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Abstract

Shared genetic factors represent one underlying mechanism thought to contribute to high rates of 

alcohol and tobacco co-use and dependence. Common variants identified by molecular genetic 

studies tend to confer only small disease risk, and rare protein-coding variants are posited to 

contribute to disease risk, as well. However, given that genotyping technologies allowing for their 

inclusion in association studies have only recently become available, the magnitude of their 

contribution is poorly understood. The current study examined genetic variation in protein-coding 

regions (i.e., the exome) for associations with measures of lifetime alcohol and tobacco co-use. 

Participants from the UCSF Family Alcoholism Study (N = 1,862) were genotyped using an 

exome-focused genotyping array, and assessed for DSM-IV diagnoses of alcohol and tobacco 

dependence and quantitative consumption measures using a modified version of the Semi-

Structured Assessment for the Genetics of Alcoholism. Analyses included single variant, gene-

based, and pathway-based tests of association. One EMR3 variant and a pathway related to genes 

upregulated in mesenchymal stem cells during the late phase of adipogenesis met criteria for 

statistical significance. Suggestive associations were consistent with previous findings from 

studies of substance use and dependence, including variants in the CHRNA5 - CHRNA3 - 
CHRNB4 gene cluster with cigarettes smoked per day. Further, several variants and genes 

demonstrated suggestive association across phenotypes, suggesting that shared genetic factors may 

underlie risk for increased levels of alcohol and tobacco use, as well as psychopathology more 

broadly, providing insight into our understanding of the genetic architecture underlying these 

traits.
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Alcohol and tobacco are frequently used in combination, and rates for past-year co-use and 

dependence in nationally representative samples are relatively high. Estimates from the 

2001–2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) 
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indicated that 21.7% of all U.S. individuals aged 18 and older reported past-year alcohol and 

tobacco use, and 2.9% of U.S. adults met criteria for both an alcohol use disorder and 

nicotine dependence (Falk, Yi, & Hiller-Sturmhofel, 2006). Environmental, psychosocial, 

and biological factors contribute to the high rates of co-use and dependence, and substantial 

research has examined their independent contributions and the interplay among them.

Behavioral genetics studies can provide insight into the approximate influence of 

environmental and heritable factors that contribute to these traits. For example, studies of 

this kind have demonstrated that shared and unique environmental factors account for 10% 

and 39%, respectively, of the variation in liability to alcohol dependence (Verhulst, Neale, & 

Kendler, 2015), while these estimates can differ by gender and ethnicity for nicotine 

dependence (Li, 2006; Sartor et al., 2015). Further, 49% of the variation in liability to 

alcohol dependence can be attributed to heritable influences (Verhulst, et al., 2015), while 

heritability estimates (h2) for nicotine dependence range from 0.46 for females and 0.59 for 

males (Li, 2006), though it should be noted that the relative proportions of genetic and 

shared and unique environmental influences vary and change from adolescence to adulthood 

(e.g., Kendler, Schmitt, Aggen, & Prescott, 2008). In addition to univariate behavior genetic 

analyses examining the proportions of genetic and environmental influences on a single trait, 

multivariate behavior genetic analyses examining the etiologic overlap among multiple traits 

suggest common or shared genetic and environmental factors may be contributing to the 

increased consumption levels and dependence rates across substances within families (e.g., 

Palmer et al., 2012). The overlap in environmental and genetic factors implicated in the 

liability for alcohol and tobacco use and dependence is thus indicative of a shared etiology 

and common mechanisms of action.

Despite the described findings from twin studies, molecular genetic studies, which focus on 

the identification of the specific genes or genomic regions involved in the etiology of a trait, 

have been less consistent in their conclusions about specific causal regions or single gene 

variants implicated in alcohol and tobacco use and dependence. Genome-wide association 

studies (GWASs) and meta-analytic GWASs conducted on number of cigarettes smoked per 

day and nicotine dependence have identified multiple common variants within the nAChR 

genes on chromosome 15q24–q25 (e.g., Chen et al., 2012; Thorgeirsson et al., 2008; 

Tobacco and Genetics Consortium, 2010). In contrast, meta-analyses conducted on GWA 

studies of alcohol consumption and dependence have been less informative, largely due to 

smaller sample sizes (Kapoor et al., 2013; Wang et al., 2011). Studies on comorbid alcohol 

and tobacco dependence have also been inconsistent. GWASs have identified some risk loci 

associated with comorbid DSM-IV alcohol and nicotine dependence, including variants in 

KIAA1409 and near MARK1 and DDX6 (Lind et al., 2010) and within the SH3BP5-NR2C2 
region on chromosome 3 (Zuo et al., 2012). However, these relations have been difficult to 

replicate and the overall amount of variance explained by individual regions or variants 

(typically less than 2%) falls short of heritability estimates from twin studies.

A potential limitation of GWAS and linkage studies originate from the types of genetic 

variants that they are designed to capture in analysis. GWAS were originally designed to 

identify common variation in the genome (i.e., variants with a minor allele frequency [MAF]

≥0.05) associated with a trait of interest. As a result, GWAS are ideal for testing whether 
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complex disease—disease caused by many genes, none of which are necessary nor sufficient 

to cause the disease—can be attributed to commonly-occurring variants. Variants with lower 

frequency (0.005 < MAF < 0.05) can be detected by linkage studies, but only if their effect 

size is large enough. However, many types of allelic variation, including low-frequency 

point mutations and structural variation, are thought to influence disease risk (Manolio et al., 

2009). With respect to the former, which is the focus of the present report, it has been 

suggested that numerous rare variants (MAF < 1%) of moderate to small effect may be 

contributing, in part, to the discrepancy between the additive effects of individual common 

variants and twin heritability estimates, i.e., the 'missing heritability' of complex disease 

(Bodmer & Bonilla, 2008; Manolio et al., 2009).

