

Submit a Manuscript: http://www.f6publishing.com

World J Gastroenterol 2017 June 7; 23(21): 3797-3804

DOI: 10.3748/wjg.v23.i21.3797

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Spontaneous regression of hepatocellular carcinoma: A mini-review

Akira Sakamaki, Kenya Kamimura, Satoshi Abe, Atsunori Tsuchiya, Masaaki Takamura, Hirokazu Kawai, Satoshi Yamagiwa, Shuji Terai

Akira Sakamaki, Kenya Kamimura, Satoshi Abe, Atsunori Tsuchiya, Masaaki Takamura, Hirokazu Kawai, Satoshi Yamagiwa, Shuji Terai, Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan

Author contributions: Sakamaki A, Kamimura K, Abe S, Tsuchiya A, Takamura M, Kawai H, Yamagiwa S and Terai S all contributed to this paper.

Conflict-of-interest statement: The authors declare that they have no current financial arrangement or affiliation with any organization that may have a direct influence on their work.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Kenya Kamimura, MD, PhD, Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachido-ri, Chuo-ku, Niigata 951-8510, Japan. kenya-k@med.niigata-u.ac.jp Telephone: +81-25-2270207 Fax: +81-25-2270776

Received: February 17, 2017 Peer-review started: February 20, 2017 First decision: March 16, 2017 Revised: March 22, 2017 Accepted: May 4, 2017 Article in press: May 4, 2017 Published online: June 7, 2017

Abstract

Spontaneous tumor regression is an extremely rare phenomenon in the oncology field. However, there are several case reports resulted in the regression of hepatocellular carcinoma (HCC) and the accumulation of clinical information and analyses of the mechanism can contribute to the development of a novel therapy. For this purpose, we have carefully reviewed 23 cases of spontaneously regressed HCC published in recent 5 years and our case. The information regarding the tumor size, tumor marker, treatments, etc., have been summarized. The mechanism of spontaneous regression has been discussed to date and presumed to be due to many factors, including hypoxia and immunological reactions. In this careful review of the 24 cases based on the clinical information, hypoxia, systemic inflammation, and both upon spontaneous regression were seen in 3, 8, and 4 cases, respectively among the 15 cases for which the information regarding the proposed mechanisms are available. Recent development of immunotherapeutic approaches in oncology shows promising results, therefore, accumulation of additional cases and analysis of mechanisms underlying the spontaneous regression of HCC are essential and could lead to the development of a new generation of immunotherapies including antibodies directed against immune reactions.

Key words: Spontaneous regression; Hepatocellular carcinoma; Immunological reaction; Immunotherapy; Hypoxia

© **The Author(s) 2017.** Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Spontaneous tumor regression of hepatocellular carcinoma (HCC) have been reported in

Sakamaki A et al. Spontaneous regression of HCC

several reports although rare. The analyses of the mechanisms underlying this phenomenon is the potential target for the novel therapeutic methods for HCC. For this purpose, we have carefully reviewed 24 cases of spontaneously regressed HCC including cases published in recent 5-years and our case. The minute clinical information and clinical courses are reviewed and summarized. Based on the information, hypoxia and/or systemic inflammation are involved in all cases for which the information regarding the proposed mechanism is available. An accumulation of additional cases and the analysis of mechanism underlying the spontaneous regression of HCC could lead to the development of new therapeutic strategy for HCC.

Sakamaki A, Kamimura K, Abe S, Tsuchiya A, Takamura M, Kawai H, Yamagiwa S, Terai S. Spontaneous regression of hepatocellular carcinoma: A mini-review. *World J Gastroenterol* 2017; 23(21): 3797-3804 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i21/3797.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i21.3797

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common histological type of primary liver cancer. It is the fifth most prevalent type of cancer and the second most common cause of cancer-associated mortality in males worldwide; it is also the seventh most commonly diagnosed cancer and the sixth greatest cause of cancer-associated mortality in females worldwide^[1]. Approximately 70%-80% of HCCs develop in patients with liver cirrhosis^[2]. Although many treatment options are available, the prognosis of patients with advanced HCC remains poor. Patients diagnosed at an early stage may achieve a 5-year survival rate of approximately 50%; however, those diagnosed at an intermediate to advanced stage have a 20%-50% survival at 3 years, and those diagnosed at the terminal stage usually die within 6 mo^[3].

The therapeutic options for HCC include resection, radiation, radiofrequency ablation, transarterial chemoembolization (TACE), and systemic chemotherapy including molecular targeted medicine, sorafenib. TACE showed anti-tumor effect by reducing the arterial blood supply to the tumor^[4,5]. The resected specimen of HCC after TACE had a liquefied necrotic region with focal hemorrhage, accompanied by non-specific inflammatory infiltrates containing foamy histiocytes and lymphocytes at the tumor periphery as reported in a study^[6].

