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Tactile Sensing with Whiskers of Various Shapes:
Determining the Three-Dimensional Location of Object
Contact Based on Mechanical Signals at the Whisker Base

Lucie A. Huet,1 John W. Rudnicki,1,2 and Mitra J.Z. Hartmann1,3

Abstract

Almost all mammals use their mystacial vibrissae (whiskers) as important tactile sensors. There are no sensors
along the length of a whisker: all sensing is performed by mechanoreceptors at the whisker base. To use
artificial whiskers as a sensing tool in robotics, it is essential to be able to determine the three-dimensional (3D)
location at which a whisker has made contact with an object. With the assumption of quasistatic, frictionless,
single-point contact, previous work demonstrated that the 3D contact point can be uniquely determined if all six
components of force and moment are measured at the whisker base, but these measurements require a six-axis
load cell. Here, we perform simulations to investigate the extent to which each of the 20 possible ‘‘triplet’’
combinations of the six mechanical signals at the whisker base uniquely determine 3D contact point location.
We perform this analysis for four different whisker profiles (shapes): tapered with and without intrinsic
curvature, and cylindrical with and without intrinsic curvature. We show that whisker profile has a strong
influence on the particular triplet(s) of signals that uniquely map to the 3D contact point. The triplet of bending
moment, bending moment direction, and axial force produces unique mappings for tapered whiskers. Four
different mappings are unique for a cylindrical whisker without intrinsic curvature, but only when large
deflections are excluded. These results inform the neuroscience of vibrissotactile sensing and represent an
important step toward the development of artificial whiskers for robotic applications.
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Introduction

V ibrissae (whiskers) or tactile hairs provide many
animals with a rich sense of touch. These animals can

use their whiskers to tactually determine an object’s lo-
cation as well as its shape, size, orientation, compliance,
and texture.1–10

Artificial whiskers could provide robots with similarly
sophisticated tactile capabilities. For an artificial whisker to
extract an object’s contours, it is important to determine the
three-dimensional (3D) location of whisker-object contact.
To date, however, studies have only determined at most two
coordinates of the contact point,11–15 limited contacts to oc-
cur at the tip,16 or used a six-axis load cell to determine 3D
contact point location.17,18

Our laboratory recently developed a mechanical model to
calculate all mechanical signals at the whisker base as the whisker
is deflected in 3D.19,20 Given the location of the point of contact
between the whisker and an object, the model can compute all six
components of force and moment at the whisker base.

The goal of the present work was to invert this process, that
is, to use measurements of force and moment at the whisker
base to infer the 3D contact point location. To avoid use of a
six-axis load cell, which is bulky and expensive, we included
the additional constraint that only three of the six mechanical
variables at the whisker base could be used, thus creating
mappings from three mechanical variables to the 3D contact
point location. We examined all 20 possible combinations of
triplets of mechanical variables and determined whether they
provided unique mappings to contact point location.
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We also examined how these mappings changed with
different whisker profiles (i.e., intrinsic whisker shape).
Whiskers, by nature, have a tapered and intrinsic curva-
ture, but it is easiest to create robotic whiskers that are
straight, cylindrical segments of plastic or wire. We
therefore analyzed the mappings for four different whisker
profiles: curved tapered, curved cylindrical, straight ta-
pered, and straight cylindrical. For each profile, we eval-
uate which mapping is the best suited to extract the 3D
contact point locations.

The results of the present work enable the development
of modular and replaceable artificial whiskers for robotics
that minimize sensors and wiring and reduce signal proces-
sing requirements. Potential applications include obstacle
localization and avoidance, contour following and naviga-
tion, extraction of 3D object geometry, improved instrument
placement, and increased mobility, maneuverability, and
autonomy.

Materials and Methods

Elastica3D: A 3D model for whisker bending

Whiskers often deflect against objects with a single point
of contact. The overall goal of the present work was to
characterize and construct the mappings from forces and
moments at the whisker base to the 3D contact point location.
We aimed at constructing a set of ‘‘inverse models’’ that
permit the determination of 3D contact point location based
on mechanical signals at the whisker base. To generate the
data to create the mappings from mechanical signals to
the 3D contact point, we used a 3D frictionless and quasi-
static whisker model that had been previously described in
detail.19–21 We call the model Elastica3D because it is
based on the Euler-Bernoulli equations for 3D elastic beam
bending. We first describe the general form of Elastica3D.
We then describe the ‘‘basic mode’’ and ‘‘contact point’’
mode of Elastica3D, the latter of which is used in the
present work.

In Elastica3D, the whisker is represented as a series of 99
rigid links of a uniform length that are connected by nodes.
The model whisker can be deformed by application of a point
load at any point along its length. The nodes allow rotation in
all three dimensions, and rotation magnitude is constrained
by torsional springs. The stiffness of each spring is dictated
by linear elastic beam bending, as described in Equations
(2.1) and (2.2). The angle dh through which each node rotates
is given by:

dh¼ ds
MB

EI

� �
(2:1)

where ds is the length of the link, MB is the bending moment
at that node, E is Young’s modulus, and I is the area moment
of inertia of the whisker at that node. Although Young’s
modulus is known to vary somewhat along the whisker
length,22–24 here we use a constant average value of 3.3 GPa.
The value of I at each node was calculated as I = pr4/4, where
r is the whisker’s radius at that node.

The amount that each node rotated in a twisting motion
about the axis of the immediately distal link was deter-
mined by:

du¼ ds
s

GJ

� �
(2:2)

where s is the twisting moment at each node, G is the shear
modulus, and J is the polar moment of inertia. G was cal-
culated by using the Equation G = E/(2 · (1+m)), where m
is Poisson’s ratio. The value of m was set to 0.38, which
is typical for alpha keratin that composes the whisker.25

The polar moment of inertia was calculated as J = pr4/2.
A rigid boundary condition was imposed at the whisker
base, meaning that the basepoint of the whisker could not
move and the initial slope of the whisker at its base could
not change.

The ‘‘basic mode’’ of Elastica3D applies a point force
(Fapplied) at a specified arc length along the whisker (sapplied)
and at a specified angle about the whisker axis (fapplied).
Because the model assumes frictionless conditions, the force
is always applied perpendicular to the whisker. The model
then calculates the appropriate whisker deflection due to this
point force and returns the resultant forces and moments at
the whisker base. It also outputs the shape of the deflected
whisker, including the location of the point force acting on
the deflected whisker.

In the present work, however, Elastica3D was used in
‘‘contact point’’ mode, in which the inputs are not (Fapplied,
sapplied, fapplied) but rather the location of the 3D contact point
and the undeflected whisker shape. The model then uses the
MATLAB� optimization function fminsearch that runs a
Nelder-Mead algorithm. It optimizes over (Fapplied, sapplied,
fapplied) with the goal of minimizing the Euclidean distance
from the contact point location to the location of the point
force acting on the deflected whisker. When this distance is
zero, the model has found the solution and returns the de-
flected whisker shape as well as the forces and moments at the
base. If the optimization could not converge to a zero dis-
tance, then it was determined that the whisker could not reach
that contact point. The whisker would have slipped off the
object before deflecting that far.