Population genetics theories describe numerous reasons as to why rare variants—specifically 

rare variants in protein-coding regions (exons) of the genome—are considered to be 

important in explaining disease risk, although it should be noted that both coding and non-

coding (e.g., regulatory) genetic variation is likely to contribute to these phenotypes (Schork 

et al., 2013). The majority of single-nucleotide variants (SNVs) within coding regions are 

rare (MAF < 0.05), rather than common (Nelson et al., 2012), and more likely to be 

functional (Marth et al., 2011). Functional variants include, among others, nonsynonymous 

mutations or polymorphisms that result in amino acid sequence change and affect protein 

function, compared to synonymous mutations whose amino acid product is the same. Up to 

70% of rare variants are associated with reduced survival, and thus are subject to strong 

purifying selection (Kryukov, Pennacchio, & Sunyaev, 2007). Therefore, rare variants of 

large effect are not often observed for common, complex (i.e., non-Mendelian) traits, and are 

unlikely to play a major role in their etiology. Rather, it is likely that together with other 

forms of genetic variation, rare variants with low to moderate effect sizes likely function in 

an additive fashion to increase disease risk (Pritchard, 2001; Pritchard & Cox, 2002). Given 

theoretical arguments that rare variants may contribute to the “missing heritability” problem, 

analyzing rare variant associations in coding regions may provide valuable insight about 

complex disease etiology.

Until recently, DNA sequencing was the only method available for evaluating the effects of 

rare exonic variation on complex phenotypes. Because of the expense involved, this method 

is limited in terms of the sample sizes that can be achieved. Although genotyping strategies 

are only capable of measuring typed variation (in contrast to sequencing), the methodology 

is less expensive given that it examines only a subset of the genome. To this end, an exome 

chip genotyping array was developed in order to allow for larger sample sizes and increase 

power to detect associations with rare variants. The approach of exome chip genotyping is 

similar to that used for GWASs, which tests anywhere from 500,000 to 7,000,000 markers 

with MAF > 0.05 across the entire genome, and therefore includes non-coding DNA (Attia 

et al., 2009). In contrast, exome chip genotyping arrays contain markers exclusively from 

protein-coding regions (~180,000 exons) of approximately 20,000 genes, which comprise 

about 1% of the total genome. Given that many of the rare variants associated with 

Mendelian disease are found in protein-coding regions, genotyping the exome lends itself as 

a novel approach to further investigating the genetic etiology of complex disease and more 

specifically, alcohol and tobacco co-use.
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To date, two studies have been conducted on the relationship between exonic variation and 

substance use traits (Vrieze et al., 2014; Zuo et al., 2013), although only one of these utilized 

an exome chip genotyping approach (Vrieze et al., 2014). Both studies restricted their 

analyses to nonsynonymous variants in the exome, but failed to yield any significant 

findings. Analysis of exonic variants obtained from a genome-wide genotyping array 

reported 22 nominal associations with alcohol dependence (Zuo et al., 2013), while analysis 

of exonic variants obtained from an exome chip genotyping array reported no associations 

with alcohol, tobacco, and other drug use phenotypes (Vrieze et al., 2014). While there 

appears to be some basis for disease-causing loci in the exome, findings have been 

inconclusive and methods have been limited in terms of their focus on the types of variants 

tested.

The current study sought to extend findings from previous research and determine whether 

rare variation within protein-coding regions is associated with lifetime measures of alcohol 

and tobacco co-use and dependence using an exome chip genotyping microarray. Analyses 

were conducted at the level of single variants, genes, and pathways (i.e., gene sets), without 

a priori hypotheses regarding relevant genes and pathways, as the specific genetic etiology 

of alcohol and tobacco use disorders is still poorly understood, and has been shown to 

involve biological processes both in and outside the central nervous system. Therefore, a 

wide range of genes and pathways were selected for inclusion, as a primary focus of the 

current study was to ascertain whether low-frequency variants of modest effect could be 

detected, and these associations, if present, should be fairly robust to large corrections for 

multiple testing.

Method

Sample

Participants with both genotype and phenotype data (N = 2,524) from a larger study on the 

genetics of alcohol dependence susceptibility, the UCSF Family Alcoholism Study, were 

included in analyses for the current study (see Vieten, Seaton, Feiler, & Wilhelmsen, 2004 

for a detailed description of the original study). The sample was composed of 1,218 small 

family pedigrees, ranging in size from 3–20 individuals. Individuals were recruited from the 

community and invited to participate if they met criteria for a DSM-IV lifetime alcohol 

dependence diagnosis, and had parents and/or siblings who agreed to take part in the study. 

