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Isotropic Failure Criteria Are Not
Appropriate for Anisotropic
Fibrous Biological Tissues
The von Mises (VM) stress is a common stress measure for finite element models of tissue
mechanics. The VM failure criterion, however, is inherently isotropic, and therefore may
yield incorrect results for anisotropic tissues, and the relevance of the VM stress to aniso-
tropic materials is not clear. We explored the application of a well-studied anisotropic
failure criterion, the Tsai–Hill (TH) theory, to the mechanically anisotropic porcine
aorta. Uniaxial dogbones were cut at different angles and stretched to failure. The
tissue was anisotropic, with the circumferential failure stress nearly twice the axial
(2.67 6 0.67 MPa compared to 1.46 6 0.59 MPa). The VM failure criterion did not cap-
ture the anisotropic tissue response, but the TH criterion fit the data well (R2¼ 0.986).
Shear lap samples were also tested to study the efficacy of each criterion in predicting tis-
sue failure. Two-dimensional failure propagation simulations showed that the VM failure
criterion did not capture the failure type, location, or propagation direction nearly as
well as the TH criterion. Over the range of loading conditions and tissue geometries stud-
ied, we found that problematic results that arise when applying the VM failure criterion
to an anisotropic tissue. In contrast, the TH failure criterion, though simplistic and
clearly unable to capture all aspects of tissue failure, performed much better. Ultimately,
isotropic failure criteria are not appropriate for anisotropic tissues, and the use of
the VM stress as a metric of mechanical state should be reconsidered when dealing with
anisotropic tissues. [DOI: 10.1115/1.4036316]
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1 Introduction

Accurate failure prediction techniques are essential to assess
and understand biological tissues at risk of failure. In the case of
adverse physiological conditions (i.e., traumatic injury, repetitive
use, pathological states, etc.), tissue failure is often unprecedented
and always unfavorable. When tissue function is compromised,
preventive actions, such as surgical resection, replacement, or
repair, can be used to correct and/or fortify the damaged tissue.
Without the ability to assess tissues at risk of failure properly,
however, corrective action may be misguided or incomplete. As a
result, failure analysis and modeling have become increasingly
active research areas [1–4].

Many fibrous soft tissues exhibit anisotropic mechanical
behavior, including arteries [5–8], ligaments [9–12], tendons
[13,14], and skeletal muscle [15,16]. Directionally dependent
material strength is central to tissue function, allowing for
proper load bearing during the complex loading situations
brought on by bodily processes and movement. For example,
the anterior cruciate ligament (ACL) is composed of elastin,
extracellular proteins, and highly aligned collagen (type I) fibers
in the longitudinal direction, which gives rise to a strong con-
nection between the femur and tibia, providing resistance of
anterior-tibial translation and rotation during various loading
schemes [17]. As collagen fibers are highly aligned in the direc-
tion of tensile loading, large forces are permitted during such
movements, allowing the ACL to function as a vital mechanical
stabilizer in the knee.

Showing the von Mises stress in computer simulations of a
fibrous tissue at risk of failure has become a routine practice (e.g.,
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Refs. [18–23]). The von Mises stress incorporates the six compo-
nents of the Cauchy stress tensor into a single, easily visualized,
scalar value. While its ease of calculation and its availability as a
standard output in most finite element software packages make
the von Mises stress attractive, its use is accompanied by the
implicit assumption that the von Mises failure criterion is applica-
ble to the tissue in question. The von Mises criterion, however, is
isotropic, in that the von Mises stress depends equally on stresses
in all directions. By showing the von Mises stress within a tissue,
one implicitly treats it as isotropic.

The maximum principal stress (MPS) is also commonly
reported in finite element simulations of biological tissue [24,25].
Like the von Mises stress, the MPS depends equally on stresses in
all directions, thus making it inherently isotropic as well. The
MPS may also be a poor stress metric to use when considering
anisotropic tissues, because the tissue is generally designed to
bear the largest loads in the strongest direction. Another direction,
however, may experience stress smaller than the MPS but greater
than the material strength in that direction.

For many fibrous tissues (e.g., Achilles tendon), loading most
often occurs along the direction of highest material strength, so
considerations of an anisotropic failure criterion may not be nec-
essary. For tissues that undergo complex loading situations, where
failure may occur in multiple directions and ways, directional
strength must be accounted for. As anisotropy plays a significant
role in the proper mechanical functioning of these tissues, it is
imperative that directional strength be considered when predicting
failure of anisotropic tissues.