Validation of Elastica3D

The forces and moments output by Elastica3D for a straight,
cylindrical beam were validated against an analytical solu-
tion.26 The output of Elastica3D for tapered beams was val-
idated against a finite element model (FEM) constructed in
ABAQUS. The FEM model was also used to validate the
shape of the deflected straight cylindrical whisker because
the analytical model did not give a solution for the full
whisker shape.

The ABAQUS model enforced a rigid boundary condition
at the beam base, a traction-free boundary condition at the tip,
and applied a prescribed point force at a node at a specified
location along the beam, sapplied. A follower load was used to
ensure that the point force rotated with the node at which it
was applied. To enable the rotational degrees of freedom for
the follower load, 3D linear beam elements were used to
discretize the tapered beam. Five hundred Timoshenko beam
elements in ABAQUS (B31) were used to fully capture the
effects of shear deformation that are omitted in Euler Ber-
noulli beam bending.

Figure 1a replicates figure 5.2 from Mattiasson,26 which
plots the nondimensional solution to the bending of a straight
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cylindrical beam, and Figure 1b presents a diagram for the
variables used in Figure 1a. Results from the FEM whisker
matched the Mattiasson solution perfectly. The blue lines in
Figure 1a are the results from Mattiasson/FEM, and the
colored regions bordered by black and red lines represent
all the solutions from Elastica3D. Results from Elastica3D
are not single lines because the number of nodes depends
on sapplied. For a shorter sapplied, fewer nodes are rotated in
Elastica3D.

It is apparent that the force and moments output from
Elastica3D drift slightly from the analytical solution, espe-
cially when the arc length of contact is small and the de-
flection angle is large. However, the shapes of the deflected
whiskers were visually indistinguishable. A few specific
cases are highlighted by three sets of boxes and dots in
Figure 1a and tabulated in Table 1. The maximum deviation
from the analytical model was 1.2%.

Errors in Elastica3D were smaller for tapered whiskers
than for cylindrical whiskers, as shown in the middle section
of Table 1. Errors for a whisker with intrinsic curvature were
also small, as illustrated in Figure 1c and tabulated in the last
row of Table 1.

Generating data for mappings

A mapping consists of a set of forces and moments that
are measured at the whisker base and that point to the 3D
location of whisker-object contact. To generate the map-
pings, we first had to generate all the force and moment data
for all contact points.

Data were generated for four different whisker profiles:
straight cylindrical, straight tapered, curved cylindrical,
and curved tapered. Whisker dimensions were based on the
dimensions of a rat C2 whisker. All whiskers had an arc
length (S) of 3.5 cm27,28 and a base radius (Rbase) of
100 lm. The intrinsic curvature was defined by the para-
bolic function y = 23.3 x2, where the coefficient has units
of m-1.27 Tapered whiskers had a base-to-tip radius ratio
of 1528–30, resulting in a tip radius (Rtip) of 6.67 lm.
Cylindrical whiskers had a radius of 100 lm along their
entire length.

All simulations were performed in whisker-centered co-
ordinates, which have been previously described in de-
tail.11,13,19–21,31–35 Whisker-centered coordinates place the
origin at the whisker base with the x-axis aligned with
the proximal linear portion of the whisker. The positive
y-direction for a whisker with intrinsic curvature is defined as
the direction in which the tip curves concave forward (CF).
Thus, all whiskers are defined to lie in the x-y plane when
undeflected.

To generate the mechanical data, we deflected the
whisker to all contact points that it could reach within a
given range. The 3D contact point location was defined in
spherical coordinates (rcp, hcp, ucp). The radial distance, rcp,
was varied from 11 to 35 mm (29–100% of the whisker arc
length). The azimuthal angle (hcp) was varied from -60� to
60� for a straight whisker and from -65� to +65� for a
curved whisker. The elevation angle (ucp) was varied from
-60� to +60� for all whiskers. The resulting forces and
moments for each contact point in this space that the
whisker was able to reach were then determined by using
Elastica3D.

FIG. 1. Results from Elastica3D were a good match to
analytical and FEM solutions of whisker bending. (a) A non-
dimensional plot of whisker bending is reproduced from
Mattiasson26 figure 5.2, and results from Elastica3D are
overlaid. The value on the y-axis is determined by the mag-
nitude of the applied force (Fapplied) and the arc length at which
the force was applied (sapplied). The values on the x-axis show
the amount of deflection at the point of contact in the x- and y-
directions (u and w, respectively) normalized to sapplied. The
blue lines reproduce Mattiasson’s values, and the colored re-
gions bordered by black and red lines represent the results
from Elastica3D. The coloring within the regions is deter-
mined by the angle of deflection, which is directly related to
the values u/sapplied and w/sapplied. The coloring emphasizes
that larger angles of deflection result in larger errors. The black
lines are the deflections when sapplied was set to its smallest
value (10 mm or 29% of the whisker arc length), and the red
lines are the deflections for a much larger value of sapplied

(30 mm or 86% of the whisker arc length). When sapplied was
greater than 30 mm, the whisker was not able to deflect through
as large an angle and, therefore, does not extend out as far
along the x-axis. The green dots and boxes mark three specific
examples in which the identical force was applied to the FEM
model and Elastica3D. Boxes mark the analytical solution, and
dots mark the Elastica3D solution. (b) This diagram depicts
the variables used in (a). The gray line is the undeflected
straight, cylindrical whisker, and the blue line is the whisker
shape once the force has been applied. The values of u and w
show the amount of deflection at the point of applied force in
the x and y directions, respectively. (c) A comparison of the
FEM solution and the Elastica3D solution for a tapered
whisker with intrinsic curvature. The undeflected whisker
shape is shown in gray. Results for the deflected whisker shape
from the FEM (blue) and Elastica3D model (black) are in-
distinguishable in the plot. The 3D contact points from the two
models are plotted in blue and gray and are also indistin-
guishable. 3D, three-dimensional; FEM, finite element model.
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Determining uniqueness of mappings

Visual inspection often served as a quick tool to determine
whether a mapping was unique. Many mappings were obvi-
ously nonunique. For example, the obvious overlap in the
monochromatic surfaces for the mapping that involves Fx, FT,
and FD (Fig. 6a of Results) immediately classified it as
nonunique. Other mappings (e.g., Fig. 7a, b) were obviously
unique by visual inspection: there was no possibility that the
monochromatic surfaces overlapped.

Many mappings, however, could not be visually classified
as unique or nonunique, and therefore, a neural network was
used as a second method to examine uniqueness. The intui-
tion here was that the neural network would be trained on a
set of data to learn a function approximation to the input-
output mapping. The network would then be tested on an
independent set of test data. If there had been degenerate
outputs for an input, then the network would have learned a
degenerate input-output mapping and would provide poor
output estimates for the test data.