Recruitment from a community population ensured that findings and interpretation would 

not be limited to a treatment-seeking sample. Exclusion criteria for individuals sampled 

from the community consisted of: (1) diagnosis of a past 6-month psychiatric condition 

other than depression or anxiety disorder; (2) past 6-month drug dependence diagnosis for 

substances other than alcohol, tobacco, or marijuana; (3) serious medical illness; and/or (4) 

being a non-English speaker. Family members were not subject to any strict inclusion or 

exclusion criteria, and many of these individuals reported varying levels of substance use, as 

well. Institutional IRB committees approved all study procedures, and individuals provided 

informed consent prior to participation.
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Measures

Semi-Structured Assessment for the Genetics of Alcoholism—A modified 

version of the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA; 

Bucholz et al., 1994) was administered to assess for alcohol abuse and dependence, nicotine 

and other drug use, demographic information, and medical and psychiatric diagnoses. The 

SSAGA is an empirically validated polydiagnostic semi-structured psychiatric interview 

with high test-retest reliability, ranging from 0.70 to 0.90 for specific substance dependence 

diagnoses (Bucholz et al., 1994).

Phenotypes—The following phenotypes were used in analyses to test for association with 

rare variation in the exome: (1) lifetime DSM-IV alcohol and tobacco dependence diagnoses 

(AlcDep and NicDep, respectively), (2) maximum number of drinks consumed per day 

during heaviest period of use (MaxDrinks), (3) number of cigarettes smoked per day during 

heaviest period of use (CPD), and (4) an interaction product term for a continuous measure 

of alcohol and tobacco co-use (DrinksCPD), as well as a dichotomous measure of lifetime 

alcohol and tobacco co-dependence (AlcNicDep). The alcohol dependence diagnoses were 

created using a combination of data from the SSAGA and best estimate procedures 

implemented by the study investigators (Vieten et al., 2004). The remaining phenotypes 

were created strictly from the SSAGA, which uses numerous skip-out items in assessing 

heavier levels of use. Participants who responded negatively to whether they have smoked 

100 cigarettes in their lifetime are designated as non-smokers, not administered the full 

tobacco use section, and classified as not meeting criteria for NicDep. Thus, while NicDep 

diagnoses could be assigned to all participants, regardless of smoking history, CPD was only 

assessed for individuals who endorsed smoking at least 100 cigarettes in their lifetime 

(68.6% of total sample, n = 1,277). Similarly, MaxDrinks was assessed only for individuals 

who endorsed drinking every day for a week or more (69.3% of total sample, n = 1,290), but 

AlcDep diagnoses could be assigned to all participants.

Genotyping

Quality control—The Affymetrix Axiom Exome Genotyping Array (Affymetrix, Inc.) was 

used for rare variant genotyping and analysis, capturing rare variants with a MAF > 0.005%. 

This chip contains more than 300,000 coding SNVs, including synonymous (no change in 

protein sequence), non-synonymous (change in amino acid protein sequence), splice (joining 

of exons during or following transcription), and stop codon (nucleotide triplet that signals 

termination of translation) variants. The array also contains approximately 30,000 simple 

and complex indels (i.e., insertions and deletions) corresponding to the draft Phase 1 1,000 

Genomes Project (The 1000 Genomes Project Consortium, 2012), and a variety of non-

coding annotations, including variants in intergenic regions, introns, variants upstream 

(toward 5’ end of the DNA strand) and downstream (toward 3’ end of the DNA strand) from 

the gene transcript, and variants in untranslated regions (UTRs), both upstream from the 

start codon (UTR-5) and downstream from termination codon (UTR-3). There are also over 

5,000 SNPs that have shown significant associations with a variety of complex traits in one 

or more GWA studies. Assays and genotype calls were made according to protocols 

provided by Affymetrix (Affymetrix, Inc.).
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A number of standard genotyping quality control steps were conducted on the initial dataset 

of 295,988 SNVs (Anderson et al., 2010) using PLINK 1.07 (Purcell et al., 2007) in order to 

assess genotyping sample quality and accuracy, as well as sample identities. Degree of 

relatedness estimations were conducted using the Pedigree Relationship Statistical Test 

software (PREST; Sun, Wilder, & McPeek, 2002), which ensures that the reported familial 

relationships are accurate, and also identifies unreported familial relationships. Discrepant 

self-reported and genetic identities (pedigree errors) were resolved if their familial relation 

could be established; 36 unresolved discrepant individuals were excluded. In addition, 

gender checks of sample identities were evaluated, and 6 individuals with unresolved 

discrepant sex codes were excluded.

Five individuals and 11,504 SNVs were removed due to low genotype call rates (individuals 

or SNVs with call rates < 95%), and 207,980 monomorphic SNVs (MAF = 0.0; all 

individuals carried the same genotype at these loci) were excluded. Following tests for 

deviations from Hardy-Weinberg equilibrium, 481 SNVs with a p-value less than the cutoff 

of 1e-05 were removed. Calculation of Mendelian errors and heterozygosity rates per 

individual resulted in the removal of 10 individuals. There were 207 individuals with 

duplicate samples; the overall concordance rate for genotype calls across duplicate samples 

was approximately 98%, and SNVs with discordant genotype calls across these duplicate 

samples were set to missing. All duplicate markers, mitochondrial markers and markers on 

sex chromosomes were excluded. Allele frequencies were calculated with a subset of 

unrelated European-ancestry individuals and cross-referenced with the European sample for 

the 1,000 Genomes Project (The 1000 Genomes Project Consortium, 2012). This resulted in 

the exclusion of 1,108 SNVs, whose allele frequencies differed more than 0.20 from this 

reference panel. Following the completion of quality control assessment, 1,862 individuals 

and 72,884 SNVs remained in the final dataset used for analyses.