Spontaneous tumor regression was firstly reported by Cole and Everson in 1956^[7], and was defined as a partial or complete involution of a malignant tumor in the absence of the application of a specific therapy. Spontaneous tumor regression is a very rare phenomenon, with an incidence rate of one out of every 60000-100000 cases^[8]. Conventionally, malignant melanoma, neuroblastoma, and cancer of the kidney are the most frequent types of tumors presenting this phenomenon^[8]; however, in recent reports, lung and liver cancers are also considered to be the frequent types of cancer^[9]. Spontaneous regression of HCC was defined as an involution of HCC without any therapies and first described in 1972^[10]. The mechanism of spontaneous regression may include hypoxia and immunological reaction which we often find in the liver tissue treated with TACE, however, the clear evidences remain unclear and the accumulation of additional cases is essential to develop a novel treatment approach for HCC. However, there are only a few reports summarizing these information and therefore, we have carefully reviewed 23 cases of spontaneously regressed HCC recently published in 5-years, and additional our case to summary information.

LITERATURE SEARCH

A PubMed (National Center for Biotechnology Information at the National Institutes of Health in Bethesda, Maryland, United States) was used for performing search using the key words "spontaneous regression" or "spontaneous remission" and "hepatocellular carcinoma" to extract studies published in recent 5 years. Fifty four reports were included in the initial search; reports that were not published in English literature and not describing spontaneous regression were excluded. Finally, a total of 20 reports and 24 cases including our recent case that matched the definition of spontaneous regression of HCC were reviewed (Table 1)^[11-30]. Written informed consent was obtained from the patient for reporting their clinical information.

EPIDEMIOLOGY

The minute report regarding the epidemiology of spontaneous HCC regression has not been reported. The review of 24 patients showed that the median age of the patients with spontaneous regression was 68.5 years (range: 40-79 years). Of the 24 patients, 91.7% (22/24) were male, 10 patients were reported from Japan (41.7%), and 66.7% of the total cases were from East Asia (Table 1); the result consist with the previously reported fact that the spontaneous regression of HCC was observed with a high frequency in individuals of Asian origin^[14,31]. Oquiñena *et al*^[32] reported the partial response (over 50% of tumor regression) rate of spontaneous regression as 0.4% based on the meta-analysis of the control arms for HCC treatment in a randomized clinical trial. They and others also reported the regional difference in the world and the higher frequency of spontaneous regression in the Asian countries although its reason

Table 1	Clinica	al cha	racterist	ics of spon	Clinical characteristics of spontaneous regression of hepatocellular carcinoma	ression	of hepat	ocellular ca	arcinom	æ									
Ref.	Age Sex		Country	Etiology	Background liver	Size 1 (mm)	Location	Impaired blood flow	Pre AFP	Post AFP	Pre DCP	Post I DCP	Histological Diagnosis	Following F therapy	Recurrence	Intrahepatic metastasis	Extrahepatic metastasis	P roposed mechanism	Cause
Jianxin et al ^[11]	64	M	China	HBV	CH	92	S6	N/A	9022	2516	N/A	N/A	N/A	z	z	z	Omentum	Immunological	Herbal medicine
Saito et al ^{(12]}	74	М	Japan	Alc	CH	36	S8	N/A	31	ю	17	N/A	N/A	Resection	Z	Z	Z	Immunological	Immunological Cessation of drinking and smoking
Pectasides et al ^[13]	53	Σ	United States	United HCV/Alc States	IC	6	Left	PV, HA	602410	2177	N/A	N/A	N/A	Z	Remnant	¥	Lung	Combine	Portal vein thrombosis and immunological reaction
$\operatorname*{Alam}_{et\ al^{[14]}}$	65	Z	United Kingdom	HCV	ILC	N/A	S5/6	Z	2893	9	N/A	N/A	N/A	Z	X	Z	LNs	Combine	Rapid tumor growth and immunological reaction
Kumar et al ⁽¹⁵⁾	40	N	United States	N/A	N/A	26	S2/3/5	N/A	832	2	N/A	N/A	Poor	Radiation	Z	¥	Lung	Immunological	Cessation of immunosuppressive Therapy
Kumar et al ^[15]	74	X	United States	N/A	N/A	56	Right	N/A	97932	722	N/A	N/A	Poor	Z	Rennant	×	Z	Immunological	Cessation of immunosuppressive Therapy
Yang et al ^[16]	59	М	China	HBV	N/A	40	S6	N/A	2100	N/A	N/A	N/A	N/A	Z	¥	Y	Z	Immunological	Seroconversion of HBV
Okano et al ^[17]	73	М	Japan	HBV	N/A	15	S8	N/A	748	ß	20	N/A	N/A	Z	Z	Z	Z	N/A	Angiography
Takeda <i>et al</i> ^[18]	68	N	Japan	Alc	H	30	S4	¥	2	7	427	41	N/A	Resection	Z	Z	Z	Hypoxia	Hepatic arterioportal shunts and vessel thrombosis
Kim et al ^[19]	57	М	South Korea	HBV	LC	37	S6	z	4778	50	52	N/A	N/A	Resection	Z	Z	Z	Immunological	Unknown
Matsuoka et al ^[20]	67	Z	Japan	NASH	H	43	Sé	PV, HA	11 N	N/A	9	N/A	Moderate	Resection	Z	Z	Z	Hypoxia	Hepatic arterial and portal vein thromboses
Wang et al ^[21]	50	М	China	HBV	CH	100	S7/8	Z	22592 1	N/A	N/A	N/A	N/A	Resection	Z	X	Z	Immunological	Unknown
Parks et al ^[22]	69	Μ	United States	HCV	N/A	22	S8	N/A	4077	37	N/A	N/A	Well	Z	¥	¥	LNs	N/A	N/A
Parks et al ^[22]	63	М	United States	HCV	N/A	N/A	S7	N/A	91	27	N/A	N/A	Combined	Z	Y	¥	LNs	N/A	N/A
Parks et al ^[22]	67	М	United States	HCV	LC	N/A	N/A	ΡV	35689	8	N/A	N/A	Moderate	Z	Z	Y	Z	N/A	N/A
Saito et al ^[23]	75	Z	Japan	HCV	CH	200	Right	PV	452100	107 5	596000	34	N/A	TACE	Z	¥	Lung	Combine	Portal vein thrombosis and immunological reaction
Bhardwaj et al ^[24]	j 74	F /	Australia	Australia Unknown	N/A	96	Left	N/A	MNL	N/A	N/A N/A N/A	N/A	Well	z	Z	¥	Z	N/A	Unknown

