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The CaMKII holoenzyme structure in activation-
competent conformations
Janette B. Myers1,*, Vincent Zaegel2,*, Steven J. Coultrap2, Adam P. Miller1, K. Ulrich Bayer2 & Steve L. Reichow1

The Ca2þ/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric

holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity

underlying learning, memory and cognition. Here we used single particle electron microscopy

(EM) to determine a pseudoatomic model of the CaMKIIa holoenzyme in an extended and

activation-competent conformation. The holoenzyme is organized by a rigid central hub

complex, while positioning of the kinase domains is highly flexible, revealing dynamic

holoenzymes ranging from 15–35 nm in diameter. While most kinase domains are ordered

independently, B20% appear to form dimers and o3% are consistent with a compact

conformation. An additional level of plasticity is revealed by a small fraction of bona-fide

14-mers (o4%) that may enable subunit exchange. Biochemical and cellular FRET studies

confirm that the extended state of CaMKIIa resolved by EM is the predominant form of the

holoenzyme, even under molecular crowding conditions.
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T
he Ca2þ /calmodulin(CaM)-dependent protein kinase
II (CaMKII) a isoform is a central mediator of
synaptic plasticity that underlies learning, memory and

cognition1–3. A hallmark feature of CaMKII regulation is
autophosphorylation at T286, which generates Ca2þ /CaM-
independent ‘autonomous’ kinase activity that persists even
when the initial Ca2þ -stimulus subsides. T286-phosphorylation
has been described as a form of molecular memory, and is indeed
required for normal learning and memory, as well as for two
opposing forms of synaptic plasticity, long-term potentiation and
depression4,5. Another form of molecular memory by CaMKII is
formed through the regulated binding to the NMDA-type
glutamate receptor subunit GluN2B, which can also generate
autonomous activity6. This CaMKII/GluN2B binding is
specifically required for maintenance of synaptic strength7 and
for normal long-term potentiation but not long-term depression8.

Both forms of molecular memory are enabled by the CaMKII
holoenzyme structure, which is assembled by the association of 12
subunits via their C-terminal association domains (also termed
hub domains). GluN2B binding is mediated by the kinase
domain, but is dramatically more efficient for holoenzymes
compared with monomers6,9,10. T286-autophosphorylation
occurs as an inter-subunit reaction within the holoenzyme, by a
mechanism that enables frequency-detection by CaMKII
(refs 11–13). Additionally, holoenzyme formation is thought to
enable structural functions of CaMKII (refs 14–16).

Several crystal structures of individual CaMKII domains have
been described17–22. However, the structure of the holoenzyme
assembly that determines the relative positioning of the kinase
domains to each other remains elusive. The principle domain
sequence of a CaMKII subunit is illustrated in (Fig. 1a), with an
N-terminal kinase domain, followed by a short regulatory domain
that contains T286, the variable linker domain that is subject to
alternative splicing, and the C-terminal hub domain. A recent
crystallographic model has been described for an artificial
CaMKIIa construct in which the variable linker domain was
completely deleted (linker-less)23. After bacterial expression, this
linker-less construct formed a compact conformation, in which
the kinase/regulatory domains are packed closely against the
central hub complex. However, in this compact conformation, the
regulatory domains are inaccessible to Ca2þ /CaM-stimulation.
Thus, in order to make the holoenzyme competent for activation
by Ca2þ /CaM, it has been proposed that at least one alternative
extended conformation must exist, even under basal-state
conditions1,18,23. Additionally, in order to enable the inter-
subunit autophosphorylation at T286, there must be a
conformation with a flexible kinase domain positioning that
allows for one kinase domain to access the regulatory domain
of its neighbour. Such flexibility could either be induced by
Ca2þ /CaM-stimulation or be an intrinsic property of the
activation-competent conformation of a holoenzyme that is
present even in its basal state.