The final sample of 1,862 individuals from 778 families was predominantly female (62%; n 
= 1153) and self-identified as Caucasian (93%), with a mean age of 49.2 (SD = 13.2) years 

for all family members. The mean reported education level was 14.5 years (SD = 2.9), and 

median annual income was approximately $48,000. Fifteen percent (n = 369) had been 

diagnosed with DSM-IV tobacco dependence only, 18% (n = 464) with DSM-IV alcohol 

dependence only, and 35% (n = 880) with both. The average number of maximum drinks 

consumed per day during the heaviest period of use was 12.2 (SD = 11.3) and 14.3 (SD = 

11.5), for the total sample, and those diagnosed with DSM-IV alcohol dependence, 

respectively. The average number of cigarettes smoked per day during the heaviest period of 

use was 22.2 (SD = 14.7) and 25.0 (SD = 14.8), for the total sample, and those diagnosed 

with DSM-IV tobacco dependence, respectively.

Data Analysis

Ancestry estimations were calculated from variants (MAF≥0.01) using principal components 

analysis (Price, Patterson, Plenge, Weinblatt, Shadick, & Reich, 2006) within the Genome-

wide Complex Trait Analysis software (GCTA; Yang, Lee, Goddard, & Visscher, 2011). The 

resulting ancestry estimates (i.e., first four eigenvectors) were used as covariates in 

subsequent association tests to control for possible population substructure. Examination of 
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a scree plot (Supplementary Figure 1) and visual inspection of scatterplots for the first four 

eigenvectors confirmed the existence of four significant components. These eigenvectors 

correlated highly with self-reported ancestry. The first eigenvector was correlated with 

European ancestry: r = 0.718, and the second eigenvector was correlated with African 

ancestry (excluding European ancestry individuals): r = 0.792. The third eigenvector was 

correlated with East Asian ancestry: r = 0.936, as estimated within the 1,000 Genomes 

Project due to the low proportion of East Asian ancestry in the UCSF sample. Finally, the 

fourth eigenvector was moderately correlated with admixed American ancestry: r = 0.316, 

with the relatively lower correlation reflecting the high levels of European ancestry 

admixture in these populations.

Single variant association tests—Single variant association tests were conducted for 

SNVs with MAF≥0.01, which included the approximate 5,000 tag SNPs included from 

previous GWAS and additional consortia efforts. Analyses were conducted using the 

Efficient Mixed Model Association eXpedited (EMMAX; Kang et al., 2010) software 

package, which uses a variance component mixed-model approach in order to account for 

possible population stratification due to ancestry and familial relatedness; these analyses 

included sex, age, age-squared, and the first four eigenvectors generated from the principal 

components analysis as covariates for the four univariate phenotypes: AlcDep, NicDep, 

MaxDrinks, and CPD. The interaction term DrinksCPD was modeled with sex, age, age-

squared, and the first four eigenvectors as covariates, as well as the main effects of 

MaxDrinks and CPD. The dichotomous AlcNicDep interaction phenotype measured 

presence or absence of both dependence diagnoses. Main effects were not included in the 

latter model, as each perfectly predicted the co-dependence phenotype, but analyses 

included sex, age, age-squared, and the first four eigenvectors as covariates (Price et al., 

2006). Given that the model assumptions for single variant association tests depend on allele 

count, such tests are typically underpowered to find significant associations with rare 

variants, and evaluating the significance of rare variant associations with a dependent 

variable must be conducted in the context of a single gene or pathway.

Gene-based association tests—Gene-based association tests expand on single variant 

approaches by evaluating the influence of multiple variants within a single gene on a 

phenotype. The SKAT-O test (Lee et al., 2012) capitalizes on the strengths of both the 

burden test (Asimit & Zeggini, 2010) and the non-burden sequence kernel association test 

(SKAT; Wu et al., 2011) to create an optimally powerful association test for use in gene-

based analyses. The burden test assumes causal variants with identical effects, while SKAT 

allows for non-causal variants or mixed causal variant effects. As such, the SKAT-O test 

statistic is a weighted combination of the SKAT and burden test statistics, with the optimal 

weight derived from the correlations of the regression coefficients. Thus, the SKAT-O test 

statistic was used for gene-based analyses within EMMAX as described for the single 

variant analyses. Phenotypes and covariates were modeled in an identical manner as for 

single variant analyses, and tests were conducted on all variants, regardless of MAF or 

annotation (e.g., coding vs. non-coding variants).
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Pathway-based association tests—As an extension of gene-based tests, pathway-

based tests consider the effects of multiple variants in groups of genes within a single 

biological pathway or gene set. Biological pathways can be broadly defined as groups of 

biologically-related genes, that are either (1) organized to represent a common direction and 

regulation towards a specified outcome, such as the metabolic pathway involved in 

gluconeogenesis, or (2) organized to represent shared relationships among elements such as 

genes or gene products, and may lack a common, specific outcome (Ramanan, Shen, Moore, 

& Saykin, 2012; Wang, Li, & Hakonarson, 2010). Online databases such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa & Goto, 2000) provide complete 

graphical diagrams of the biological processes associated with single genes and how genes 

interact within a pathway to produce specific outcomes. The Gene Ontology project (GO; 

Ashburner et al., 2000; The Gene Ontology Consortium, 2015) uses empirical data derived 

from experimental or computational analysis (e.g., protein levels ascertained through 

Western blot) to annotate and group individual genes into sets (i.e., gene sets) based on 

components of their biological function. Biological functions belong to one of three 

ontologies: cellular component (where gene products are active, e.g., nuclear inner 

membrane), molecular function (the functions or activities of a gene product, e.g., 

transporter activity), or biological process (pathways and larger processes made up of the 

functions/activities of multiple gene products, e.g., signal transduction).