Typically, isotropic failure criteria have been used when
assessing soft biological tissues. Volokh [18] explored the use of
isotropic failure criteria, including the von Mises failure criterion,
when assessing arteries using various constitutive models. They
found that the von Mises failure criterion was incapable of accu-
rately predicting failure in the case of biaxial loading situations,
as expected, and suggested that anisotropic alternatives must be
used. Nathan et al. [22] assessed thoracic aorta wall stress in
patients using the von Mises stress, without any failure considera-
tions. Their conclusions focused on identifying locations of high
wall stress; however, all results were based solely on the von
Mises stress, assuming that it is a meaningful measure of stress
in the aortic wall. These studies, among others [19–21,23], exem-
plify how common it has become to use the isotropic von Mises
stress and failure criterion when tissues well known to be
anisotropic.

Extensive work has been done to analyze the failure behavior
of nonbiological anisotropic fiber composites [26–31]. For exam-
ple, the Tsai–Hill theory [32,33] is a popular maximum-work
theory to characterize the in-plane failure of orthotropic lamina.
For a given stress state, the theory provides a single scalar failure
criterion based on the principal material direction strengths and
the shear strength. The Tsai–Hill theory has been used to study
reinforced polymer–polymer composites [30], carbon-epoxy
composites [31], and simulations of fiber composites [34], along
with other fibrous materials [35,36], and has proven effective as a
failure criterion for such materials.

Thus, unlike the von Mises failure criterion, the Tsai–Hill fail-
ure criterion provides a potential platform to analyze how off-axis
loading affects an anisotropic fibrous material. This advantage,
however, is not without cost. The Tsai–Hill criterion requires
three parameters for full model specification, in contrast to the sin-
gle parameter of the von Mises criterion, so additional testing is
needed. An additional advantage of the von Mises stress is that it
can be calculated without foreknowledge of the failure behavior
of the tissue.

Clearly, the choice of failure model depends on the specific
system under study and the question(s) to be answered, but the
validity of the von Mises stress as a metric of the stress state in an
anisotropic tissue must be challenged. In the present work, we
conducted a series of failure experiments on a representative ani-
sotropic tissue (porcine aorta) and analyzed the results using both

an isotropic (von Mises) and an anisotropic (Tsai–Hill) failure
criterion.

2 Methods

The porcine abdominal aorta is an anisotropic tissue that con-
tains an underlying fiber laminate structure comprised mainly of
collagen and elastin. The primary load-bearing layer, the tunica
media, consists of lamellar sheets of elastin and collagen con-
nected by vascular smooth muscle cells and extracellular proteins
such as fibrillin-1 [37]. The collagen fibers exhibit a strong prefer-
ential alignment in the circumferential direction, along with a
weaker, but still significant preference for the axial over the radial
direction [38], making these two fiber alignments the assumed
principal material directions. Thus, the porcine arterial wall pro-
vided an excellent representative system on which to study the
efficacy of different failure criteria.

2.1 Experiment

2.1.1 Uniaxial Dog-Bones. Porcine abdominal aortas (11.35
6 1.67 cm in length, mean 6 SD) were obtained from 6 to 9
month old pigs (n¼ 7, 83.6 6 10.0 kg in weight) following an
unrelated study and stored in a 1� phosphate-buffer saline (PBS)
solution at 4 �C. The aorta was cleaned of excess connective tissue
on the adventitial surface, and in some cases, a small amount of
adventitia was inadvertently removed during the dissection pro-
cess. Each aorta was cut open axially along the posterior region
where it was anchored to the vertebral column. Uniaxial dog-bone
samples (approximately 5 mm in width and 10 mm in length with
a 3 mm wide neck region) were cut from the opened aorta with
sample angles ranging from 0 deg (circumferential) to 90 deg
(axial) with respect to the vessel circumference in increments of
15 deg (Fig. 1(a), n> 9 for each angle). Sample orientation was
randomized along the length of the vessel to minimize error due
to any regional heterogeneity. Each sample was photographed
prior to testing, and the undeformed sample width and thickness
were measured using ImageJ. Samples were speckled with pow-
dered, dry Verhoeff’s stain in order to produce a distinct surface
texture for full-field displacement tracking analysis via digital
image correlation (DIC) [39]. Samples were loaded into custom
grips and subjected to uniaxial tensile loading tests (Instron 8800
Microtester) at 10 mm/min until failure (Fig. 1(b)) in a 1� PBS
bath at room temperature. Loads were recorded by a 500 N load
cell. All experiments were performed within 48 h of harvest.