The neural network construction and training algorithm
were the same for all mappings. MATLAB built-in neural
network functions were used, and the structure of the network
was designed to solve a complex nonlinear function. The
neural network had three input and three output nodes with
two hidden layers of ten nodes each. The hidden layers used a
hyperbolic tangent sigmoid function, and the output layer
used a linear transfer function. Levenberg-Marquardt back-
propagation was used to train the network, and the perfor-
mance function was the mean squared normalized error. The
networks were trained on 35% of the data; MATLAB built-in
training functions tested network training completion on
another 7.5% of the data and validated it on a further 7.5% of
the data, all of which were chosen at random. The remaining
50% of the data was used to calculate errors to determine
uniqueness.

For a mapping to be considered unique, the neural network
had to be able to solve for the mapping within certain error

thresholds for rcp, hcp, and ucp. The thresholds were set by the
largest weighted median errors that were associated with
mappings that were obviously unique by visual inspection.
The error thresholds were as follows: 1 mm in rcp (3% of the
whisker arc length), and 1.5� for hcp and ucp. For a mapping
to be declared unique, it had to meet two criteria: (1) it could
have no regions of large, obvious visual overlap, and (2) the
error had to be below threshold.

There is a subtlety in establishing the median errors.
Because the contact points were distributed evenly in
spherical coordinates (rcp, hcp, ucp), they were not dis-
tributed evenly in Cartesian coordinates. The points were
denser at smaller values of rcp and at higher values of ucp.
Therefore, the median errors over the space of contact
points were calculated by weighting the data points by
r2

cpcos ucp

� �
.

There is an additional subtlety when determining whether
the solution found by the neural network is unique. Imagine
that the forces and moments map to two different sets of (rcp,
hcp, and ucp) throughout a large portion of the force/moment
space, meaning that the mapping is nonunique. But now
imagine further that one (rcp, hcp, ucp) set is dense, involving
the majority of contact points, whereas the other (rcp, hcp, ucp)
set is sparse, having relatively few points distributed within
the force/moment space.

In this imagined scenario, there will be extensive and ob-
vious overlap of the monochromatic surfaces in the mapping
visualization, similar to the surfaces shown in Figure 6a in the
Results section. However, because the dense (rcp, hcp, ucp) set
contains more points, the neural network will converge on
this set. Consequently, the neural network will return small
errors for the large number of data points in the densely
populated (rcp, hcp, ucp) set and return large errors only for the
small number of data points in the sparse set. When averaged,
it is entirely possible that the total error could be below the
uniqueness thresholds established for the three variables (rcp,
hcp, ucp), despite the nonuniqueness permeating a large
fraction of the mapping.

Table 1. Validation of the Elastica3D Model Against a Finite Element Solution

in ABAQUS and/or Against the Analytic Solution

sapplied (mm) Fapplied (mN) Error
Error (percent

whisker arc length)

Cylindrical whiskers: Error is the distance between the contact point location (rcp, hcp, ucp) computed
by using Elastica3D and computed via the analytic solution.

Figure 1a, case 1 13.9 2.4 0.31 mm 0.88
Figure 1a, case 2 31.4 6.0 0.36 mm 1.03
Figure 1a, case 3 10.0 8.1 0.41 mm 1.2

Compare cylindrical and tapered whiskers: Error is the distance between the contact point location
(rcp, hcp, ucp) computed by using Elastica3D and computed by using FEM.

Cylindrical (no figure) 22.7 0.1 38.4 lm 0.11
Tapered (no figure) 22.7 0.1 26.6 lm 0.076

Tapered whisker with intrinsic curvature: Error is the distance between the contact point location
(rcp, hcp, ucp) computed by using Elastica3D and computed by using FEM.

Figure 1c 34.5 0.4 40.8 lm 0.087

For the cases identified in the first column, we applied the same force (Fapplied) at the same location along the whisker arc length (sapplied)
to Elastica3D and the FEM model. Top rows: In the case of cylindrical whiskers, where the FEM solution matched the analytic solution, the
errors remained below 1.5% of the whisker arc length. Middle rows: Errors between the FEM solution and Elastica3D were smaller for
tapered whiskers than cylindrical whiskers when the same load was applied at the same arc length. Bottom row: Errors remained small for
tapered whiskers with intrinsic curvature.

3D, three-dimensional; FEM, finite element model.

MAPPINGS TO THE LOCATION OF WHISKER-OBJECT CONTACT 91



It is for this reason that we required a mapping to be unique
by visual inspection as well as below the error threshold to be
formally declared unique.

For each of the four whisker profiles, we tested the 20
different triplet combinations of force and moment for
uniqueness. We also tested each of these combinations for
uniqueness by using only subsets of the mappings (e.g., small
angle deflections, concave forward only, etc.), as will be
described further in the Results section. These uniqueness
results are tabulated in Table 2.

Two nonunique mappings for a straight, cylindrical
whisker required a different approach to determine unique-
ness, and they are shown in rows 1 and 2 of Table 2 of the
Results section. The mapping in row 1 is based on the axial
force (Fx), the magnitude of the bending moment (MB), and
the direction of bending moment (MD); the mapping in row
2 is based on Fx, MB, and the direction of the transverse
force (FD).

Initial results of the neural network analysis demonstrated
that both of these mappings had regions of uniqueness, but
the equivalent two-dimensional (2D) version of these map-
pings had previously been shown to be nonunique.11 Visual
inspection was inconclusive. To resolve this matter, we used
Equations (5.1)–(5.9) from Mattiasson, 1979,26 which de-
scribe the contact point location for an applied load (Fig. 1a).
Solving these equations in Mathematica� showed that the

same values of the mechanical signals could be associated
with entire families of contact points, verifying that these two
mappings were nonunique.

Finally, we note that occasionally mappings contained
small, highly localized regions of nonuniqueness but had
acceptable median errors, and they were classified as unique.
For example, all mappings for curved, cylindrical whiskers
that include both MD and FD (lines 8–11 of Table 2 in the
Results section) contain a small region of nonuniqueness in
the concave-forward collision regime when hcp is positive.
These are regions in which the whisker is being ‘‘straightened
out’’ in the top-down view. Nevertheless, errors were small
enough for the average error to be passed within the ac-
ceptable limit and the mapping to be still classified as unique.
As a result, though, in Figure 7, we chose to present the
mapping that contains Mx instead of FD because of this
nonunique region.

Results

Problem statement: What combination(s)
of mechanical signals at the whisker base
uniquely identify contact point location?

Deflection of a whisker against an object typically gener-
ates a single point of contact. We describe this contact point

Table 2. Conditions in Which Each Mapping for Each Whisker Profile Is Unique

Inputs When is the mapping unique?

