Skip to main content
. Author manuscript; available in PMC: 2017 Jun 12.
Published in final edited form as: Adv Neural Inf Process Syst. 2015;28:2512–2520.

Algorithm 3.

Gradient Ascent Implementation of the M-step

1: Input: β(t), Qn(β; β(t))
2: Parameter: Stepsize η > 0
3: Output: Mn(β(t)) ← β(t) + η · ∇Qn(β(t); β(t))
{The gradient is taken with respect to the first β(t) in Qn(β(t); β(t))}