For the compact CaMKII conformation, the biological
occurrence and implications remains to be elucidated, especially
in context of a naturally occurring full-length CaMKII that
contains the linker region. However, it has been suggested that an
equilibrium between the compact conformation and an additional
activation-competent conformation would shape the CaMKII
activation characteristics: it would make the stimulation by
Ca2þ /CaM cooperative and thereby also fine-tune the frequency-
dependent response of CaMKII to Ca2þ -oscillation23. However,
an alternative mechanism for the cooperativity of Ca2þ /CaM-
stimulation has also been suggested. This alternative model is
based on a previous crystal structure of isolated kinase/regulatory
domains in which two kinase subunits dimerized via a coiled-coil
interaction formed by their Ca2þ /CaM-binding regulatory

domains19. Thus, it is proposed that dimerization would
prevent direct activation of this form as well. However, binding
of CaM to one of these paired subunits would facilitate
subsequent cooperative CaM-binding to the second subunit that
was part of the dimer pair19. While the compact holoenzyme
conformation and the kinase domain dimers cannot occur at the
same time, both could be part of an equilibrium exchange.
However, any equilibrium must include at least one additional
activation-competent conformation in which the Ca2þ /CaM-
binding sites are accessible for holoenzyme activation.

Here we set out to investigate the CaMKIIa holoenzyme
structure and potential conformational equilibrium using a
combination of single particle electron microscopy (EM) and
functional mutation studies. Briefly, we describe a three-
dimensional (3D) EM structure of an activation-competent
CaMKIIa holoenzyme in an extended-state conformation at
pseudo-atomic resolution. Single particle analysis revealed a high
degree of flexibility for kinase domain positioning, with almost
none of the individual particles completely matching the average
structure. Within this continuum of conformational states, a
compact conformation was found for o3% of the individual
kinase domains, but various dimer-pair arrangements were
suggested for as much as B20% of the kinase domains.
Biochemical and cellular studies indicate that the extended state
structures described by EM predominate even under conditions
of molecular crowding, and point to an important role of the
intrinsically disordered linker domain in facilitating cooperative
activation for wild type holoenzymes.

Results
An extended activatable state of CaMKIIa revealed by EM.
CaMKII holoenzymes were prepared for EM using negative stain
(Fig. 1). This procedure enabled high-contrast single particle
image analysis, which turned out to be important for assessing the
extreme structural heterogeneity in holoenzyme architecture
determined here. In raw micrographs, individual particles appear
as ‘flower-like’ shapes with a defined central ring of protein
density surrounded by an array of smaller densities, ‘petals’
(Fig. 1c,d). The central ring of density appears as a six-pointed
star (diameter¼B110 Å) with a distinct central pore
(diameter¼B25 Å) (Fig. 1d, blue outline). Surrounding the ring
structure, up to twelve punctate densities are observed at an
approximate diameter of B24–28 nm (Fig. 1d, yellow circles).
These peripheral features correspond to the twelve kinase
domains, assembled by the dodecameric hub complex24. The
central hub was found to adopt a single highly preferred
orientation; by contrast, the configuration of the radial kinase
domain densities appeared highly variable with respect to the
central hub feature (Fig. 1c,d). These general features were
consistently observed with a variety of negative stain reagents and
in vitrified specimens (Supplementary Figs 1 and 2).

Two-dimensional classification and projection averaging pro-
duced highly populated classes with well-defined hub assemblies
and clear sixfold symmetry. However, the peripheral kinase
densities were not resolved in these most populated classes.
Rather, these domains appeared as a halo of density surrounding
the central hub (Fig. 1e). The halo feature corresponds to a region
of high variance in these two-dimensional (2D) class averages
(Fig. 1f). Inspection of the individual particles within these classes
confirmed that this diffuse signal is produced by the variable
arrangement of kinase domains. Separating this B10,000 particle
image data set into a larger number of 2D class averages
(for example, 4200–500 classes) was only partially successful at
resolving holoenzyme structures. The resulting distribution of
class averages displayed either resolved hub domains and
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Figure 1 | An extended form of the CaMKIIa holoenzyme resolved by single particle EM. (a) Diagram of the CaMKIIa domain architecture (numbering of

human isoform). Inset, shows a secondary structure diagram of the CaMKIIa regulatory domain. The coil region (faded red) represents a region that is disordered

in the absence of calmodulin21. The site of auto-phosphorylation (T286) involved in regulating autonomous activity is indicated. (b) SDS–polyacrylamide gel

electrophoresis of purified human CaMKIIa stained with Coomassie blue migrating at the expected molecular weight (MW B50 kDa). (c) Electron micrograph of

negatively stained CaMKIIa particles. Contrast of protein is white on a dark background. Individual particles are indicated by white circles. Scale bar¼ 100 nm.