The measured force was divided by the undeformed cross-
sectional area to calculate the first Piola–Kirchhoff stress. Due to
speckle adherence issues in the PBS bath, a significant number of
uniaxial samples (>40) did not have a usable, distinct speckle pat-
tern for DIC. Strain tracking of selected dogbones (n¼ 5) showed
a maximum error of 10% between the grip stretch and the neck
region stretch, so grip stretch was used to convert first
Piola–Kirchhoff stresses into Cauchy stresses under the assump-
tion of tissue incompressibility. To validate this method, Cauchy
stresses for six samples with usable speckle patterns from one
sample angle were calculated based on neck stretch obtained via
DIC as well as grip stretch. Cauchy stresses calculated with the
grip stretch were within 10% of the stresses calculated with the
neck stretch throughout the entire loading curve, and some sam-
ples exhibited even as low as 1–2% error throughout the entire
loading curve. Statistical analyses (one-way ANOVA and Tukey’s
multiple comparisons) of failure stresses were performed using
GraphPad Prism 6.

2.1.2 Uniaxial Shear Lap Samples. Shear lap samples were
prepared (n¼ 7 from two porcine aortas) with sample arms
oriented in the circumferential direction (Fig. 1(c)). Samples were
approximately 35 mm long with an arm width of 3 mm. The over-
lap region was approximately 5 mm wide at the largest point. The
sample geometry was selected due to the large amount of shear
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that would be imposed in the overlap region of the sample during
mechanical testing (cf. Refs. [40] and [41]), yielding a challenging
problem for failure predictors.

Samples underwent the same procedure as specified for the
uniaxial dog-bones regarding tissue dissection, storage, photo-
graphing, and speckling. Shear lap samples were clamped in cus-
tom grips, submerged in a 1� PBS bath at room temperature, and
pulled in strain-to-failure experiments on a uniaxial testing
machine (MTS, Eden Prairie, MN) at a rate of 3 mm/min. Forces
were recorded by a static 10 N load cell. The displacement at the
onset of failure was determined by correlating the sample video
time with the recorded data.

Area fraction of the smaller remaining piece postfailure was
calculated using an image of the sample immediately prior to total
failure. A crack propagation line was selected for each experimen-
tal sample by connecting the start and end points of the crack.
Samples were then manually outlined, and the pixel area was cal-
culated for the entire sample and the two pieces on both sides of
the crack propagation line. A pixel area average from five manual
outlines was used for each piece. Area fraction was calculated as
the pixel area of the smaller torn piece divided by the total pixel
area of the sample.

The crack propagation angle was calculated in the undeformed
domain for each shear lap sample. The line of crack propagation
on the image prior to total failure was projected back to the unde-
formed domain using the deformation gradient (obtained by strain
tracking methods described earlier) for an element along the crack
propagation line. The crack propagation angle was then calculated
between the crack propagation line in the undeformed domain and
the horizontal direction.

2.2 Failure Criteria. The von Mises failure criterion takes
the form

r1�r2ð Þ2þ r2�r3ð Þ2þ r3�r1ð Þ2þ6 s12
2þs23

2þs31
2ð Þ

2

� �1
2

�ryield

(1)

where ri are the normal Cauchy stresses with respect to the
coordinate directions. In the case of uniaxial extension (in the 11
direction)

r2 ¼ r3 ¼ 0 (2)

Fig. 1 (a) Outlines of dogbone sample geometries are shown along the axial length of
the vessel (not drawn to scale). Angles were taken to be relative to the circumferential ori-
entation (0 deg). Scale bar shown in white. (b) A representative stress–stretch curve for
one uniaxial sample, with corresponding tissue images during testing. (c) Outline of the
shear lap sample geometry (not drawn to scale). (d) A representative force–displacement
curve for one shear lap sample. Failure initiated near the overlap region of the sample
and propagated across the overlap region (lap across failure).
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s12 ¼ s23 ¼ s31 ¼ 0 (3)

which reduces the von Mises failure criterion to the form

r1 � ryield (4)

When r1 reaches the failure threshold, ryield, failure is predicted.
As the choice of uniaxial yield stress for the von Mises failure cri-
terion is ambiguous, three cases were explored, where the yield
stress was equal to (1) the overall average uniaxial failure stress,
(2) the average uniaxial circumferential failure stress, and (3) the
average uniaxial axial failure stress.

