

block T cell infiltration (47).

(B.) MDSCs and macrophages are mobilized into the TME by PDAC derived GM-CSF and 

CCL2, respectively. (145,183,184).

(C.) Macrophages block CD4+ T cell entry into the PDAC microenvironment. CD40 is 

expressed on these CD4+ T cells, and activation of the CD40 pathway concurrently with 

gemcitabine can drive T cell infiltration (140).
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(D.) Stromal associated fibroblasts produce CXCL13, which recruits regulatory B cells into 

the TME. These regulatory B cells produce IL-35, which drives PDAC progression 

(136,185). These Bregs may be inhibited by BTK inhibitors, such as ibrutinib (137).

(E.) Tumor infiltrating macrophages stimulate PDAC progression. Blockade of the CSF1 

receptor expressed by macrophages can lead to macrophage depletion, CTLA-4 upregulation 

on CD8+ T cells, and PD-L1 upregulation on pancreatic tumor cells (146,147).

(F.) Stromal elements create a physical barrier to immune infiltration and therapeutic agents. 

Stromal fibroblasts block Treg accumulation and PDAC progression (62), but targeting other 

stromal elements have achieved encouraging results. Stromal hyaluronic acid deposition 

results in decreased vascular patency (72,73), and FAK1 drives stromal fibrosis (68). 

Inhibition of either target has led to decreased PDAC progression when combined with 

chemotherapy in preclinical models.

(G.) IDO induction in DCs by tumors activate Tregs via MHC and CTLA4 pathways 

(40,131). In phase II studies, gemcitabine based therapy synergizes with IDO inhibition to 

improve response rates in PDAC (133), possibly via transient depletion of Tregs (39). This 

provides an immune system reset, allowing for chemotherapy-mediated elimination of 

previously activated Tregs, followed by indoximod mediated inhibition of subsequent Treg 

activation.

(H.) Recent evidence suggests the Fusobacterium found within the PDAC microenvironment 

drives PDAC progression, but the mechanism of this is unknown (91).
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Figure 2. Therapeutic vaccine immunotherapy for PDAC requires multiple steps to overcome 
immunosuppression
PDAC and other poorly immune responsive cancers are characterized by low numbers of 

tumor infiltrating lymphocytes (TILs), low levels of PD-L1 expression, and high numbers of 

immunosuppressive cells such as Tregs and MDSCs at baseline (left panel) (13). Using a 

vaccine approach will require at least two immunotherapeutics to achieve an immune 

response. In Step 1 (center panel), a therapeutic vaccine is used to induce accumulation of 

lymphoid aggregates (35). These lymphocytes secrete interferon gamma and other soluble 

factors that induce high levels of PD-L1/PD-1 expression on epithelial tumor cells and on 

immune cells (186). Vaccines can also be combined with other therapies such as 

cyclophosphamide, to deplete immunosuppressive cells in the TME (29). In Step 2 (right 

panel), the addition of a PD-pathway inhibitor to a vaccine-primed tumor inhibits PD-L1/

PD-1 signaling to increase lymphocyte proliferation and activation and promote tumor 

eradication (36). The hypothesis that vaccine therapy can synergize with immune checkpoint 

inhibition is currently under clinical investigation in multiple trials in PDAC.
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Table 1

A list of notable immunotherapies in clinical development for PDAC.

Therapeutic target and agents under 
investigation for PDAC Preclinical rationale Clinical evidence and ongoing trials

PD-1/PD-L1
nivolumab pembrolizumab durvalumab

PD-1/PD-L1 inhibition has activity in a wide 
number of tumors. PD-L1 expression is 
upregulated in a subset of PDAC, and is 
associated with shortened survival (161,162).

Responses were observed in a subset of 
patients with MMR-deficient pancreatic 
cancer (≤ 5% of PDAC) (56), and 
additional trials in MMR-d disease are 
ongoing NCT01876511, NCT02465060). 
None of 14 pancreatic patients responded 
in a study of single-agent nivolumab (22). 
Multiple combination immunotherapy trials 
are ongoing (NCT02558894, 
NCT02268825, NCT02472977, 
NCT02243371, NCT02777710).

CTLA-4
ipilimumab tremelimumab

Anti-CTLA-4 therapy may reduce intratumoral 
Tregs and shift the threshold needed for T cell 
activation. A trial of ipilimumab failed to show 
convincing clinical activity, but a possible 
delayed response was observed in one patient 
(21).

Multiple combination trials are ongoing, 
including combinations with PD-1 
inhibition and/or therapeutic vaccines 
(NCT02558894, NCT01896869).

IDO1
indoximod

IDO1 mediates tumor immunosuppression in 
preclinical models (non-PDAC), and PDAC 
frequently overexpresses IDO as a mechanism of 
immune escape (132,163,164).

Evidence of clinical activity was observed 
in combination with chemotherapy (133). A 
clinical trial is ongoing in combination with 
gemcitabine-based chemotherapy 
(NCT02077881).

BTK
Ibrutinib

BTK is involved with B cell receptor signaling 
and is also expressed by macrophages. In 
preclinical models ibrutinib synergizes with 
gemcitabine to increase antitumor immunity 
(137).