(d) Enlarged view of individual particles with the hub complex (blue outline) and twelve kinase domains (yellow circle) indicated. Scale bar¼ 25 nm. (e,f) Single

particle averaging and image analysis. Scale bar¼ 25 nm. (e) Representative 2D projection average of unmasked particles. The central hub complex is clearly

defined (blue outline), while the radial kinase domains appear as a diffuse halo (yellow circle). (f) 2D variance map of data in e. A region of high variance (white

pixels) corresponds with the blurred region observed in 2D class averages (yellow circle). (g) Representative 2D projection average using an applied image mask

(75 Å outer radius). The sixfold symmetric hub complex is clearly defined (blue outline). (h) Representative 2D projection average with an applied mask to

remove contribution of the hub domain during the alignment procedure (50 Å inner radius mask). Twelve kinase domains are visualized at an approximate radius

of 24–28 nm (yellow circles). (i) Class average in h with applied sixfold rotational averaging indicates a pseudo-symmetric kinase domain organization.

(j) Composite image of g and i with the identified hub complex (blue outline) and kinase domains (yellow outline) indicated.
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unresolved kinase domains, or partially resolved kinase domains
and unresolved hub domains (Fig. 1e and Supplementary Figs 1
and 2). These results were considered indicative of a central hub
domain complex that is connected to twelve peripheral kinase
domains by disorganized or flexible polypeptide chains, thus
preventing their co-alignment. Therefore, alternative 2D classi-
fication approaches were explored to deconvolute the structural
arrangement(s) of the holoenzyme, by focusing on each of these
domains separately. The results are described below.

Focused 2D classification of the hub domain was performed
using a circular image mask (outer radius¼ 75 Å). The vast
majority of these masked particles classified as sixfold symmetric
structures, with dimensions matching the crystallized dodeca-
meric hub domain assembly21–23 (Fig. 1g and Supplementary
Fig. 3). In the next round of focused 2D classification, a new
image mask was applied to remove the density representing the
central hub complex (50 Å inner radius). This approach now
clearly resolved up to twelve individual kinase domain densities,
arranged radially along a diameter of B24–28 nm (Fig. 1h and
Supplementary Fig. 4). In a few classes, an apparent pseudo-
symmetric arrangement of kinase densities was observed (as in
Fig. 1h), and supported by rotational averaging (Fig. 1i). A
composite of Fig. 1g,h provides an enhanced view of CaMKIIa
holoenzymes observed in raw micrographs, represented by a
dodecameric hub complex surrounded by an array of twelve
independently arranged kinase domains (Fig. 1j). In addition to
this representative average structure, a variety of other kinase
domain arrangements (including asymmetric forms) where also
observed in single particle images and in 2D class averages
(Fig. 1d and Supplementary Fig. 4). Here and in the following
section, we have focused on structures where all twelve kinase
domains are clearly resolved. In later sections, we describe
additional alternative conformational forms that were identified
for the basal-state holoenzyme in more detail.

Pseudo-atomic model of CaMKIIa in a fully activatable state.
A 3D EM density map was obtained at 20 Å resolution by using a
combination of tilted-series tomographic imaging and 3D
masking routines (Fig. 2a and Supplementary Movie 1).
A pseudo-atomic model of the CaMKIIa holoenzyme was con-
structed by fitting Protein Data Bank (PDB) coordinates for the
dodecameric hub complex (PDBID 5IG3 (ref. 22), blue ribbon)
and isolated kinase/regulatory domain (PDBID 2VZ6 (ref. 21),
yellow and red ribbon) into the EM density map (see Methods
and Supplementary Fig. 5). The central density of the EM map is
well defined by the crystal structure of the dodecameric hub
complex, formed by residues 345–472 (cross-correlation¼ 0.95 at
20 Å resolution). The structured N-terminal kinase/regulatory
domain, containing residues 13–300, was best fit computationally
into each of the radial densities with the regulatory domain (red
ribbon in Fig. 2a) oriented towards the central hub complex
(cross-correlation¼ 0.98 at 20 Å resolution). Neighbouring kinase
domains were fit separately to reflect the dihedral symmetry
imposed by the hub complex and 3D refinement.