The Tsai–Hill model for a uniaxial test takes the form [26]

cos4h
r2

1U

� cos2h sin2h
r2

1U

þ sin4h
r2

2U

þ sin2h cos2h
s2

12U

<
1

r2
x

(5)

where r1U , r2U , and s12U are constants representing the material
behavior. Specifically, r1U is the ultimate strength of the material
in the principal material direction (direction of highest material
strength, typically that of fiber orientation), r2U is the ultimate
strength of the material in the transverse direction, and s12U

accounts for the shear strength of the material. For in-plane artery
tests, the preferred principal material direction was assumed to be
the circumferential, and the transverse direction was taken to be
the axial, since uniaxial testing shows higher circumferential fail-
ure stresses compared to axial [42–44]. Therefore, in Eq. (5), h
was defined to be the counterclockwise sample angle relative to
the circumferential direction, r1U was the circumferential (0 deg)
failure stress, r2U was the axial (90 deg) failure stress, s12U was
the shear stress, and rx was the failure stress in uniaxial extension
at a given sample angle. When h¼ 0 deg, the condition reduces to
rx > r1U , and when h¼ 90 deg, the condition reduces to rx > r2U .
The three constants r1U , r2U , and s12U were fit to the experimental
data.

2.3 Finite Element Modeling. Finite element models were
constructed in FEBio [45] to simulate the shear lap experiments.
Each undeformed shear lap sample geometry (n¼ 7) was recon-
structed based on the image taken during experimental testing. A
uniform thickness was applied to each sample to match its meas-
ured thickness (2.07 6 0.28 mm, mean 6 SD). Geometries were
meshed in ABAQUS with approximately 6000 brick elements.

Sample meshes were imported into FEBio for finite element
analysis. The tissue was specified as a volume-conserving
uncoupled solid mixture consisting of a Neo-Hookean component
given by the strain-energy density function

~w ¼ C1
~I1 � 3
� �

þ 1

2
K ln Jð Þ 2 (6)

where C1 is the Neo-Hookean material coefficient, ~I1 is the first
strain invariant of the deviatoric right Cauchy–Green tensor, K is
the bulk modulus, and J is the determinant of the deformation
gradient tensor. There was also one fiber family, oriented in the
circumferential direction, specified by the strain-energy density
function

~w ¼ n
ab

exp a ~I4 � 1
� �bh i

� 1

� �
(7)

where n is the fiber modulus, a is the exponential coefficient, b is
the power of the exponential, and ~I4 is the square of the fiber
stretch. b was set to 2, and C1, n, and a were left as fitting parame-
ters based on the prefailure behavior of the tissue during the
experiment. The bulk modulus, K, was set to one thousand times
the Neo-Hookean material coefficient (C1) to ensure that the
model was nearly incompressible. The fiber family also had a
bulk modulus, which was set to one thousand time the fiber

modulus (n) to ensure incompressibility. Incompressibility was
satisfied within 1–7% when the stress reached its maximum. One
fiber family, as opposed to multiple, was used to create a constitu-
tive model that captured the experimental behavior with minimal
fitting parameters.

To perform each simulation, boundary conditions were applied
to the fixed and moving faces of the sample mesh to match
the experiment. The nodes on the fixed face were given a zero-
displacement boundary condition in all directions, while the nodes
on the moving face were given a zero-displacement boundary
condition in the vertical and out of plane directions (Fig. 2). Pre-
scribed nodal displacements, based on experimental displace-
ments, were applied to the moving face.

The material fitting parameters (C1, n, and a) were optimized
to fit the experimental loads for each sample by a customized
routine utilizing a modified version of the Matlab fminsearch
function to minimize the squared error between the simulation
and experimental loads (described fully in Ref. [12]). The reac-
tion forces on the moving face were output from the simulation
and compared to the experimental loads at ten specified dis-
placements. Comparing the force output from the simulation to
the prefailure experimental forces ensured a proper material
description. On average, R2¼ 0.99 for the seven shear lap
samples, with the worst fit having R2¼ 0.97. Optimization was
performed on one core at the University of Minnesota Super-
computing Institute.