Sakamaki A et al. Spontaneous regression of HCC

Herbal medicine	Hepatic arterial and portal vein thromboses	N/A	Stenosis of hepatic	artery and cessation of drinking	Unknown	Unknown	Hemodialysis
Immunological	Hypoxia	N/A	Combine		N/A	N/A	Immunological
Lung, adrenal glands, LNs	Z	N/A	Z		Z	Z	ΓN
N/A	Z	N/A	Y		Z	Z	Y
Z	Z	Z	Y		N/A	Z	Y
z	Resection	Z	TACE		Resection	Resection	Z
N/A	Moderate	N/A	N/A		N/A	N/A	Poor
23	19 N/A	N/A	411		N/A	N/A	21
12900	19	N/A N/A	3043		N/A N/A	N/A N/A	46
7	6 N/A	810 WNL	51		8 N/A	N/A	1
17	9	810	1825		œ	MNL	2201
N/A	PV, HA	N/A	N/A		N/A	N/A	PV
Right	S1	Left	S8		S2	S6	88
N/A Right	30	80	50		20	12	20
CH	N/A	ГC	ΓC		N/A	IJ	H
HBV	Alc	HCV	Alc		Alc	Japan Unknown	NASH
South Korea	77 M Japan	Taiwan	Japan		79 M Japan	Japan	Japan
Z	Σ	Σ	Σ		М		М
64		74	77			76	78
Lim $et al^{(25)}$ 64 M	Tomino et al ^[26]	Tsai <i>et al</i> ^[27] 74 M Taiwan	Okano	et al ^[28]	Sasaki et al ^[29]	Tomishige 76 F et al ^[30]	Our case 78 M Japan NASH

remains unclear^[14,31,32].

the possibility that the spontaneous regression of HCC may not be associated with the level of tumor marker expression or the background liver disease. These results Among the cases for which the information is available, the etiologies of liver disease of these cases were alcoholic abuse in 5 patients, hepatitis B viral infection in Oquiñena et al^{i33]} also reported 3 patients of who expressed wide range of tumor markers, as well as various liver diseases and background conditions and suggested 6 patients, hepatitis C viral infection in 6 patients, non-alcoholic steatohepatitis (NASH) in 2 patients, and hepatitis C viral infection plus alcoholic abuse in 1 patient. he background liver conditions were chronic hepatitis in 8 patients, liver cirrhosis in 6 patients, and normal liver (without hepatitis and fibrosis) in 1 patient (Table 1). suggest that the spontaneous regression of HCC can frequently be seen in male in East Asian countries although various patterns were seen in tumor size, etiology, packground of liver condition

CLINICAL COURSE

accidentally (30.0%) which is higher than that of the previously published literatures^[12,18,23], 0%-11.1%, and this change is based on the advances in imaging modalities and are not associated with subjective symptoms. The main tumor was found in the right lobe of the liver in 16 patients and left lobe in 7 patients, and no significant The median size of HCC before spontaneous regression was 38.5 mm with a wide ranges of 12-200 mm. Among these, tumors less than 30 mm were diagnosed glands, in 9 patients and intrahepatic in 12 patients; most of these patients showed the reduction or disappearance of the metastatic regions as well as the primary cumor in the liver. Impairment of blood flow of the portal vein and/or hepatic artery were observed in 8 patients (Table 1). Tumor markers including alpha-fetoprotein (AFP) adrenal cendency regarding the location of the tumor was seen. The metastatic tumors were found in extrahepatic lesions, for e.g., omentum, lung, lymphnodes, and/or des-y-carboxy prothrombin (DCP) showed a significant decrease upon the spontaneous regression in 16 patients (Table 1).

ight hepatectomy, a 20 mm stump recurrence of HCC (Figure 1A and B) and a metastasis of surrounding lymph nodes (Figure 1D and E) was detected on dynamic In our case, a 78-year-old Japanese man with chronic hepatitis with a background of NASH and chronic renal failure on hemodialysis. Following an extended computed tomography (CT). Tumor marker levels were increased (AFP, 2204 ng/mL; DCP, 46 mAU/mL) at that point. The patient was admitted to our hospital for nterventional therapy three months after the CT and was found for the spontaneous regression of HCC and metastatic tumor in the lymphnodes without any therapy Figure 1C and F) with significant reduction of AFP to a level below the measurement sensitivity (Table 1).