Clinical trials are ongoing in combination 
with gemcitabine-based chemotherapy in 
PDAC (NCT02562898, NCT02436668)

CD-40
RO7009789 (CP-870,893)
JNJ-64457107

CD40 is expressed on B cells, DCs, and other 
cell types. CD40 agonists inhibit PDAC stroma, 
increase CCL2 levels and interferon gamma 
(IFN-g) in the TME, and synergize with 
chemotherapy (145,165).

Evidence of clinical activity was observed 
in an early stage clinical trial in PDAC 
(141). Additional trials of monotherapy or 
combination with gemcitabine-based 
chemotherapy are ongoing (NCT02588443, 
NCT02829099).

CCR2
CCX872
PF-04136309

CCR2 recruits suppressive macrophages to the 
immunosuppressive TME in PDAC, and CCR2 
inhibition depletes tumor infiltrating 
macrophages and improves survival in a 
preclinical model (145).

CCR2 inhibition has shown safety and 
possible evidence of clinical activity in 
combination with chemotherapy. Clinical 
trials in combination with chemotherapy in 
PDAC are ongoing (NCT02345408, 
NCT02732938)

CSF-1R
Cabiralizumab (FPA008)
Pexidartinib (PLX3397)
BLZ945
AMG 820

CSF1R inhibition reprograms tumor-associated 
macrophages and upregulates immune 
checkpoints. Synergistic activity has been 
observed with immune checkpoint inhibitors in 
preclinical models of PDAC (146,147).

Multiple agents are in clinical trials in 
metastatic PDAC in combination with PD-1 
inhibitors (NCT02526017, NCT02777710, 
NCT02829723, NCT02713529)

CXCR4
LY2510924

CXCR4 blockade abrogated metastasis in 
prelclinical models (151), and synergized with 
PD-L1 therapy to increase antitumor immunity 
(158)

CXCR4 inhibitor is in clinical trial in 
combination with PD-L1 blockade to treat 
advanced solid tumors, including PDAC 
(NCT27037072).
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Table 2

A non-exhaustive list of antigen targets for pancreatic cancer immunotherapies, and notable therapies targeting 

these antigens.

Target Expression Notable immunotherapies against antigen target

Mesothelin
Highly overexpressed in virtually all pancreatic 
cancers and also expressed at lower levels in pleura, 
peritoneum, and pericardium (100).

CRS-207 (Aduro Biotech); live-attenuated listeria 
monocytogenes engineered to secrete mesothelin (99,121)
Amatuximab (MORAb-009, Morphotek); monoclonal antibody 
(166)
DMOT4039A (Genentech); antibody-drug conjugate (167)
Anetumab ravtansine, (BAY 94-9343, Bayer); antibody-drug 
conjugate (168)
Anti-mesothelin CAR-T cells (UPENN, NCI) (118)

CEA

Glycosylated homotypic/heterotypic cell surface 
intracellular adhesion molecule, overexpressed in 56–
98% of pancreatic cancers and also expressed on 
oncofetal tissues (169).

CEA peptide vaccine (CAP1-6D) emulsified in montanide and 
GM-CSF (170)
TRICOM-CEA(6D); poxvirus-based vaccine expressing 
costimulatory molecules and CEA (171,172)
AVX701 (Alphavax); poxvirus-based vaccine expressing 
costimulatory molecules and CEA (171,173)
GI-6207 (GlobeImmune/Celgene); recombinant yeast-CEA 
vaccine (174)

MUC1

Transmembrane glycoprotein, overexpressed in ~90% 
of pancreatic tumors. Also low levels of expression on 
ductal and glandular epithelial cells. However, cancer-
associated MUC1 is structurally different from 
normal MUC1 (hypoglycosylated) and may function 
as a tumor-specific antigen (175).

MUC1-peptide pulsed dendritic cells (176)
Autologous dendritic cell vaccine (177)
MUC1-peptide vaccine with SB-AS2 adjuvant (178)
Adoptive transfer with MUC1 peptide-pulsed dendritic cells 
and activated T lymphocytes (179)

HER/EGFR/
ERBB family 
proteins (eg 
HER1, HER2, 
HER3)

Cell-surface receptors implicated in tumor growth. 
HER2/neu is overexpressed in approximately 50% 
and EGFR in approximately 70% of pancreatic 
cancers and expression correlates with poor survival 
(97,98). These proteins are also expressed at lower 
levels in normal tissues.

Cetuximab (Erbitux, Lilly); EGFR antibody previously failed 
in clinical trials alone or in combination with cytotoxic agents, 
but may induce innate and adaptive immune responses that 
could synergize with novel immunotherapies (180,181).
MM-141 (Merrimack Pharmaceuticals); bispecific antibody 
targeting IGF-1R and ErbB3 (HER3) (182)

Mutated KRAS
Intracellular GTPase important for cell growth and 
survival, mutated in up to 90% of pancreatic cancers 
(16,106). Mutated KRAS is a tumor-specific antigen.

GI-4000 (GlobeImmune); attenuated yeast expressing mutated 
RAS proteins (107)
TG01 (Targovax); mutated RAS peptide vaccine co-
administered with GM-CSF as an adjuvant (108)
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