1 2 3
Curved,
tapered Curved, cylindrical

Straight,
tapered

Straight
cylindrical

1 Fx MB MD All CF All not unique
2 Fx MB FD ELD ELD CF ELD not unique
3 Fx FT MD ELD CF ELD CF ELD ELD
4 Fx FT FD ELD ELD CF / ELD CB ELD ELD
5 FT MB MD ELD CF ELD CF ELD ELD
6 FT MB FD CB** ELD CB ELD ELD
7 Fx MB FT not unique not unique not unique not unique
8 Fx MD FD All* ELD CF* / CB* not unique not unique
9 MD MB FD All* All* not unique not unique

10 FT MD FD All* ELD* / CF* / CB* not unique not unique
11 Mx MD FD All* CB not unique not unique
12 Mx MB MD All* All* not unique not unique
13 Mx MB FD CF* ELD CF* not unique not unique
14 Mx FT MD ELD CF* ELD* / CF* not unique not unique
15 Mx FT FD ELD CF* ELD CF* not unique not unique
16 Mx Fx MD not unique ELD* / CB* not unique not unique
17 Mx Fx FD CB* not unique not unique not unique
18 Mx MB FT ELD CF ELD CF not unique not unique
19 Mx MB Fx CB / CF not unique not unique not unique
20 Mx Fx FT not unique not unique not unique not unique

Cells marked ‘‘All’’ mean that the mapping is unique for the entire contact point space, and cells marked ‘‘not unique’’ mean that the
mapping is not unique. Cells marked ‘‘ELD’’ mean that the mapping is unique when large deflections are excluded, and cells marked ‘‘CF’’ or
‘‘CB’’ mean that the mapping is unique when only concave-forward or concave-backward contact points are considered. Cells marked ‘‘ELD
CF’’ mean that the mappings are unique only when concave-forward points are included and large deflections are excluded. Similarly, cells
marked ‘‘ELD CB’’ are unique when only concave-backward points are included and large deflections are excluded. Cells that are split by
slashes had multiple conditions under which the mapping became unique. For example, the way to read Row 4 of the table is that if it is known
that the whisker is in the CF region, or it is known that the whisker is in the CB region, then the mapping is unique if large deflections are
excluded. If it is not known whether the whisker is in the CB or CF region, then the mapping is not unique. *The mapping is nonunique only in
the x-y plane. **The mapping is nonunique in the curved surface that defines the crossover to large angle deflections.

CF, concave forward; CB, concave backward; ELD, excluding large deflections.
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by using slightly nonstandard spherical coordinates (rcp, hcp,
ucp), as shown in the left panel of Figure 2a. These coordi-
nates differ from standard spherical coordinates only in that
ucp is measured from the x-y plane instead of from the pos-
itive z-axis. The point of contact exerts an external point
force on the whisker, which is described by (Fapplied, sapplied,
fapplied) as illustrated in the middle panel of Figure 2a. Fapplied

is the magnitude of the applied force, sapplied is the arc length
from the whisker base to the location of the applied force, and
fapplied is the orientation of the applied force about the axis of
the whisker. Because this study assumes frictionless condi-
tions, the applied force is always perpendicular to the axis of
the whisker.

The applied force creates reaction forces and moments at
the base of the whisker, as illustrated in the right panel of
Figure 2a, which can then be sensed by mechanoreceptors
within the follicle. Although forces and moments are gener-
ally expressed in Cartesian coordinates [Fx, Fy, Fz, Mx, My,
Mz], the radial symmetry at the whisker base lends itself to
expressing these mechanical signals in cylindrical coordi-
nates [Fx, FT, FD, Mx, MB, MD]. Fx is the axial force directed
along the axis of the whisker at its base. FT is the magnitude

of the transverse force, defined by FT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

y þF2
z

q
; FD is the

direction of this transverse force about the axis at the whisker

base, defined as FD¼ atan Fz

Fy

� �
. Mx is the twisting moment

about the whisker’s axis at its base; MB is the magnitude of

the bending moment, defined by MB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

y þM2
z

q
; and MD is

the direction of the bending moment, defined as MD¼ atan Mz

My

� �
.

All these forces and moments are described in whisker-
centered coordinates (see the Materials and Methods section).

As described in the Materials and Methods section, we
used Elastica3D19,20 to find these six forces and moments,
F and M.

The central question of the present study involves inverting
the process illustrated in Figure 2a and is schematized in
Figure 2b. We aim at using forces and moments at the whisker
base to determine the contact point location. Theoretical work
has shown that the use of all six forces and moments uniquely
determines contact point location.18 Therefore, we sought to
reduce the dimensionality of the input by asking what com-
binations of three of these six mechanical variables map un-
iquely to the contact point location.

The reachable space for whiskers
with different profiles (shapes)

To investigate these mappings, we simulated deflections of
the whisker to all contact points within its reach (see the
Materials and Methods section) and determined forces and
moments at the whisker base. Four different whisker profiles
were simulated: straight cylindrical, straight tapered, curved
cylindrical, and curved tapered. These profiles were chosen,
because natural whiskers are curved and tapered, but straight
and cylindrical whiskers are the easiest to construct in
hardware for robotic applications.

The gray volumes shown in Figure 3 and Supplementary
Video S1 (Supplementary Data are available online at www
.liebertpub.com/soro) show the 3D contact point locations
that each of the whiskers was able to reach before slip-
ping off. The limits for whisker slipoff were identified as
cases when the optimization in Elastica3D could not con-
verge to zero.

The most striking feature of Figure 3 is that each whisker
profile can reach very different regions of the 3D space. The
curved whiskers have reachable spaces that curve with them,
and the cylindrical whiskers can reach much larger regions,
especially for more distal radial contacts. This effect occurs
because cylindrical whiskers are stiffer near their tip than are
tapered whiskers and therefore experience less deflection for

FIG. 2. Graphical depictions of a 3D contact point location resulting in mechanical signals at the whisker base and a
mapping of the inverse. (a) Elastica3D finds the forces and moments at the whisker base given the 3D contact point location.
When a whisker contacts an object, it generates a single contact point between the whisker and the object (rcp, hcp, ucp) (left
panel) and a point force on the whisker (Fapplied, sapplied, fapplied) (center panel). Elastica3D can be used to compute the
resultant forces and moments at the whisker base (F and M) (right panel) and has been the subject of several previous
studies.19–21 (b) The goal of the present work was to use Elastica3D to invert the process described in (a), in other words, to
determine the 3D contact point location given various combinations of forces and moments at the whisker base.
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the same contact point. The increased stiffness allows
cylindrical whiskers to deflect much more before slipping
off, revealing a distinct advantage of using cylindrical
whiskers.

Mechanical signals at the base of each whisker

The next step is to determine the values of F and M for each
of the contact point locations shown in Figure 3. Figure 4 and
Supplementary Video S2 show these six forces and moments
for the example of a straight, tapered whisker. This example
was chosen because it highlights several important features of
the relationships between mechanical signals and contact
point location.

The volumes in each subplot of Figure 4 are identical to the
volume shown in the top right panel of Figure 3, but the gray
point cloud has now been colored to represent each of the six
mechanical signals at the whisker base. A number of key
trends in the forces and moments are easy to observe for
different contact point locations.