Sakamaki A et al. Spontaneous regression of HCC

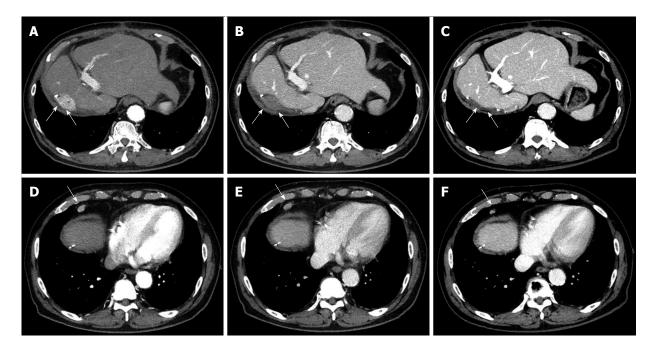


Figure 1 Representative images of hepatocellular carcinoma spontaneously regressed. Dynamic computed tomography (CT) revealed HCC (A, arterial phase; B, portal phase) and its metastasis in the surrounding lymph node (D, arterial phase; E, portal phase). The CT images 3 mo later (C and F, arterial phase). White arrows indicate HCC and metastatic tumor in the lymph node. HCC: Hepatocellular carcinoma.

MECHANISM OF SPONTANEOUS REGRESSION

The mechanism of spontaneous HCC regression has been discussed and proposed to be mediated by many factors (Table 2) and several reports have categorized the factors into two major types: (1) tumor hypoxia; and (2) systemic immunological reactions^[17,28,34]. These changes can also be seen in the liver tissue after TACE treatment suggesting the mechanism of spontaneous regression of the tumor. In addition, it is likely that the mechanism of spontaneous regression is complex and multiple factors may be involved in each case. Several cases suggest that both factors are involved in spontaneous regression, tumor hypoxia, and immunological reactions; the initial necrosis of the primary tumor led to immune-activation that then caused a secondary regression of the metastasis^[13,35].

Our literature review also showed hypoxia in 3 patients, systemic inflammatory response in 9 patients, and combination of both tumor hypoxia and the inflammatory response in 4 patients among 16 patients for whom the potential mechanisms were reported (Table 1). Spontaneous HCC regression may occur in association with a single factor or several complex factors.

In our case, immunological reaction and hypoxia can be the reason for spontaneous regression because the size and contrast enhancement of extrahepatic lymphnode metastasis significantly reduced upon the regression of intrahepatic lesions (Figure 1D-F).

ΗΥΡΟΧΙΑ

Tumor hypoxia is an intuitively appealing mechanism as it mirrors the established treatment modalities for HCC (TACE, sorafenib, *etc.*)^[34]. Tumor thromboses of the hepatic artery^[13,20,36] and portal vein^[13,20,23], hepatic angiography^[37], rapid tumor growth^[14,38,39], and hepatic arterioportal shunts^[18] are considered to directly induce an ischemic change leading to hypoxia, nutrition impairment, and dehydration in tumor. Interestingly, there are a few patients experienced profound systemic hypoperfusion associated with a massive gastrointestinal hemorrhage^[40,41], hemodialysis^[42,43], and surgical invasion^[44], which also resulted in the spontaneous regression of the tumor. Uenishi et al^[45] reported that the tumor was completely necrotic and had a thick fibrous capsule, in the tissue resected following the spontaneous regression of HCC; multiple inflammatory cells had also infiltrated into the tumor which is similar pattern with those found following embolization of HCC. Moreover, Matsuoka et al[20] reported the spontaneous regression of tumor with portal vein tumor thrombosis confirmed by the histopathological analyses of surgically removed tissues. These results indicate that the hypoxia in the tumor tissue may contribute to the spontaneous regression of tumor.

IMMUNOLOGICAL REACTIONS

It is well known that immunological reactions inhibit tumor growth, including HCC. Immunological reactions

WJG | www.wjgnet.com

Table 2 Proposed factors of spontaneous regression of hepatocellular carcinoma							
Tumor hypoxia	Immunological reactions						
Tumor thrombosis of hepatic artery ^[13,20,36]	Abstinence from alcohol ^[12,46,47]						
Tumor thrombosis of portal vein ^[13,20,23]	Abstinence from smoking ^[12]						
Hepatic angiography ^[37]	Herbal medicines ^[11,25]						
Tumor rapid growth ^[14,38,39]	Prolonged fever ^[26,48,49]						
Hepatic arterioportal shunts ^[18]	Antidiabetics ^[50]						
Massive gastrointestinal hemorrhage ^[40,41] Vitamin K administration ^[51]							
Hemodialysis ^[42,43]							
Surgical invasion ^[44]							

are reported to be the main mechanism of spontaneous regression of HCC^[17,34]. Abstinence from alcohol^[12,46,47] and smoking^[12], herbal medicines^[11,25], prolonged fever^[26,48,49], antidiabetics^[50], and vitamin K administration^[51] are considered to induce systemic immunological reaction with various patterns. Evdokimova et al^[52] reported that APC-specific cluster of differentiation (CD) 4 positive T lymphocytes exhibit an anti-tumor capacity for HCC. In addition, Wada et al^[53] reported that patients of HCC with marked inflammatory cell infiltration are associated with a better prognosis compared to without infiltration, which can be attributed to the anti-tumor effect induced by cellular immunity of CD8 positive and CD4 positive T lymphocytes. Furthermore, in spontaneous HCC regression case reports, an increase in interleukin (IL)-18^[54], tumor necrosis factor (TNF)-alpha^[55], and CD163 positive macrophages^[21] were also reported and suggested the involvement of immunological reactions. These reports indicate that antitumor immunity can improve the prognosis for HCC under some conditions and the minute analyses of the mechanisms of spontaneous tumor regression can contribute to develop the novel therapeutic strategy.

