Skip to main content
. Author manuscript; available in PMC: 2017 Jun 12.
Published in final edited form as: Adv Neural Inf Process Syst. 2015;28:2512–2520.

Algorithm 4.

High Dimensional EM Algorithm with Resampling.

1: Parameter: Sparsity Parameter ŝ, Maximum Number of Iterations T
2: Initialization: 𝒮̂init ← supp(βinit, ŝ), β(0) ← trunc(βinit, 𝒮̂init),
    {supp(·, ·) and trunc(·, ·) are defined in (2.6) and (2.7)}
    Split the Dataset into T Subsets of Size n/T
    {Without loss of generality, we assume n/T is an integer}
3: For t = 0 to T − 1
4:   E-step: Evaluate Qn/T (β; β(t)) with the t-th Data Subset
5:   M-step: β(t+0.5)Mn/T(β(t))
  {Mn/T(·) is implemented as in Algorithm 2 or 3 with Qn(·; ·) replaced by Qn/T(·; ·)}
6:   T-step: 𝒮̂(t+0.5) ← supp(β(t+0.5), ŝ), β(t+1) ← trunc(β(t+0.5), 𝒮̂(t+0.5))
7: End For
8: Output: β̂β(T)