First, an obvious feature of Figure 4 is that Mx is zero for
all contact points. This effect occurs because the whisker is
straight. Mx is nonzero only for whiskers with intrinsic cur-
vature. Therefore, for straight whiskers, Mx contains no in-
formation on contact point location.

Second, the magnitudes of Fx and MB are the largest when
both the radial distance of contact (rcp) is small and the de-
flection angle is large. These mechanical signals are much
smaller for distal contacts and small deflection angles. Note,
however, that even though Fx and MB share this trend, they
are not proportional to each other because they follow dif-
ferent gradients.

Third, a sudden 180� change in FD occurs as contact points
deflect farther from the resting whisker. This inversion is

FIG. 3. Whiskers with different profiles (shapes) are able
to reach different regions of the 3D contact point space. All
subplots in this figure were created by drawing surfaces at
each discrete radial distance value, which makes the edges
of the workspace appear to have ‘‘ripples.’’ Each panel
represents the (x, y, z) point cloud of contact point locations
that are reachable by four whiskers with different profiles:
straight cylindrical, straight tapered, curved cylindrical, and
curved tapered. Note that the tapers are not drawn to scale;
they are for illustrative purposes only. Supplementary Video
S1 shows these four point clouds rotating in 3D.

FIG. 4. Trends in the spatial
distribution of forces and mo-
ments can be observed when the 3D
contact point locations are appro-
priately color coded, as shown for
the example of a straight, tapered
whisker. All of the panels in this
figure replicate the spatial distri-
bution of contact points shown for
the straight, tapered whisker in the
top right panel of Figure 3. How-
ever, instead of coloring the contact
points gray, each panel color codes
the contact points according to one
of six mechanical signals at the
whisker base, as indicated in the ti-
tles (Fx, FT, FD, Mx, MB, MD). Sup-
plementary Video S2 shows these
mapping clouds rotating in 3D.
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visible as a ‘‘ring’’ of color change in the proximal contact
points in the FD subplot of Figure 4. The sudden change
occurs because, at this angle of deflection, the whisker has
bent so far that the applied force points directly in the neg-
ative x-direction. Past this point of deflection, the transverse
force points in the opposite direction. MD does not exhibit an
abrupt transition because the bending moment does not
change direction. Note that even with this flip, FD and MD

always remain 90� offset from each other, which is true for all
straight whiskers.

The point at which FD flips by 180� marks the cutoff that
defines ‘‘large deflections.’’ Although these large deflections
are more numerous and more easily visible at proximal
contact point locations, large deflections also occur at distal
contact point locations. This cutoff occurs at a wide range of
angles depending on the radial distance of contact, but most
large deflections are found at a cutoff of over 40�.

The demarcation into large deflections is also visible in
the FT output as a ‘‘ring’’ of zero values. At these locations,
the whisker is bent so that all the applied force acts in the
x-direction.

The switch to large deflections is slightly different for
whiskers with intrinsic curvature in that FT does not become
zero. However, FD experiences a similar switch in direction,
and large deflections remain easy to identify.

An example of a unique mapping: Fx, MB,
and MD for a straight, tapered whisker

The next step in our analysis was to test different triplet
combinations of mechanical variables to determine whether
they generate a unique mapping to the contact point location,
as described by rcp, hcp, and ucp. A visualization of one
mapping is shown in Figure 5 and Supplementary Video S3.

The figure shows a mapping that uses Fx, MB, and MD for a
straight, tapered whisker. We examine this mapping first
because we recently showed—for the 2D case—that Fx and
MB at the base of a straight, tapered whisker uniquely de-
termine rcp and hcp for contact points in the x-y plane.11

Adding MD as the third mechanical variable is a natural 3D
extension of this 2D mapping.

The visualization is created by plotting the values of three
selected mechanical variables in a single 3D plot. The three
subplots of Figure 5 all contain identical points; that is, each
triplet of Fx, MB, and MD identifies a point (rcp, hcp, ucp).
Each subplot shows a multi-colored solid shape. For easier
visualization (MATLAB cannot plot solids), the solids are
plotted as a series of monochromatic surfaces; that is, each
solid is sliced along a single color value. The surfaces are
colored differently, based on rcp, hcp, or ucp. For instance, one
monochromatic surface in Figure 5a contains all contact
points that have the same radial distance. Similarly, one
monochromatic surface in Figure 5b contains all contact
points that have the same value of hcp. These discrete surfaces
are more easily visible in Supplementary Video S3.

Note that because the solids are sliced differently (ac-
cording to rcp, hcp, ucp), their shapes appear slightly different.
In addition, data were generated at finer resolutions for hcp

and ucp values than for rcp, resulting in more monochromatic
surfaces and a higher resolution for the two angular variables
than for rcp. The lower resolution of the rcp mapping accounts
for the apparent ‘‘step-like’’ gaps seen in Figure 5a.

Two important features can be observed in the map-
ping of Figure 5. First, although MD contains no informa-
tion about rcp, it plays a large role in determining hcp and
ucp. In Figure 5a, rcp does not change along the MD axis;
however, in Figure 5b, c, both hcp and ucp change mostly
along the MD axis.

FIG. 5. Visualization of the Fx, MB, and MD mapping for a straight, tapered whisker. The data points in the mappings are
identical in all three panels: They represent the values of Fx, MB, and MD for all 3D contact point locations. As described in
the text, the ‘‘solids’’ shown in the three panels of this figure are actually composed of a set of surfaces that have a
resolution determined by the discretized steps in creating the mappings. Thus, although the data points in the three
subpanels are identical, the shapes look different because they are constructed of monochromatic surfaces that ‘‘slice
through’’ the solid differently. These surfaces are easier to visualize in Supplementary Video S3. The color code changes
between the three panels: The left panel (a) is color coded to describe rcp, the middle panel (b) is color coded for hcp, and the
right panel (c) is color coded to describe ucp. This mapping is unique because the surfaces that make up each solid do not
intersect each other. The ‘‘feathered edges’’ seen in all panels of this figure (particularly in the mapping for rcp) are not
scientifically relevant; they are caused by the discretization used when generating all F and M values. Running simulations
at a finer resolution would generate smoother edges. Supplementary Video S3 shows these mappings rotating in 3D.
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Second, MB and Fx generally increase and decrease to-
gether. When both signals are large, rcp is small, and either hcp

or ucp is large. Conversely, when both MB and Fx are small,
both hcp and ucp are also small, but rcp is unconstrained. This
result can be observed on close examination of the top of
Figure 5a, where all monochromatic surfaces converge to a
line. Note that this feature is consistent with Figure 4, in that
both MB and Fx were largest at large deflections at small
radial distances and smallest for large radial distances or
small deflections.

The most important feature of a mapping is the extent to
which it maps uniquely to contact point locations. A mapping
is unique when one reading of the specified mechanical
variables uniquely determines a single contact point location.
If a mapping is unique, it can be used to identify contact point
location, which is the first step toward feature extraction.