PROGNOSIS

Among 24 reports, histological characteristics were available in 9 patients. Well differentiated, moderately differentiated, poorly differentiated, and combined tumors were seen in 2, 3, 3, and 1 patients, respectively. Although several cases described no relapses during the long-term follow-up without any additional therapies after the spontaneous regression^[17,25]; however, tumor remnant^[29] and recurrences^[14,56] were also observed in some cases.

In our reviewed cases, additional therapies following spontaneous regression were performed in 11 patients: hepatic resection in 8 patients, TACE in 2 patients, and conventional radiation therapy in 1 patient. Histopathological findings of the resected hepatic specimens showed necrotic tissue; several cases also revealed inflammatory cell infiltration at the tissue periphery^[12,21]. Remnant tumor, persistence of tumor cell, was confirmed by the imaging modalities in 2 patients after the spontaneous regression. In

contrast, local tumor recurrence, relapse of HCC was seen in 6 patients (25%), 5 of them had received no additional therapy and 1 patient had underwent TACE as an additional therapy (Table 1). Interestingly, among 11 patients underwent additional therapies, recurrence was seen in only 1 patient. Based on the information summarized from our review, spontaneous regression can reduce the volume of HCC and improves the patient's prognosis^[56]; however, the additional therapies including surgical treatment, radiation, TACE, *etc.* are recommended to be performed after the spontaneous regression of HCC if the hepatic function of the patient permitted^[12] and if the imaging modalities suggest the remnant or relapse of the tumor.

CONCLUSION

The minute review for spontaneous regression of HCC showed that the spontaneous regression of HCC can frequently be seen in males in East Asian countries. Their tumors varies in terms of histological types, size, and clinical courses. Additional therapies following the spontaneous regression should be considered. The mechanisms might include hypoxia and immunological responses as previously reported. Since immunotherapeutic approaches in oncology may be most efficacious for cancers susceptible to intrinsic immune modulation^[57,58] and recently, an increasing understanding of tumor immunogenicity spurred the development of novel classes of immune-targeted therapies, including the inhibition of co-stimulatory pathways mediated by cytotoxic T lymphocyteassociated antigen-4, as well as the programmed death-1 (PD-1) receptor and its ligand PD-L1^[22]. Based on these progress, the analyses of mechanisms involved in the spontaneous tumor regression might contribute to develop a novel therapies for HCC. Therefore, it is clear that the accumulation of additional cases and analyses are necessary.

REFERENCES

- Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]
- 2 **EI-Serag HB**. Hepatocellular carcinoma. *N Engl J Med* 2011; **365**: 1118-1127 [PMID: 21992124 DOI: 10.1056/NEJMra1001683]
- 3 **Llovet JM**, Fuster J, Bruix J. Prognosis of hepatocellular carcinoma. *Hepatogastroenterology* 2002; **49**: 7-11 [PMID: 11941987]
- 4 **Zhong JH**, Li LQ. Postoperative adjuvant transarterial chemoembolization for participants with hepatocellular carcinoma: A meta-analysis. *Hepatol Res* 2010; **40**: 943-953 [PMID: 20887328 DOI: 10.1111/j.1872-034X.2010.00710.x]
- 5 Xie B, Wang DH, Spechler SJ. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. *Dig Dis Sci* 2012; 57: 1122-1129 [PMID: 22451120 DOI: 10.1007/ s10620-012-2136-1]
- 6 Higuchi T, Kikuchi M, Okazaki M. Hepatocellular carcinoma after transcatheter hepatic arterial embolization. A histopathologic study of 84 resected cases. *Cancer* 1994; 73: 2259-2267 [PMID:

WJG | www.wjgnet.com

7513245]