2.4 Two-Dimensional Failure Propagation Simulations. To
compare the predictive capabilities of the von Mises and
Tsai–Hill criteria, 2D failure calculations for the shear lap samples
were performed in a modified version of the ArcSim thin sheet
dynamics simulator [46]. The deforming sample geometry was
modeled as a triangle mesh in two dimensions, with elastic forces
computed using linear finite elements. The constitutive model
(same as above) was adapted to triangular elements by treating
them as constant strain prisms with zero out-of-plane shear.
Imposing the assumptions of incompressibility and zero out-of-
plane normal stress, then determined the deformed thickness
and the in-plane stress. Rayleigh damping proportional to the tan-
gential stiffness matrix was added.

In order to resolve regions undergoing failure, the finite-
element mesh was dynamically refined during the course of the
simulation using the algorithm of Narain et al. [47]. Refinement
was driven solely by the value of the failure criterion so that
regions close to failure were refined to maximum resolution (a tar-
get edge length of 0.05 mm). Failure propagation was computed
using the substepping algorithm described by Pfaff et al. [48] that
alternated between two steps: (i) splitting elements that reached
the failure threshold and (ii) recomputing stresses in the neighbor-
hood using a virtual time step. The substepping algorithm was
modified to delete elements undergoing failure, as computing
accurate split directions for arbitrary failure criteria proved diffi-
cult. The mass loss caused by element deletion was negligible

Fig. 2 Finite element mesh for one shear lap sample with
applied boundary conditions. The nodes on the right face were
fixed in all directions, while the nodes on the left face were fixed
in the vertical and out of plane directions, and given prescribed
displacements based on the experiment.
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because adaptive refinement ensured extremely small elements
near the failure location.

Area fraction was determined for each failure criterion by cal-
culating the mesh area on both sides of the fully failed sample. As
in the experimental shear lap samples, area fraction was taken as
the area of the smaller torn side over the total area of the sample.
Crack propagation angle was calculated for both failure criteria on
each sample in the undeformed domain (Figs. 8(c) and 8(d)). A
line of crack propagation was created by connecting the two
points of crack initiation and total crack failure, and the angle
between that line and the horizontal direction determined the
crack propagation angle.

2.5 Failure Calculations in 2D Simulations. The von Mises
stress was calculated for each element and normalized by the von
Mises yield stress, ryield, based on the values obtained from exper-
imental testing. Three ryield values were considered when assess-
ing failure with the von Mises failure criterion:

� ryield ¼ rC, the mean failure stress in the circumferential
direction

� ryield ¼ rA, the mean failure stress in the axial direction
� ryield ¼ ravg, the overall average failure stress based on the

mean failure stresses at each sample angle

By normalizing the von Mises stress to each one of these ryield

values, failure was considered when the normalized stress in any
element reached 1.

In order to evaluate the Tsai–Hill failure criterion, a modified
form of Eq. (5) was used [26], in which a failure metric U was
defined

U ¼ r1

r1U

� 	2

� r1

r1U

� 	
r2

r1U

� 	
þ r2

r2U

� 	2

þ s12

s12U

� 	2

(8)

where r1U , r2U , and s12U are the same as previously stated, and
r1, r2, and s12 are the stresses in the primary fiber, transverse, and
shear directions, respectively. When U reached 1, failure was pre-
dicted. The model fiber family was oriented in the one direction
(circumferential) in the undeformed tissue (i.e., the unit fiber vec-
tor Nð1Þ points in the horizontal direction). Based on the deforma-
tion of each element during the simulation, however, the fiber
direction changed. Thus, to calculate the Tsai–Hill failure metric,
the Cauchy stress tensor was double-contracted with the affinely
rotated unit vectors to calculate r1, r2, and s12. Specifically

n 1ð Þ
i ¼

FijN
1ð Þ

j

kFijN
1ð Þ

j k
(9)

n 2ð Þ
i ¼

FijN
2ð Þ

j

kFijN
2ð Þ

j k
(10)

where N
ð1Þ
j is the primary fiber direction in the undeformed

domain, N
ð2Þ
j is the transverse direction in the undeformed

domain, Fij is the deformation gradient of the element, and n
ð1Þ
i ,

n
ð2Þ
i are the primary fiber and transverse directions in the deformed

domain, respectively. Therefore, the stress calculations were as
follows:

r1 ¼ rijn
ð1Þ
i n

ð1Þ
j (11)

r2 ¼ rijn
ð2Þ
i n

ð2Þ
j (12)

s12 ¼ rijn
ð1Þ
i n

ð2Þ
j (13)

where rij is the Cauchy stress for each element, calculated by
ArcSim. Based on Eq. (8), failure was predicted when the value of
U in any element reached 1.