One method to determine mapping uniqueness is by visual
inspection. A mapping is nonunique if any of the monochro-
matic surfaces that compose the solid intersect each other
because such an intersection would demonstrate that a single
reading of the mechanical triplet results in two or more dif-
ferent contact point locations. A careful visual examination of
the Fx, MB, and MD mapping in Figure 5 indicates that it is a
unique mapping, and it fell well within the error limit for
uniqueness established by the neural network (see the Mate-
rials and Methods section).

It is important to keep in mind that although a given
mapping depends on only three of the six mechanical vari-
ables, the remaining three mechanical variables cannot vary
independently. For instance, in the unique mapping of Fig-
ure 5, it is impossible for FT, FD, or Mx to change without also
altering the variables plotted on the axes, Fx, MB, and MD. In

FIG. 6. The mapping of Fx, FT, and FD is not unique for a straight, tapered whisker unless contact points with large
deflections are excluded. Color scales are identical for (a) and (b). (a) These four panels show that mappings between Fx,
FT, and FD and the 3D contact point location (rcp, hcp, ucp) are not unique when large angle deflections are included. The
first panel shows all 3D contact point locations for a straight, tapered whisker. The whisker is depicted as a tapered, black
line, and the gray volume shows all the 3D contact point locations that the whisker was able to reach. Panels 2–4 show the
mapping between Fx, FT, and FD and rcp, hcp, and ucp when all these contact points are included. The panels are color coded
for rcp, hcp, and ucp, respectively. As in Figure 5, the data points that compose the mappings for all three variables are
identical, but their shape appears different because they are constructed of surfaces that slice through the solid differently.
The inset to the plot for rcp shows the mapping projected into the Fx, FT plane to reveal that the monochromatic surfaces
overlap. Overlap is also clearly visible in the mappings for hcp, and ucp, as seen in the blue appearing to penetrate the
yellow. These regions of overlap indicate that the mapping is nonunique and can be more clearly visualized in Supple-
mentary Video S4. (b) These four panels show that mappings between Fx, FT, and FD and the 3D contact point location (rcp,
hcp, ucp) become unique when large angle deflections are excluded. The first panel is identical to the first panel in (a), except
that the contact points classified as large deflections are plotted as red dots. Panels 2–4 show the mapping between Fx, FT,
and FD and rcp, hcp, and ucp when the red contact points involving large angle deflections are excluded. The monochromatic
surfaces no longer overlap, so the mapping is unique. Supplementary Video S4 shows these mappings rotating in 3D.
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other words, because the mapping is unique, we can say that
the variables Fx, MB, and MD fully define the whisker state,
which includes rcp, hcp, ucp, Fapplied, sapplied, fapplied, the de-
flected whisker shape, and the remaining mechanical vari-
ables FT, FD, and Mx.

In contrast, for a nonunique mapping, an example of
which follows, certain combinations of the three chosen
mechanical variables—or sometimes all combinations of
these variables—do not uniquely identify a contact point
location or the complete whisker state.

Some nonunique mappings are unique
in a subset of the contact point space

An example of a nonunique mapping, Fx, FT, and FD for a
straight, tapered whisker is shown in Figure 6a. The left-most
panel shows all the contact points used in the three other
panels. Visual inspection immediately reveals that the
monochromatic surfaces intersect. A reading of Fx, FT, and
FD within the region of intersecting layers will result in two
possible contact point locations. The insets to the mapping for
radial distance show a different viewing angle so as to more
clearly reveal the overlapping surfaces.

Because the mapping using Fx, FT, and FD was found to be
nonunique for a straight, tapered whisker, we next searched
for ways to make the mapping unique. We began by elimi-
nating all contacts with large deflections, as determined by
the points at which FD flips direction by 180� (c.f., Fig. 4).
These contact point locations are highlighted in red in the
left-most panel of Figure 6b. When these points are removed,
the mapping shown in the three other panels of Figure 6b
contains no overlapping surfaces and is, therefore, unique.
Thus, the Fx, FT, and FD mapping is unique for a straight,
tapered whisker as long as large deflections are excluded.
Supplementary Video S4 provides rotating 3D views of the
panels in Figure 6.

An alternative approach to render a nonunique mapping
unique is to consider either only concave-forward or only
concave-backward contact points. Of course, this distinction
can apply only to whiskers with intrinsic curvature. A
concave-forward contact point is defined as one in which the
whisker would have to collide concave forward into a point
object to reach the contact point, and a concave-backward
contact point is defined as one that would result from a
concave-backward collision.30 Concave-forward contact points
generally create negative Mz bending moments. Conversely,
concave-backward contact points generally create positive
resultant Mz moments.

Different whisker profiles have different
optimal mappings

In Figures 5 and 6, uniqueness was determined based only
on a visual estimate of overlap. A more rigorous approach to
quantifying uniqueness involves the use of a neural network
(see the Materials and Methods section). We used this
method to tabulate the regions of uniqueness for mappings of
all four whisker profiles, as shown in Table 2. Boxes that are
blacked out and contain the words ‘‘not unique’’ represent
force and moment combinations that never resulted in unique
mappings. All other boxes describe the conditions in which
the mapping was determined to be unique.

Boxes marked ‘‘All’’ identify cases in which the mappings
are unique when all possible contact points are considered.
More commonly, boxes are marked ‘‘ELD’’ for ‘‘Excluding
Large Deflections,’’ which indicates that the mappings are
unique only when the large deflections are excluded. Boxes
could also be marked as ‘‘CF’’ for ‘‘Concave Forward,’’
meaning that the mappings are unique when only contact points
that are concave forward are included, or ‘‘CB’’ for ‘‘Concave
Backwards,’’ meaning that the mappings are unique when
only concave-backward points are considered. Only whiskers
with intrinsic curvature can be marked ‘‘CF’’ or ‘‘CB.’’

Mappings can also be marked with asterisks to indicate
mappings that have an infinitesimally thin surface in 3D
space where the mapping is nonunique. A single asterisk
means that contact points in the x-y plane cannot be distin-
guished from one another, and two asterisks mean that con-
tact points in the border space that marks the crossover into
large deflections cannot be distinguished. However, since
these areas of nonuniqueness are only infinitesimal curved
planes, they hardly affect the mapping’s overall uniqueness.

A comparison of mappings across Table 2 reveals some
interesting trends. Straight whiskers have nonunique map-
pings in all cases when Mx is included (rows 11–20) because
Mx for a straight whisker is always zero, as previously noted
in Figure 3. The number of input dimensions to these map-
pings is thus reduced to two, which is insufficient to de-
termine the 3D contact point location. Straight whiskers
also have nonunique mappings in all cases when both MD

and FD are used (rows 8–11) because these variables always
differ by exactly 90�, again decreasing the input dimen-
sionality.