- 7 Cole WH, Everson TC. Spontaneous regression of cancer: preliminary report. Ann Surg 1956; 144: 366-383 [PMID: 13363274]
- 8 Cole WH. Efforts to explain spontaneous regression of cancer. J Surg Oncol 1981; 17: 201-209 [PMID: 6166811]
- 9 Iwanaga T. [Studies on cases of spontaneous regression of cancer in Japan in 2011, and of hepatic carcinoma, lung cancer and pulmonary metastases in the world between 2006 and 2011]. *Gan To Kagaku Ryoho* 2013; 40: 1475-1487 [PMID: 24231700]
- 10 Johnson FL, Lerner KG, Siegel M, Feagler JR, Majerus PW, Hartmann JR, Thomas ED. Association of androgenic-anabolic steroid therapy with development of hepatocellular carcinoma. *Lancet* 1972; 2: 1273-1276 [PMID: 4117807]
- 11 Jianxin C, Qingxia X, Junhui W, Qinhong Z. A Case of Recurrent Hepatocellular Carcinoma Acquiring Complete Remission of Target Lesion With Treatment With Traditional Chinese Medicine. *Integr Cancer Ther* 2016; Epub ahead of print [PMID: 27444311 DOI: 10.1177/1534735416660617]
- 12 Saito R, Amano H, Abe T, Fujikuni N, Nakahara M, Yonehara S, Teramen K, Noriyuki T. Complete spontaneous necrosis of hepatocellular carcinoma confirmed on resection: A case report. *Int J Surg Case Rep* 2016; 22: 70-74 [PMID: 27060644 DOI: 10.1016/j.ijscr.2016.03.027]
- 13 Pectasides E, Miksad R, Pyatibrat S, Srivastava A, Bullock A. Spontaneous Regression of Hepatocellular Carcinoma with Multiple Lung Metastases: A Case Report and Review of the Literature. *Dig Dis Sci* 2016; 61: 2749-2754 [PMID: 27038447 DOI: 10.1007/s10620-016-4141-2]
- 14 Alam MA, Das D. Spontaneous Regression of Hepatocellular Carcinoma-a Case Report. J Gastrointest Cancer 2017; 48: 194-197 [PMID: 26988133 DOI: 10.1007/s12029-016-9812-x]
- 15 Kumar A, Le DT. Hepatocellular Carcinoma Regression After Cessation of Immunosuppressive Therapy. *J Clin Oncol* 2016; 34: e90-e92 [PMID: 25245441 DOI: 10.1200/JCO.2013.51.4067]
- 16 Yang SZ, Zhang W, Yuan WS, Dong JH. Recurrence of Hepatocellular Carcinoma With Epithelial-Mesenchymal Transition After Spontaneous Regression: A Case Report. *Medicine* (Baltimore) 2015; 94: e1062 [PMID: 26181539 DOI: 10.1097/ MD.000000000001062]
- 17 Okano A, Ohana M. Spontaneous regression of hepatocellular carcinoma: its imaging course leading to complete disappearance. *Case Rep Oncol* 2015; 8: 94-100 [PMID: 25848359 DOI: 10.1159/000375486]
- 18 Takeda Y, Wakui N, Asai Y, Dan N, Yamauchi Y, Ueki N, Otsuka T, Oba N, Nishinakagawa S, Minagawa M, Takeda Y, Shiono S, Kojima T. Spontaneous complete necrosis of hepatocellular carcinoma: A case report and review of the literature. *Oncol Lett* 2015; 9: 1520-1526 [PMID: 25788993 DOI: 10.3892/ ol.2015.2937]
- 19 Kim SB, Kang W, Shin SH, Lee HS, Lee SH, Choi GH, Park JY. Spontaneous neoplastic remission of hepatocellular carcinoma. *Korean J Gastroenterol* 2015; 65: 312-315 [PMID: 25998978 DOI: 10.4166/kjg.2015.65.5.312]
- 20 Matsuoka S, Tamura A, Moriyama M, Fujikawa H, Mimatsu K, Oida T, Sugitani M. Pathological evidence of the cause of spontaneous regression in a case of resected hepatocellular carcinoma. *Intern Med* 2015; 54: 25-30 [PMID: 25742889 DOI: 10.2169/internalmedicine.54.2981]
- 21 Wang Z, Ke ZF, Lu XF, Luo CJ, Liu YD, Lin ZW, Wang LT. The clue of a possible etiology about spontaneous regression of hepatocellular carcinoma: a perspective on pathology. *Onco Targets Ther* 2015; 8: 395-400 [PMID: 25709471 DOI: 10.2147/ OTT.S79102]
- 22 Parks AL, McWhirter RM, Evason K, Kelley RK. Cases of spontaneous tumor regression in hepatobiliary cancers: implications for immunotherapy? J Gastrointest Cancer 2015; 46: 161-165 [PMID: 25662892 DOI: 10.1007/s12029-015-9690-7]
- 23 Saito T, Naito M, Matsumura Y, Kita H, Kanno T, Nakada Y, Hamano M, Chiba M, Maeda K, Michida T, Ito T. Spontaneous

regression of a large hepatocellular carcinoma with multiple lung metastases. *Gut Liver* 2014; **8**: 569-574 [PMID: 25228980 DOI: 10.5009/gnl13358]