3 Results

Experimental testing (n> 9 for each dogbone orientation angle)
showed that the largest failure stress occurred in the

Fig. 3 Failure stresses at each sample angle (n > 9 for each
angle). ANOVA showed that change in sample angle had a stat-
istically significant effect on failure stress (p 5 0.0003). Error
bars show 95%CI’s.

Fig. 4 Experiment (points) and failure criteria fits. (a) The von Mises failure criterion (solid
green line, 95%CI shaded) fit to the mean peak stresses does not capture the anisotropic
response of the tissue. (b) Tsai–Hill maximum-work theory model (solid line, 95%CI shaded).
Black error bars indicate 95%CI’s on experimental points.
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circumferentially aligned tests (0 deg) at 2.67 6 0.67 MPa (mean-
6 95% confidence interval (CI)), as expected based on previous
studies [40,42]. A decrease in failure stress was seen with increas-
ing sample angle to the fully axially aligned case (90 deg) at
1.46 6 0.59 MPa (Fig. 3). The smallest failure stress was seen in
the 75 deg case at 1.41 6 0.51 MPa, but that value was not signifi-
cantly lower than the failure stress at 90 deg. A one-way ANOVA
showed that the effect of sample angle change on the failure stress
was highly significant (p¼ 0.0003), and a Tukey honest significant

difference comparison showed a significant difference between the
0 deg and 90 deg alignment cases (p¼ 0.01).

The von Mises failure criterion did not fit the experimental
data well, as the von Mises stress reduces to a single value in the uni-
axial case (Eq. (4)). Although the 95% confidence interval range
encompassed most of the failure stresses when using ryield ¼ ravg ¼
1.87 MPa (Fig. 4(a)), the von Mises criterion could not capture the
anisotropic response of the tissue. The data were also not fit when
using both ryield ¼ rC ¼ 2.67 MPa and ryield ¼ rA ¼ 1.46 MPa.

Fig. 5 Strain tracking results from one shear lap sample. Large shear strains (�40%) were
exhibited in the overlap region of the sample.

Fig. 6 (a) Representative force–displacement curve for one shear lap sample (black dots),
with a simulation force–displacement curve (red line) using optimized parameters. (b) Failure
propagation for one shear lap sample, shown at three different displacements. The onset of
failure began near the overlap region of the sample (indicated by the arrow) and propagated
across the center (lap across failure). (c) Failure simulation using the Tsai–Hill criterion. Prop-
agation occurred through the overlap region of the sample and eventually tore in the overlap
region (lap across failure). (d) Failure simulation using the von Mises criterion, where
ryield 5 ravg. Failure propagated across the sample arm and tore the arm off (arm failure). Fail-
ure simulations are shown at similar failure points to the experiment but not at the same dis-
placement as the experiment. (See supplementary videos, which are available under the
“Supplemental Materials” tab for this paper on the ASME Digital Collection.)
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The Tsai–Hill model (Eq. (5)), in contrast, showed an excellent
fit to the experimental data (R2¼ 0.986, Fig. 4(b)). Fitting the model
provided r1U ¼ 2.71 6 0.19 MPa (mean 6 95%CI), r2U ¼ 1.40
6 0.14 MPa, and s12U ¼ 1.04 6 0.12 MPa.