One method for conducting pathway analyses begins with the raw genotype data for genes 

within a biological pathway or gene set, and then collapses across all variants contained 

within these genes. The SKAT-O test statistic can be extended to this approach, and thus, 

pathway analyses were conducted using SKAT-O within the EMMAX framework in an 

identical manner as described for the single variant and gene-based analyses.

For the purposes of the present study, the units of analysis for all pathway-based tests were 

annotated gene sets belonging to the C2: curated gene sets (n = 4,722) and C5: GO gene sets 

(n = 1,454) included in the Molecular Signatures Database (MSigDB; Subramanian et al., 

2005). MSigDB excludes certain GO gene sets if (1) they belong to a very broad category, 

(2) contain fewer than 10 genes, or (3) if their members are identical to members of another 

gene set. The C2 gene set collection includes metabolic and signaling pathways from online 

databases such as KEGG (Kanehisa & Goto, 2000), as well as expression signatures of 

chemical and genetic perturbations. The C5 gene set collection includes pathways grouped 

by their GO project term belonging to one of three ontologies (cellular component, 

molecular function, or biological process) and association to human genes. Each of the C2 

and C5 (N = 6,176) pathways were tested for association with the six alcohol and tobacco 

use phenotypes.

Results

Genomic inflation factor (lambda) values were evaluated to assess for deviations from 

normality of the test statistics. Lambda values ([1-median p-value across all tests 

conducted]/0.5) ranged from 1.00 to 1.02 for all univariate phenotypes, with the exception of 

MaxDrinks (λ = 1.04). A square-root transformation of MaxDrinks was used to achieve 

normality, yielding a lambda of 1.02, and analyses were conducted with this transformed 
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variable. Lambda values for DrinksCPD and AlcNicDep were 0.98 and 1.01, respectively. 

Phenotypic correlations ranged from 0.183 (CPD vs. MaxDrinks) to 0.384 (MaxDrinks vs. 

AlcDep). For all bivariate correlations among variables at the phenotypic level, see 

Supplementary Table 1.

Single-variant Association Tests

Single variant association tests were conducted for all variants with MAF≥0.01 (n = 58,652). 

The Genetic type I error calculator (GEC; Li, Yeung, Cherny, & Sham, 2012) was used to 

estimate the effective number of independent tests (n = 41,378) by accounting for 

correlations (i.e., linkage disequilibrium) among variants. The GEC program was also used 

to compute the significance threshold necessary to control the type I error rate at 0.05. The 

critical p-value was 1.21 x 10−6 (0.05/41,378), and this was set as the threshold for statistical 

significance. Consistent with genome-wide approaches to relax this critical value by 

approximately three orders of magnitude (e.g., from 5.0 x 10−8 to 5.0 x 10−5) for 

determining suggestive association, a critical value of p < 1.21 x 10−3 was set as the 

threshold for suggestive association, both for individual phenotypes as well as cross-

phenotypes (i.e., associated with three or more phenotypes). Despite the moderate degree of 

correlation across phenotypes, a conservative p-value cut-off was retained in order to 

minimize false positive findings, given the large number of single variants tested. A low-

frequency missense variant in EMR3was significantly associated with DrinksCPD 

(rs117374816[C]), MAF = 0.019, b = -23.227, standard error (SE) = 4.73, p = 1.05 × 10−6), 

and accounted for 2.4% of the variation in DrinksCPD. Two variants demonstrated 

suggestive association (p < 1.21 x 10−3) with three or more phenotypes (Table 1): 

rs138707300 and rs10867752. In addition, a synonymous IREB2 variant near the cholinergic 

nicotinic receptor subunit gene cluster on chromosome 15q24-q25 showed suggestive 

association with CPD (rs13180[T]), MAF = 0.433, b = 2.537, SE = 0.578, p = 1.24 × 10−5; 

Supplementary Table 2). Additional suggestive associations in this region (see 

Supplementary Table 2) included two variants in CHRNA3 (rs938682[A], MAF = 0.321, b = 

2.856, SE = 0.673, p = 2.33 × 10−5; and rs1051730[G], MAF = 0.302, b = −2.251, SE = 

0.618, p = 2.79 × 10−4), as well as rs16969968[G] in CHRNA5 (MAF = 0.302, b = −2.267, 

SE = 0.618, p = 2.57 × 10−4), which is in strong linkage disequilibrium with rs1051730 and 

therefore highly correlated with the CHRNA3 signal.

Gene-based Association Tests

Gene-based association tests were conducted for all variants in the gene regardless of MAF, 

and were restricted to those genes with more than one variant available for analysis (n = 

12,240). Critical p-value thresholds of 4.08 x 10−6 (0.05/12,240) and 4.08 x 10−3 were set to 

determine statistical significance and suggestive evidence of association, respectively. The 

number of variants per gene ranged from 2 to 209. Many genes demonstrated suggestive 

association with each of the phenotypes (see Supplementary Table 3), although none met 

criteria for statistical significance. Twelve genes showed suggestive association (p < 0.01) 

with three or more phenotypes (Table 2). Current approaches for conducting gene-based 

tests of association do not allow for valid estimation of effect sizes; therefore, the analyses in 

the current study do not include estimates of the effect for a single gene.