Interestingly, the combination of MD and FD guarantees
nonuniqueness for straight whiskers, whereas mappings that
include these variables for a curved, tapered whisker are al-
ways unique for all contact points except for those in the
whisker plane.

Another example in which the number of input dimen-
sions is reduced can be seen in the mappings marked with a
single asterisk (e.g., rows 8–17). In these mappings, which
are nonunique in the x-y plane, two of the input signals have
constant values when the contact point is in the whisker
plane. FD is either 0� or 180�, and MD is either 90� or 270�.
Mx will always be zero. Any mapping that has two of these
three mechanical inputs is, therefore, nonunique in the
whisker plane.

Most notably, the only mapping that is unique for all
contact points without exception is the Fx, MB, and MD

mapping for tapered whiskers. This indicates that this map-
ping would be the best to use for tapered whiskers to deter-
mine contact point location.

Optimal mappings for the four different whisker profiles

The results of the present work are summarized in Figure 7
and Supplementary Video S5, which illustrate the best
mappings for all four whisker profiles.

For tapered whiskers, regardless of intrinsic curvature, the
best mapping is Fx, MB, and MD, which is unique in all
regions of the 3D contact point space. These mappings are
shown in Figure 7a, b.

For cylindrical whiskers with intrinsic curvature, two
mappings are unique for all contact points, except those in the
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whisker plane: (FD, MB, MD) and (MX, MB, MD), shown in
rows 9 and 12 of Table 2. However, the mapping containing
FD contained a small region of nonuniqueness in the concave-
forward collision regime (see the Materials and Methods
section), so the mapping containing Mx is shown in Figure 7c.

For a straight, cylindrical whisker, no mapping was found
that was unique for all contact points, but four mappings were
unique when large deflections were excluded (rows 3–6 of
Table 2). These four mappings had approximately similar
shapes and performance. We have chosen one, Fx, FT, and FD,
to be displayed in Figure 7d.

Discussion

Advantages and limitations of Elastica3D

The present work has explored how a thin, flexible canti-
lever beam (a ‘‘whisker’’) can be used to determine 3D

contact point location based on reading triplets of various
mechanical signals at the whisker base. The work has also
shown that the whisker profile has a profound effect on which
combinations of forces and moments result in unique map-
pings. We chose to examine four whisker profiles—curved
tapered, curved cylindrical, straight tapered, and straight
cylindrical—because most whiskers found in nature are
curved and tapered, but whiskers that are the easiest to con-
struct (e.g., wire segments) are straight and cylindrical.

The whisker model used in this study, Elastica3D, was
validated against analytic and FEM results and was found to
contain only slight inaccuracies in determining contact point
location for a given applied force (maximum error <1.5%
whisker length). Because these inconsistencies varied sys-
tematically with arc length and the magnitude of the applied
force, they are highly unlikely to affect the results of the
present work.

FIG. 7. Each of the four
rows of the figure depicts the
best mapping for a different
whisker profile. (a) The Fx,
MB, and MD mapping is best
for the curved, tapered whis-
ker. (b) The Fx, MB, and
MD mapping is best for the
straight, tapered whisker. (c)
The Mx, MB, and MD map-
ping is best for the curved,
cylindrical whisker. (d) There
are four mappings with equiv-
alent performances for the
straight, cylindrical whisker;
all are unique only when large
deflections are excluded. Here,
we show the Fx, FT, and FD

mapping. Supplementary Vi-
deo S5 shows these map-
pings rotating in 3D.
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The primary advantage of Elastica3D compared with other
modeling tools is its speed and ease of use. Contact point
mode of Elastica3D can take an undeflected beam and a de-
sired contact point and solve for the necessary applied force
(Fapplied, sapplied, fapplied); such a computation is possible in
ABAQUS but more difficult to achieve. In addition, the
calculations for beam deflection are much faster in Elasti-
ca3D than in ABAQUS. Elastica3D can solve for a deflected
beam shape and resultant forces and moments given an ap-
plied force in a fraction of a second, whereas the same cal-
culation can take tens of seconds in ABAQUS.

Because Elastica3D is relatively fast and easy to use, we
could rapidly create and analyze the mappings from me-
chanical signals at the whisker base to 3D contact point lo-
cation, leading to several novel findings. Previous studies that
have identified 3D contact point location for rigid and/or
whisker-like probes have required all six components of force
and moment to be measured at the whisker base.17,18 This
solution requires the use of a six-axis load cell, which is bulky
and expensive. Using Elastica3D, we found that certain
triplet combinations of these components are sufficient for
unique 3D mappings.

Two limitations of the Elastica3D model are that it is
quasistatic and assumes frictionless contact.

Because Elastica3D is quasistatic, the mechanical signals
that are associated with transient dynamic effects after a
collision would render incorrect contact point position
readings from the mappings. Three ways to combat this effect
are to use whiskers with high damping, to push slowly against
objects, or to wait for dynamic effects to damp out before
determining contact point location. Notably, recent behav-
ioral work has demonstrated that rats press their vibrissae
against surfaces for durations between 20 and 50 msec.36,37

These durations exactly match those that are required to
damp out dynamic effects.38

As a frictionless model, Elastica3D generates a unique
deflected whisker shape for a single contact point and thus
returns a unique set of forces and moments at the base. In
contrast, if friction is present, a single contact point can
result in many possible deflected whisker shapes depend-
ing on the history of contact. The mechanical signals at the
whisker base will therefore vary based on the contact
history. Although friction will not significantly affect
bending moment for small deflections for a straight whis-
ker,13 it will change all other mechanical variables,9,19,34

and the accuracy of all mappings is likely to be re-
duced. Frictional effects could be minimized by using
whiskers with low friction coefficients and by avoiding
long, sweeping contacts.

A caveat to the present work pertains to the determination
of uniqueness for the different mappings. Although many
mappings (e.g., those shown in Figs. 5–7) can be easily
classified as unique or nonunique, other mappings are more
difficult to assess for uniqueness. For example, the mappings
for the curved, tapered whiskers in rows 8–11 of Table 2 had
regions of nonuniqueness that were too small to warrant
classifying the entire mappings as nonunique; their weighted
median errors fell in the acceptable range. Other mappings
had acceptable weighted median errors but had visual overlap
that, though sparse, covered a significant portion of the
mapping, and they were labeled nonunique. Table 2 provides
expected uniqueness for each mapping, but researchers us-

ing these results to determine contact point location should
examine the mapping carefully to be sure it satisfies appli-
cation demands.

Expected generalization to whiskers with different
geometric and mechanical parameters

The mappings in this study were created by using whiskers
with parameters similar to those of a C2 rat vibrissa. Altering
some of these parameters will perfectly scale the mappings
and not affect uniqueness, whereas other parameters may
alter the mappings and change their uniqueness.

