Algorithm 3.
Gradient Ascent Implementation of the M-step
| 1: | Input: β(t), Qn(β; β(t)) |
| 2: | Parameter: Stepsize η > 0 |
| 3: | Output: Mn(β(t)) ← β(t) + η · ∇Qn(β(t); β(t)) |
| {The gradient is taken with respect to the first β(t) in Qn(β(t); β(t))} |
Gradient Ascent Implementation of the M-step
| 1: | Input: β(t), Qn(β; β(t)) |
| 2: | Parameter: Stepsize η > 0 |
| 3: | Output: Mn(β(t)) ← β(t) + η · ∇Qn(β(t); β(t)) |
| {The gradient is taken with respect to the first β(t) in Qn(β(t); β(t))} |