- 24 Bhardwaj N, Li M, Price T, Maddern GJ. Spontaneous regression of a biopsy confirmed hepatocellular carcinoma. *BMJ Case Rep* 2014; 2014: pii: bcr2014204897 [PMID: 25053671 DOI: 10.1136/ bcr-2014-204897]
- 25 Lim DH, Park KW, Lee SI. Spontaneous complete regression of multiple metastases of hepatocellular carcinoma: A case report. *Oncol Lett* 2014; 7: 1225-1228 [PMID: 24944697 DOI: 10.3892/ ol.2014.1869]
- 26 Tomino T, Yamashita Y, Iguchi T, Itoh S, Ninomiya M, Ikegami T, Yoshizumi T, Soejima Y, Kawanaka H, Ikeda T, Aishima S, Shirabe K, Maehara Y. Spontaneous massive necrosis of hepatocellular carcinoma with narrowing and occlusion of the arteries and portal veins. *Case Rep Gastroenterol* 2014; 8: 148-155 [PMID: 24926228 DOI: 10.1159/000362440]
- 27 Tsai SC, Kao JL, Shiao CC. Spontaneous regression of a hepatoma with ring calcification. *Acta Clin Belg* 2014; 69: 130-131 [PMID: 24724756 DOI: 10.1179/2295333714Y.0000000011]
- 28 Okano A, Ohana M, Kusumi F, Nabeshima M. Spontaneous Regression of Hepatocellular Carcinoma due to Disruption of the Feeding Artery. *Case Rep Oncol* 2013; 6: 180-185 [PMID: 23626558 DOI: 10.1159/000350682]
- 29 Sasaki T, Fukumori D, Yamamoto K, Yamamoto F, Igimi H, Yamashita Y. Management considerations for purported spontaneous regression of hepatocellular carcinoma: a case report. *Case Rep Gastroenterol* 2013; 7: 147-152 [PMID: 23626515 DOI: 10.1159/000350501]
- 30 Tomishige H, Morise Z, Mizoguchi Y, Kawabe N, Nagata H, Ohshima H, Kawase J, Arakawa S, Yoshida R, Isetani M. A case of solitary necrotic nodule treated with laparoscopic hepatectomy: spontaneous regression of hepatocellular carcinoma? *Case Reports Hepatol* 2013; 2013: 723781 [PMID: 25431705 DOI: 10.1155/2013/723781]
- 31 van Halteren HK, Salemans JM, Peters H, Vreugdenhil G, Driessen WM. Spontaneous regression of hepatocellular carcinoma. *J Hepatol* 1997; 27: 211-215 [PMID: 9252098]
- 32 Oquiñena S, Guillen-Grima F, Iñarrairaegui M, Zozaya JM, Sangro B. Spontaneous regression of hepatocellular carcinoma: a systematic review. *Eur J Gastroenterol Hepatol* 2009; 21: 254-257 [PMID: 19279469 DOI: 10.1097/MEG.0b013e328324b6a2]
- 33 Oquiñena S, Iñarrairaegui M, Vila JJ, Alegre F, Zozaya JM, Sangro B. Spontaneous regression of hepatocellular carcinoma: three case reports and a categorized review of the literature. *Dig Dis Sci* 2009; 54: 1147-1153 [PMID: 18716866 DOI: 10.1007/ s10620-008-0447-z]
- 34 Huz JI, Melis M, Sarpel U. Spontaneous regression of hepatocellular carcinoma is most often associated with tumour hypoxia or a systemic inflammatory response. *HPB* (Oxford) 2012; 14: 500-505 [PMID: 22762397 DOI: 10.1111/ j.1477-2574.2012.00478.x]
- 35 Heianna J, Miyauchi T, Suzuki T, Ishida H, Hashimoto M, Watarai J. Spontaneous regression of multiple lung metastases following regression of hepatocellular carcinoma after transcatheter arterial embolization. A case report. *Hepatogastroenterology* 2007; 54: 1560-1562 [PMID: 17708299]
- 36 Imaoka S, Sasaki Y, Masutani S, Ishikawa O, Furukawa H, Kabuto T, Kameyama M, Ishiguro S, Hasegawa Y, Koyama H. Necrosis of hepatocellular carcinoma caused by spontaneously arising arterial thrombus. *Hepatogastroenterology* 1994; **41**: 359-362 [PMID: 7525432]
- 37 Takayasu K, Muramatsu Y, Shima Y, Moriyama N, Yamada T, Yoshida T, Makuuchi M, Kishi K. Necrosis of hepatocellular carcinoma as a result of subintimal injury incurred by hepatic angiography: report of two cases. *Am J Gastroenterol* 1986; 81: 979-983 [PMID: 3020974]
- 38 Nakajima T, Moriguchi M, Watanabe T, Noda M, Fuji N, Minami M, Itoh Y, Okanoue T. Recurrence of hepatocellular carcinoma with rapid growth after spontaneous regression. *World J Gastroenterol*

2004; **10**: 3385-3387 [PMID: 15484326 DOI: 10.3748/wjg.v10. i22.3385]