The shear lap samples (n¼ 7) all exhibited nonlinear behavior
until failure (Fig. 1(d)). Digital image correlation showed a large
amount of shear strain (�40%) in the overlap region of the sample
(Fig. 5). The onset of tissue failure was calculated to occur at an
average displacement of 19.73 6 1.03 mm (mean 6 95%CI) and
load of 3.14 6 0.22 N, and the total failure of the tissue occurred
at an average displacement of 21.53 6 0.89 mm and load of
3.77 6 0.33 N. Experimental shear lap samples failed in two dif-
ferent manners: (1) failure began on the arm near the overlap

region and propagated into the overlap region of the sample until
the sample failed (deemed “lap across” failure, Fig. 6(b)) and (2)
failure began on the arm near the overlap region of the sample
and propagated toward the overlap region, but ultimately the arm
ripped off and failure did not occur in the overlap region
(“lap arm” failure, Fig. 8(a)). Four experimental samples experi-
enced lap across failure, while three samples experienced lap arm
failure. The crack propagation angle was calculated to be
28.13 deg 6 9.13 deg (mean 6 95%CI) relative to horizontal
(Fig. 9), and the area fraction was calculated as 0.33 6 0.52
(mean 6 95%CI, Fig. 7).

Failure simulations exhibited both types of failure (lap across
and lap arm) seen experimentally, along with another, where fail-
ure began in the sample arm far away from the overlap region
and propagated vertically, only in the arm region (“arm” failure,
Figs. 6(d) and 8(d)). The von Mises failure propagation simula-
tions (ryield ¼ ravg) predicted arm failure for all seven samples.
The crack propagation angle was calculated as 80.50 deg 6 6.52 deg
(mean 6 95%CI, Fig. 9) and the area fraction was calculated
as 0.09 6 0.06 (Fig. 7). The Tsai–Hill failure propagation simula-
tions predicted one lap across failure, four lap arm failures, and
two arm failures. The crack propagation angle was 59.86 deg
6 14.57 deg (mean 6 95%CI, Fig. 9) and the area fraction was
0.16 6 0.06 (Fig. 7).

Both the von Mises and Tsai–Hill failure criteria severely
underpredicted the amount of displacement needed to produce ini-
tial failure in the samples. The von Mises failure criterion
(ryield ¼ ravg) predicted the onset of failure at 11.97 6 0.94 mm
(mean 6 95%CI) of displacement, and the Tsai–Hill failure crite-
rion predicted the onset of failure at 11.86 6 0.85 mm.

4 Discussion

Our results indicate that an isotropic failure criterion, such as
the von Mises criterion, is not acceptable when assessing aniso-
tropic tissues. Although the von Mises stress is convenient for vis-
ualization of finite element results, one must recognize that the
anisotropy of the tissue is not addressed by the von Mises stress.
Furthermore, tissues undergo complex loading situations that are
unknown a priori, so it is unclear which von Mises yield stress to
select for a given tissue. As a result, reporting the von Mises stress
risks leading to conclusions that are at best quantitatively inaccu-
rate and at worst misleading or outright wrong when tissue failure
is being considered.

The degree of anisotropy in failure mechanics of the aortic wall
is highly variable across studies, with different results arising for
abdominal versus thoracic aorta and for healthy versus aneurys-
mal tissue [6,40,42,49–52]. We found a moderate anisotropy (fac-
tor of two in the uniaxial failure stress between directions) in our
healthy porcine abdominal aortic samples. An increase in sample
angle from the circumferential resulted in decreased failure stress.

The Tsai–Hill maximum-work theory provides a single scalar
function that considers two perpendicular principal material direc-
tions, making it generally applicable to orthotropic lamina [26]
such as the porcine abdominal aorta. It is a more robust and
potentially a more relevant failure criterion, considering that
many tissues, such as arteries, contain anisotropic fibrous net-
works. Our results show its potential as a tool to predict failure in
anisotropic tissues, including the porcine abdominal aorta studied
here. Over a range of loading conditions, the Tsai–Hill theory
better predicted failure when compared to the von Mises failure
criterion. It was able to capture the anisotropic behavior of porcine
tissue in uniaxial experiments at different angles and more accu-
rately predict failure type, propagation, and area fraction in 2D
failure simulations. Of course, the Tsai–Hill theory is only one
simple model that accounts for material anisotropy, and it is likely
that a different criterion may work better. For example, many
bone (femoral) failure studies have accounted for directional
strength by using an anisotropic failure criterion [53–56], namely,
the Cowin fracture criterion [57] based on the Tsai–Wu model

Fig. 8 (a) One experimental sample immediately prior to total
failure. (b) Sample in the undeformed domain. White dotted line
indicates calculated crack propagation location and direction in
undeformed domain. Lap arm failure occurred in the experi-
mental sample. (c) and (d) Typical failure comparison between
the Tsai–Hill and von Mises failure criteria in the undeformed
domain. The Tsai–Hill failure criterion predicted lap arm failure,
while the von Mises failure criterion predicted arm failure.