Otto et al. Page 9

Psychol Addict Behav. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pathway-based Association Tests

Pathway-based association tests were conducted by including all variants in a given pathway, 

regardless of MAF (n = 6,176). Critical p-value thresholds of 8.10 x 10−6 (0.05/6,176) and 

8.10 x 10−3 were set to determine statistical significance and suggestive evidence of 

association, respectively. The number of variants per pathway ranged from 3 to 7,533. One 

pathway (C2:NAKAMURA_ADIPOGENESIS_LATE_UP; ‘Genes up-regulated in 

mesenchymal stem cells during late phase of adipogenesis, defined as days 7 to 14 of 

culturing with adipogenic hormones’) was significantly associated with AlcDep (p = 2.62 x 

10−6), and numerous pathways demonstrated suggestive association with each phenotype (p 
< 8.10 x 10−3; see Supplementary Table 4). Twenty pathways showed suggestive association 

(p < 0.01) with three or more phenotypes (Table 3). Similar to gene-based tests, current 

approaches for conducting pathway-based tests of association do not allow for valid 

estimation of effect sizes, and thus are not reported.

Discussion

This study examined the effects of genetic variation in protein-coding regions of the genome 

on alcohol and tobacco co-use and dependence. Three sets of results emerged from the study 

analyses. First, a missense variant (rs117374816) in ERM3 was significantly associated with 

DrinksCPD. Suggestive associations were also observed for single variants in genes 

identified in previous studies of substance use and dependence. Second, a number of the top 

signals in the single variant and gene-based tests showed suggestive association with 

multiple phenotypes, and may implicate a more general liability to psychopathology. Finally, 

multiple biological pathways of interest emerged in analyses that grouped variants across 

sets of genes, furthering our understanding of the mechanisms involved in alcohol and 

tobacco use and dependence. These included a significant association of AlcDep with a 

pathway related to increased gene expression during the late phase of adipogenesis, and a 

second pathway containing genes with high-CpG-density promoters that lack histone H3 

methylation marks in the brain that demonstrated suggestive association with multiple 

phenotypes. Each of these three sets of results will be discussed in turn, as well as the 

implications of specific genetic influences and the limitations of functional exonic variants’ 

ability to explain the missing heritability of alcohol and tobacco use phenotypes with current 

sample sizes.

As stated, the first set of results corresponds to the suggestive associations for relevant 

variants in candidate genes that have been previously associated with substance use traits, 

demonstrating the potential of an exome-focused analytic approach if larger samples can be 

obtained. Variants in CHRNA3, CHRNA5 and IREB2 (Bierut, 2009) were among the top 

associations with CPD and implicate loci from previous meta-analyses of smoking behaviors 

and lung cancer risk (Supplementary Table 2). These included rs938682 in CHRNA3, a 

variant previously correlated with a risk locus associated with age of first regular tobacco 

use (Stephens et al., 2013), as well as rs16969968 in CHRNA5 and rs1051730 in CHRNA3, 

which are in strong linkage disequilibrium and thus highly correlated. The latter two variants 

corroborate associations with smoking phenotypes in previous studies (Chen et al., 2012; 

Saccone et al., 2010; Tobacco and Genetics Consortium, 2010; Ware, van den Bree, & 
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Munafo, 2011) and provide further evidence to support a causal role in smoking quantity. 

Though not statistically significant, the range of effect sizes observed for these variants (e.g., 

R2 < 0.02) approached those of past studies. As such, these trend-level findings provide 

validation of the exome chip genotyping microarray approach for evaluating the effects of 

rare protein-coding variation on alcohol and tobacco use and dependence by identifying 

several relations between known variants robustly associated with these phenotypes in 

previous studies.

Although not previously associated with substance use phenotypes, one variant 

(rs117374816) in EMR3 (also referred to as ADGRE3) was significantly associated with 

DrinksCPD. EMR3 encodes a member of the class B seven-span transmembrane (TM7) 

receptor family expressed predominantly by immune system cells, and may play a role in 

myeloid-myeloid interactions during immune and inflammatory responses. Previous 

research has demonstrated a relationship between psychiatric disorders and immune 

functioning (e.g., Network and Pathway Analysis Subgroup of Psychiatric Genomics 

Consortium, 2015; Wang, Yang, Gelernter, & Zhao, 2015), warranting future investigations 

for EMR3 with larger samples.

Similar to the results for single variant analyses, many genes demonstrated suggestive 

association with each of the phenotypes. The relative lack of significant gene-based tests is 

consistent with previous studies that tested for associations of rare and common variants 

within genes with alcohol and tobacco use phenotypes (Vrieze et al., 2014; Zuo et al., 2013). 

Notably, these earlier studies restricted their gene-based tests to include only 

nonsynonymous variants, whereas the current study expanded these analyses to include a 

large number of different variant types. Despite a wider scope of putatively functional 

variants within genes, the results from this study were consistent with those of the earlier 

studies, and suggest that much larger sample sizes will be needed to detect the effects of 

exonic variants on alcohol and tobacco use. Further, findings from both studies provide a 

useful examination of the genetic architecture of alcohol and tobacco co-use and dependence 

by incorporating the analysis of rare coding variation.

The absence of strong effects at the gene level suggests that there may not be a collection of 

multiple variants within one specific gene of large effect that underlies risk for alcohol and 

tobacco co-use and dependence. Rather, consistent with findings from GWAS of complex 

traits, including easily measurable traits that strongly influenced by genetic factors, such as 

height, the current study suggests that a highly polygenic architecture underlies alcohol and 

tobacco use and misuse. Therefore, associated loci, be they common or rare, are likely to be 

located across hundreds of genes, similar to recent reports of 697 genome-wide significant 

SNPs in more than 400 gene regions associated with variation in human height (Wood et al., 

2014). As a result, any single variant or gene is going to have a relatively small effect at the 

population level in terms of conferring risk for alcohol and tobacco use phenotypes.