- 39 Iwasaki M, Furuse J, Yoshino M, Moriyama N, Kanemoto H, Okumura H. Spontaneous regression of hepatocellular carcinoma: a case report. *Jpn J Clin Oncol* 1997; 27: 278-281 [PMID: 9379519]
- 40 Kondo S, Okusaka T, Ueno H, Ikeda M, Morizane C. Spontaneous regression of hepatocellular carcinoma. *Int J Clin Oncol* 2006; 11: 407-411 [PMID: 17058140 DOI: 10.1007/s10147-006-0591-4]
- 41 **Tocci G**, Conte A, Guarascio P, Visco G. Spontaneous remission of hepatocellular carcinoma after massive gastrointestinal haemorrhage. *BMJ* 1990; **300**: 641-642 [PMID: 2157513]
- 42 Sato Y, Fujiwara K, Nakagawa S, Kanishima S, Ohta Y, Oka Y, Hayashi S, Oka H. A case of spontaneous regression of hepatocellular carcinoma with bone metastasis. *Cancer* 1985; 56: 667-671 [PMID: 2408740]
- 43 Harimoto N, Shirabe K, Kajiyama K, Gion T, Takenaka M, Nagaie T, Maehara Y. Spontaneous regression of multiple pulmonary recurrences of hepatocellular carcinoma after hepatectomy: report of a case. *Surg Today* 2012; **42**: 475-478 [PMID: 22045232 DOI: 10.1007/s00595-011-0030-7]
- 44 Iijima H, Moriwaki Y, Yamamoto T, Takahashi S, Nishigami T, Hada T. Spontaneous regression of hepatic adenoma in a patient with glycogen storage disease type I after hemodialysis: ultrasonographic and CT findings. *Intern Med* 2001; 40: 891-895 [PMID: 11579951]
- 45 Uenishi T, Hirohashi K, Tanaka H, Ikebe T, Kinoshita H. Spontaneous regression of a large hepatocellular carcinoma with portal vein tumor thrombi: report of a case. *Surg Today* 2000; **30**: 82-85 [PMID: 10648091 DOI: 10.1007/PL00010054]
- 46 Lee HS, Lee JS, Woo GW, Yoon JH, Kim CY. Recurrent hepatocellular carcinoma after spontaneous regression. J Gastroenterol 2000; 35: 552-556 [PMID: 10905365]
- 47 Grossmann M, Hoermann R, Weiss M, Jauch KW, Oertel H, Staebler A, Mann K, Engelhardt D. Spontaneous regression of hepatocellular carcinoma. *Am J Gastroenterol* 1995; 90: 1500-1503 [PMID: 7544955]
- 48 Markovic S, Ferlan-Marolt V, Hlebanja Z. Spontaneous regression of hepatocellular carcinoma. *Am J Gastroenterol* 1996; 91: 392-393 [PMID: 8607517]
- 49 **Stoelben E**, Koch M, Hanke S, Lossnitzer A, Gaertner HJ, Schentke KU, Bunk A, Saeger HD. Spontaneous regression of

hepatocellular carcinoma confirmed by surgical specimen: report of two cases and review of the literature. *Langenbecks Arch Surg* 1998; **383**: 447-452 [PMID: 9921945]

- 50 Kato H, Nakamura M, Muramatsu M, Orito E, Ueda R, Mizokami M. Spontaneous regression of hepatocellular carcinoma: two case reports and a literature review. *Hepatol Res* 2004; 29: 180-190 [PMID: 15203083 DOI: 10.1016/j.hepres.2004.03.005]
- 51 Nouso K, Uematsu S, Shiraga K, Okamoto R, Harada R, Takayama S, Kawai W, Kimura S, Ueki T, Okano N, Nakagawa M, Mizuno M, Araki Y, Shiratori Y. Regression of hepatocellular carcinoma during vitamin K administration. *World J Gastroenterol* 2005; 11: 6722-6724 [PMID: 16425373 DOI: 10.3748/wjg.v11.i42.6722]
- 52 Evdokimova VN, Liu Y, Potter DM, Butterfield LH. AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. *J Immunother* 2007; 30: 425-437 [PMID: 17457217 DOI: 10.1097/ CJI.0b013e31802fd8e2]
- 53 Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. *Hepatology* 1998; 27: 407-414 [PMID: 9462638 DOI: 10.1002/hep.510270214]
- 54 Abiru S, Kato Y, Hamasaki K, Nakao K, Nakata K, Eguchi K. Spontaneous regression of hepatocellular carcinoma associated with elevated levels of interleukin 18. *Am J Gastroenterol* 2002; 97: 774-775 [PMID: 11922591 DOI: 10.1111/j.1572-0241.2002.05580.x]
- 55 Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, Kinoshita H, Masuda J, Hazama H, Sakamoto I, Kohno S. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. *Gut* 1998; 43: 575-577 [PMID: 9824589]
- 56 Ohtani H, Yamazaki O, Matsuyama M, Horii K, Shimizu S, Oka H, Nebiki H, Kioka K, Kurai O, Kawasaki Y, Manabe T, Murata K, Matsuo R, Inoue T. Spontaneous regression of hepatocellular carcinoma: report of a case. *Surg Today* 2005; **35**: 1081-1086 [PMID: 16341493 DOI: 10.1007/s00595-005-3066-8]
- 57 Maio M. Melanoma as a model tumour for immuno-oncology. Ann Oncol 2012; 23 Suppl 8: viii10-viii14 [PMID: 22918922 DOI: 10.1093/annonc/mds257]
- 58 Scott M, Lawrance J, Dennis M. Regression of a renal cell carcinoma following allogeneic peripheral blood stem cell transplant for acute myeloid leukaemia: evidence of a graft-versustumour effect without significant graft-versus-host disease. Br J Haematol 2012; 159: 1 [PMID: 22845006]

P- Reviewer: Chiu KW, Mihaila R, Wakui N, Wang LT S- Editor: Gong ZM L- Editor: A E- Editor: Zhang FF

Published by Baishideng Publishing Group Inc

7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA Telephone: +1-925-223-8242 Fax: +1-925-223-8243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk http://www.wjgnet.com

© 2017 Baishideng Publishing Group Inc. All rights reserved.