Fig. 7 Area fraction for the experimental shear lap samples,
along with the Tsai–Hill and von Mises (avg) failure cases. Aver-
ages shown with 95%CI bars.
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[58]. Furthermore, the Tsai–Wu model accounts for material
strength in multiple directions, which may be more applicable to
fibrous tissues with several fiber families, such as arteries.

Other tissues may exhibit regional heterogeneity and fiber ani-
sotropy, in which case a modified approach would be needed. In
addition, the Tsai–Hill theory only accounts for two principal
directions, but arteries and other fibrous tissues have been charac-
terized by four or more fiber families [59] and/or a continuous
fiber distribution [38,60,61], so a more extensive model could be
explored. Furthermore, the Tsai–Hill theory is two-dimensional
and would require significant experimental effort to expand to
three dimensions, as extensive material characterization in three
dimensions would be required. Two-dimensional restrictions cur-
rently limit the potential application of the Tsai–Hill theory to
complex three-dimensional failure problems, such as aortic aneur-
ysms, in which failure mechanisms are clearly three-dimensional
[40,62,63].

In our uniaxial experiments, the minimum failure stress
occurred at an angle of 75 deg from the preferred direction, but
that failure stress was not significantly different from the failure
stress at 90 deg (p> 0.5). The Tsai–Hill criterion can support a
nonmonotonic failure-angle relation, as is often seen in synthetic
fiber composites [26]. Whether the minimum at 75 deg was real or
noise, and whether other tissues do or do not exhibit a local mini-
mum in failure stress are questions that merit further exploration.

The assumption of constant failure through the thickness of the
shear lap samples and the use of a two-dimensional failure code
are questionable and likely incorrect. Furthermore, the constitu-
tive equation is rather simplistic, the optimization only fit the
forces on the moving face of the experimental sample, and no
strain field data were used to help optimize constitutive parame-
ters [64]. An inadequate constitutive model most likely resulted in
an inaccurate stress field, which may have contributed to the
incorrect failure prediction results. The use of alternative constitu-
tive models (i.e., the Holzapfel–Gasser–Ogden model [38] or the
four-fiber family model [65]) may prove more effective. The
underprediction of displacement may be due to the extreme nonli-
nearity of the exponentials, leading to artificially high stresses as
the strains increase, and a constitutive model which incorporates
plasticity could potentially address this issue. The material was
also treated as perfectly elastic, resulting in brittle failure. Further-
more, the von Mises and Tsai–Hill failure criteria do not address
the idea of crack initiation and propagation in their formulation,
which may be the main factor contributing to inadequate model
predictions. These assumptions are the most likely causes for the
limited ability of the models to accurately predict the displace-
ment at the onset of failure, crack initiation, and crack propagation
for all experimental samples.

It should also be noted that the use of a particular stress or fail-
ure criterion is dependent upon the objectives of a given study.
Often, there is sufficient reasoning for using the von Mises stress
when analyzing anisotropic tissues, such as comparing different
tissue types, where the importance of comparison outweighs the
need for accuracy; the von Mises failure criterion captures the
failure behavior of porcine abdominal aorta with relatively mild
error (Fig. 4(a)), which may meet the needs of a specific study. It
is also often the case that extensive material strength data for ani-
sotropic tissues are not readily available. Furthermore, available
resources and the complexity of certain problems require compu-
tational simplifications, as in the case of large geometries com-
prised of multiple types of materials, in which case the von Mises
stress would be better suited. Even in those cases, however, it is
essential to recognize that if the tissue is anisotropic, its failure
behavior will surely be anisotropic, and an isotropic failure crite-
rion may be misleading.

Tissue failure is a very complex process, as demonstrated by
experimental work [6,66] and microstructural theory [40,62,67].
Accurately characterizing tissue failure requires an adequate
understanding of tissue behavior, particularly in relation to direc-
tional material strength and failure methods. Ignoring well-known
tissue properties that contribute to failure (e.g., the mechanical
anisotropy explored here) yields incorrect assessments and ulti-
mately limits the potential use of failure-predicting tools in appli-
cations such as patient diagnosis.
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