The second set of results that emerged was the cross-phenotype associations observed for the 

most highly associated single variants and genes, several of which corresponded to genes 

that have also been associated with a broad range of psychiatric phenotypes. At the single 

variant level, a missense variant in SYNE1 (rs138707300) and one intergenic variant on 

Otto et al. Page 11

Psychol Addict Behav. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chromosome 9 (rs10867752) showed cross-phenotype suggestive associations with three or 

more phenotypes: AlcDep, NicDep, MaxDrinks, and AlcNicDep. The synonymous variant 

rs138707300 belongs to the SYNE1 gene, which has been associated with psychiatric 

phenotypes in past research, including alcohol dependence (Edenberg et al., 2010), 

depression (Green et al., 2013; Y. Liu et al., 2011), and bipolar disorder (e.g., Cross-

Disorder Group of the Psychiatric Genomics Consortium & Consortium, 2013; Green et al., 

2013; Y. Liu et al., 2011; Sklar et al., 2011).

At the gene-level, twelve genes showed cross-phenotype suggestive associations with three 

or more phenotypes (Table 2). These included the LIMK2 gene, which demonstrated 

suggestive association with AlcDep, CPD, and AlcNicDep, and the MYOCD gene with 

AlcDep, MaxDrinks, and AlcNicDep. LIMK2 has been associated with treatment response 

for methamphetamine addiction (Li et al., 2014), as well as other psychiatric phenotypes in 

past research (Datta, Arion, Corradi, & Lewis, 2015; Zhao et al., 2015), while a variant in 

MYOCD was the most strongly associated variant with heroin addiction in a separate study 

(Nielsen et al., 2008). Many genes demonstrated cross-phenotype suggestive associations 

and have shown association with a variety of non-substance use-related psychiatric 

phenotypes across independent studies (e.g., BOC: Terwisscha et al., 2013; PTX3: Drexhage 

et al., 2010, Haarman et al., 2014; C5ORF42: Fisher et al., 2015; OR4E2: Aragam, Wang, 

Anderson, & Liu, 2013).

These findings suggest that variants within these genes may underlie a more general 

predisposition to psychopathology, rather than acting as substance-specific risk factors. This 

approach is consistent with arguments that while subfactors such as the internalizing and 

externalizing dimensions can be identified, an overarching super factor may cut across all 

aspects of psychopathology (Caspi et al., 2014). In this way, substance use behaviors could 

result from transdiagnostic endophenotypes (both genetic and environmental in nature), and 

the observation of manifest co-occurring disorders would therefore be the result of these 

shared transdiagnostic endophenotypes, rather than an indication of independent underlying 

constructs. Consistent with this interpretation, the number of variants identified in the 

present report that had demonstrated suggestive association with multiple psychiatric 

phenotypes in previous studies adds to evidence from recently published studies indicating 

that several common variants conferred risk for psychopathology in a manner that cut across 

diagnostic boundaries (Cross-Disorder Group of the Psychiatric Genomics Consortium, 

2013). As such, the findings from this study expand on prior research by incorporating the 

effects of rare protein-coding variation in cross-phenotype and cross-disorder analyses. In 

addition to the variants that have shown robust association with specific substances, there 

may exist non-specific genetic factors in the risk for increased levels of alcohol and tobacco 

use and dependence, as suggested by previous studies (e,g., Palmer et al., 2012; Zuo et al., 

2012). Although shared environmental factors also contribute to alcohol and tobacco use 

(Do et al., 2015; Verhulst et al., 2015), the current findings extend multiple lines of research 

by evaluating the effects of both rare and common protein-coding variants across 

independent substance use traits.

Finally, numerous pathways demonstrated suggestive association with each of the 

phenotypes, and one pathway (C2:NAKAMURA_ADIPOGENESIS_LATE_UP) was 
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significantly associated with AlcDep (Supplementary Table 3). This pathway includes genes 

up-regulated in mesenchymal stem cells (which are multipotent progenitor cells that can 

give rise to several types of cells belonging to human skeletal tissues, such as cartilage, bone 

and fat) during the late phase of adipogenesis. Ethanol exposure has been associated with 

adipogensis in human bone marrow mesenchymal stem cells (Wezeman & Gong, 2004), 

thus providing a potential explanation for the observed overlap. The top suggestive 

associations included pathways involved in hormone action (Holmans et al., 2009), neural 

structures and neurotransmitter systems (Jia, Wang, Meltzer, & Zhao, 2010), immune 

signaling (Jia et al., 2010; Network and Pathway Analysis Subgroup of Psychiatric 

Genomics Consortium, 2015), and cell-adhesion and structure proteins (O’Dushlaine et al., 

2010), all of which are consistent with previous GWAS pathway analyses of psychiatric 

phenotypes.