Three parameters that only scale the mappings are
Young’s modulus, the radius at the whisker base, and the
length of the whisker. Because Young’s modulus has been
taken as constant, it simply scales the moment and forces at
the base. If the material responses were nonlinear or the
modulus varied along the whisker, this simple scaling would
not apply. Altering the radius of the whisker base scales the
mappings as long as the base radius to tip radius ratio, Rbase/
Rtip, stays constant. Similarly, changing the length of the
whisker will also only scale the mappings when rcp is mea-
sured as a percent of whisker arc length.

Changing the base radius to the tip radius ratio of the
whisker can have highly nonlinear effects on the mappings. It
is easiest to imagine the changes associated with this ratio by
examining Figure 7b, which shows the mapping of Fx, MB,
and MD for a straight, tapered whisker. This figure shows
several distinct monochromatic surface layers. Each layer
corresponds to a different radial distance, and the layers are
far enough apart from each other that the mapping is unique.
In contrast, the same mapping for a straight, cylindrical
whisker is nonunique because all of the layers fall exactly on
top of each other. For this particular mapping, the degree of
taper is related to the distance between the layers. In general,
however, changing the taper can change the mappings in
highly unintuitive ways.

The uniqueness of the mappings will also change with
whisker curvature. Adding curvature to a whisker will result
in nonzero values for Mx, potentially increasing uniqueness
for the ten mappings that employ this mechanical variable
(lines 11–20 of Table 2). Similarly, adding curvature to a
whisker ensures that MD and FD no longer have a fixed offset,
increasing uniqueness for the four mappings that contain both
these variables (lines 8–11 of Table 2). For the remaining
seven mappings (lines 1–7), further work is required to de-
termine the extent to which the magnitude of curvature is a
decisive factor in uniqueness.

Resolution of the mappings

How fine a resolution must a sensor have to obtain a par-
ticular accuracy for the estimate of rcp, hcp, and ucp? The
question of mapping resolution is complicated because a shift
in the reading of any one mechanical signal will change all
three rcp, hcp, and ucp values. In addition, the magnitude of
the change in rcp, hcp, and ucp will depend on the point’s
location within the mapping; in other words, mapping reso-
lution varies throughout the contact space. Examples can be
seen in Figures 7a, b, and d. In these figures, small changes in
the magnitude of a force or moment are associated with a
larger change in contact point location when rcp is large.
Sensors measuring these forces and moments will require
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higher resolution to distinguish between rcp, hcp, and ucp for
distal, rather than proximal, contacts.

It is also important to keep in mind that although some
mappings may technically be unique, they could include one
or more regions where resolution demands are impractical.
Mappings also run the risk of having too wide a range of
required resolutions over the contact point space. Gain con-
trol could help ensure that whisker sensors navigate the tra-
deoff between ensuring fine-sensing capabilities in some
regions without saturating in others.

Practical considerations

From an applications standpoint, it is essential to consider
how easy it is to measure each mechanical variable. For in-
stance, although the combination of FD and MD results in a
unique mapping for a curved, tapered whisker, it is likely to
be difficult to distinguish between these two signals at the
whisker base. It will be similarly challenging to distinguish
FT from MB. Although all six mechanical signals can be
determined with a six-axis load cell,17 this is an expensive
solution, may be difficult to implement at smaller scales, and
does not exploit the triplet combinations found in the present
work. Here, we evaluate the mappings found for each whisker
profile through the lens of practicality.

For the straight, cylindrical whisker, four mappings are
unique when large deflections are avoided (rows 3–6 of Ta-
ble 2). The difficulty with these mappings, however, is that
they all require FT, which will be difficult to distinguish from
MB. A straight, cylindrical whisker would require a load cell
to measure Fy and Fz to uniquely determine contact point
locations.

By adding curvature to the cylindrical whisker, we obtain
two mappings that are unique for all contact points except for
those in the whisker plane (rows 9 and 12 in Table 2). These
mappings present their own challenges, however, because
one requires reading both MD and FD, whereas the other requires
Mx. Simultaneous readings of MD and FD necessitate a six-
axis load cell, and reading Mx would require a torque sensor.

For tapered whiskers, the mapping with the largest re-
gion of uniqueness is Fx, MB, and MD, which is shown in
row 1 of Table 2. For both whisker profiles, it is the only
mapping that is unique for the entire contact point space,
without any exceptions. Furthermore, this mapping requires
adding only a measure of Fx to the bending moment mea-
surements that are already used by many artificial whisker
sensors.12–15,17,33,35,39,40

The conclusions from comparing results across these four
different whisker profiles indicate that a tapered whisker is
best for contact point localization, and they suggest that ta-
pered whiskers may be essential for robots if they are to
extract 3D object features.

Conclusions and future work

The present study demonstrates that—given quasistatic,
frictionless conditions—three mechanical signals at the base
of a tapered whisker are sufficient to determine the 3D lo-
cation of a contact point with an object. Our results confirm
and extend previous 2D results that demonstrated that one
component of the bending moment and the axial force are
sufficient to determine two coordinates (rcp, hcp) of the con-
tact point.11

The only previous studies that have determined all three
coordinates of the whisker-object contact point have either
required a six-axis force-torque sensor at the whisker base17

or limited the contact location to the tip of the whisker.16,41

One other study12 determined contact point location in two
dimensions for both tip and transverse contact, but it again
required a load cell to distinguish the bending moment from
transverse force. The present results demonstrate that two
components of bending moment and axial force are sufficient
to uniquely determine the 3D contact point location for a
tapered whisker, regardless of its intrinsic curvature. Our
results obviate the need for an expensive and bulky six-axis
force-torque sensor, and they permit contact to occur any-
where along the whisker’s length. Although tapered whiskers
have been used in some robotic applications,42,43 these
studies have focused on control and search strategies rather
than on contact point determination.

Our approach also stands in distinct contrast to earlier
studies that have estimated the radial distance of contact (rcp)
based on the rate of change of bending moment as the whisker
taps or sweeps against an object.13,14,33–35,44,45 This tech-
nique requires knowledge of how far the whisker has de-
flected against the object, requiring an encoder or a similar
sensor to be placed on the actuator. In contrast, the present
work shows that mechanical variables at every instant of
time are sufficient to determine contact point location. Be-
cause the computation does not depend on the time history of
the mechanical signals, the 3D contact point can be calcu-
lated at every instant of time as a whisker is increasingly
deflected against an object. Rates of change of mechanical
signals could then be used to sense object compliance or
object motion.9,11

The present work indicates the powerful potential of
artificial whiskers as sensors. Robotic whisker systems
could be used for high-fidelity tactual exploration to de-
termine object contour and shape. These systems could be
used as a complement to cameras and optical encoders for
accurate navigation and exploration, particularly under
conditions of darkness, glare, or fog. Potential applica-
tions include accurate instrument placement, hazard
avoidance, and extraction of information about shape and
surface texture.

The present results may also help guide the study of pri-
mary sensory neurons within the trigeminal ganglion.31,46,47

If these neurons are found to encode the combinations of the
mechanical signals identified here, the nervous system of
the rat could exploit similar ‘‘mappings’’ to determine object
location and contours.
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