In addition, genes belonging to the Class C/3 metabotropic glutamate and pheromone 

receptors pathway (C2: REACTOME CLASS C3 METABOTROPIC GLUTAMATE 

PHEROMONE RECEPTORS) showed suggestive association with AlcDep, which 

replicates existing research that suggests a direct effect of alcohol on the glutamatergic 

neurotransmitter system (Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012). Previous 

studies have also provided evidence of differential brain methylation levels between alcohol-

dependent individuals and controls, such that individuals with alcohol dependence exhibit 

DNA hypomethylation (Ponomarev et al., 2012). Consistent with this hypothesis, the top 

association for AlcNicDep showed suggestive association with a pathway containing genes 

with high-CpG-density promoters that lack histone H3 methylation marks in the brain (C2: 

MEISSNER BRAIN HCP WITH H3 UNMETHYLATED), which also suggests a more 

general effect for alcohol and other drug dependence on gene expression via epigenetic 

mechanisms such as DNA methylation. This pathway also demonstrated suggestive 

association with multiple phenotypes, including AlcDep, NicDep, and AlcNicDep 

(Supplementary Table 4), and thus warrants further investigation of epigenetic mediation of 

genetic risk for alcohol and tobacco use behaviors.

Some study limitations regarding the phenotypes, tested variants, and sample characteristics 

warrant consideration. Inspection of lambda values for initial association tests of MaxDrinks 

indicated that observed test statistics deviated from normality of the expected -log(p) values, 

which was corrected by employing a square-root transformation of the MaxDrinks variable. 

Although this correction resulted in the removal of possible systematic bias in the 

association analyses, it necessarily has the added effect of also transforming the nature of the 

variable, and thus its interpretation in the context of these results. In addition, the small 

sample size and the relatively large number of tests conducted (41,378 effective independent 

SNV tests, 12,240 gene-based tests, and 6,176 pathway-based tests) limited power to detect 

effects, especially at the single variant level. This limitation is somewhat mitigated for the 

gene- and pathway gene-set analyses, given the smaller number of tests conducted relative to 

the single variant tests. Furthermore, the advantage of focusing on protein-coding regions, 

relative to conventional GWAS, is the ability to select and interrogate variants within these 

regions that lead to direct changes in the amino acid sequence of the encoded protein, and 

thus prioritize these variants as more likely to have an influence on the phenotype. Outside 

of gene regions, the potential consequence of a given base pair substitution at any one site is 
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much more difficult to predict. However, the small number of statistically significant 

associations suggests that, similar to conventional GWAS, larger samples will be needed to 

examine the association of rare and common variants with alcohol and tobacco use 

phenotypes.

The number of individual variants included in tests of association also varied greatly across 

genes and pathways, and was positively skewed, especially for pathways, representing 

another potential limitation. The SKAT-O test was developed as a more robust alternative to 

the burden or non-burden kernel tests. In this way, the SKAT-O should account for the 

number of rare causal variants with the same direction of effect versus the number of 

noncausal or causal variants with different association directions, but the large range of 

variants across tests still merits consideration as power to detect true associations will 

decrease with the addition of many noncausal variants. In addition, future research should 

consider the inclusion of variants within regulatory regions that might influence the 

expression of specific genes, given evidence of their role in complex disease etiology and the 

inability to account for their effects in the current study (Schork et al., 2013). In terms of the 

study sample, it should also be noted that the majority of the participants were European, 

and although analyses controlled for population stratification, the generalizability of the 

results across different ancestral groups is still relatively limited. Analyses were not 

conducted separately in the largest ancestral group (i.e., European ancestry), as doing so 

would limit the sample size further, and given the small sample sizes of non-European 

ancestral groups, there was no ability to conduct comparisons across ancestral groups. 

Finally, the sample was originally recruited based on alcohol dependence status, and so the 

power to detect rare variant associations with tobacco use and dependence may be limited.

To date, only one other study has used an exome chip genotyping approach to examine the 

effects of rare variants in protein-coding regions of the genome on alcohol and tobacco use 

and dependence (Vrieze et al., 2014). Though rare exonic variants are thought to be 

important influences in complex disease etiology, the absence of statistically significant 

associations from both Vrieze et al. (2014) and the current study indicate that limitations 

exist in these variants’ ability to explain much of the missing heritability of alcohol and 

tobacco use phenotypes with current sample sizes. It is also unclear to what extent these 

findings might change with a sample that differed in the relative amount of exposure to 

alcohol and tobacco. While all participants could be assigned a diagnosis of AlcDep or 

NicDep, quantitative measures of alcohol and tobacco use were only available for 

individuals who endorsed smoking at least 100 cigarettes and drinking every day for a week 

or more in their lifetime. Although shared as well as nonshared environmental factors are a 

significant contributor to the timing (i.e., age) of substance use initiation, there is also 

evidence of shared genetic factors that influence both age of substance use initiation and 

symptoms of a substance use disorder (Richmond-Rakerd et al., 2016). Therefore, while 

there is evidence that genetic factors contribute to substance use initiation and later disorder, 

we were unable to compare whether the suggestive associations identified in the current 

study are found at different levels of exposure and alcohol and tobacco use, given the small 

number of individuals who denied lifetime smoking or regular alcohol use.
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Nonetheless, the results provide further support and replicate robust findings in the literature 

on the association of variants in the nicotinic acetylcholine receptor genes with tobacco use 

phenotypes, as well as a number of variants that have been linked to psychiatric traits more 

broadly. Suggestive findings from the present report also suggest that variants in pathways 

related to hormone action, neural structures and neurotransmitter systems, immune 

signaling, and cell-adhesion and structure proteins, metabotropic glutamate receptors, and 

DNA methylation may be related to alcohol and nicotine dependence, as well as higher 

levels of alcohol and tobacco use. Future investigations might attempt to address the 

described limitations, as well as validate the single variants, genes, and pathways of interest 

using whole-genome sequence methods and measures of epigenetic influences on alcohol 

and tobacco co-use and dependence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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