The model of the holoenzyme was completed by connecting
the structured kinase/regulatory domains to the central hub
complex by flexible linkers25 (Supplementary Fig. 5). The
modelled linkers are not resolved by the EM map, and were,
therefore, inferred by the following substantiating evidence. The
crystallized construct of the human CaMKIIa kinase/regulatory
domain used for our model included the entire regulatory domain
(residues 274–314, Fig. 1a). However, residues 301–314
(containing the distal region of the CaM-binding site) were
found to be disordered in the crystal structure21. The distal region
of the CaM-binding site has been shown to be unstructured by

solution state EPR studies26 and crystallographic analysis of the
human b, g and d isoforms as well21. Primary sequence analysis
further indicates residues 315–344 comprising the CaMKIIa
variable linker region are intrinsically disordered27. Therefore, for
the basal-state holoenzyme structure determined here, each
N-terminal kinase/regulatory domain was covalently connected
to the nearest C-terminal hub domain by a random coil peptide
chain, containing residues 301–344 (Fig. 2a, red and grey coil).

The pseudo-atomic model presented here provides a repre-
sentative average view of the CaMKIIa holoenzyme in an
extended (and activatable) conformation. In this form of the
holoenzyme, the kinase domains are arranged independently
from each other and removed from the central hub complex. The
model implies that each kinase domain is tethered to the central
hub complex by a flexible chain of amino acids (residues
301–344). Each kinase domain is separated from the central hub
complex, extending the radius of the model to B135 Å.
Neighbouring kinase domains are separated from each other by
B60 Å (center-to-center distance). The co-planar arrangement of
kinase domains is consistent with previous SAXS analysis19,23.
However, in the EM model, each of the kinase/regulatory
domains are displaced from the hub complex by B30 Å (edge-
to-edge) separation (Fig. 2a). In this extended form of the
holoenzyme, the CaM-binding sites21 (residues 294–314, red
ribbon/coil) are solvent exposed and thus positioned for
activation by the Ca2þ /CaM-stimulus. Therefore, the described
structure represents an activation-competent state of the CaMKII
holoenzyme.

CaMKIIa forms a continuum of activation-competent structures.
Based on single particle image analysis and 2D classification it is
apparent that the flexible linker regions facilitate the formation of a
variety of other conformational states that do not completely match
the averaged 3D reconstruction. This conformational variability is
appreciated when crystal structures of individual domains are fitted
into the densities of individual particles images (Fig. 2c,e). To
quantitate the variable CaMKIIa domain architecture, we con-
ducted a series of measurements and statistical analysis on indivi-
dual particle images obtained from raw micrographs. This
methodology was facilitated by the high contrast provided by the
negative staining technique and preferred orientation of particles on
the EM grid.

In the first set of measurements, the radial extension for each
kinase domain (that is, kinase radius) was defined from the center
of the hub complex to the outer radius of each kinase domain
(Fig. 3a, inset). A histogram obtained from 927 measurements
shows a Gaussian distribution of kinase domain radii, with a
mean value of B127 Å (±16 Å s.d.) (Fig. 3a). This data is
consistent with the particle radius obtained by 3D reconstruction
(B135 Å). As the flexible linker region is not directly visible by
EM, the extension of the linker itself was estimated by accounting
for the volume occupied by the ordered hub complex (B55 Å
radius) and kinase/regulatory domains (B45 Å diameter). These
calculations show that the linker connecting these structured
domains adopts an average extension of B27 Å, which compares
well to the B30 Å (edge-to-edge) separation of hub and kinase
domain densities in our averaged 3D reconstruction. Theoretical
considerations based on random walk theory predict an average
extension provided by a 45 residue random coil chain to be
B24 Å (3.5 Å x ONresidues

28). The Gaussian distribution of
measured radii, and correspondence to the expected theoretical
value of a random chain model further support the notion that
each kinase domain is freely tethered to the hub complex by an
intrinsically flexible linker. In this context, each CaMKII subunit
is able to independently sample a continuum of conformations
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Figure 2 | 3D-reconstruction and pseudo-atomic model of the CaMKIIa holoenzyme. (a) 3D-reconstruction of the CaMKIIa holoenzyme (grey

transparent) refined to B20 Å resolution. A pseudo-atomic model of the dodecameric holoenzyme (coloured as in Fig. 1a) was constructed using

previously determined crystal structures corresponding to the dodecameric CaMKIIa hub complex (blue ribbon, PDBID 5IG3 (ref. 22); residues 345–472)

and isolated kinase/regulatory domain (yellow/red ribbon, PDBID 2VZ6 (ref. 21); residues 13–300). Residues 301–344 were modelled as disordered linkers

connecting each kinase domain to the nearest hub domain. Residues 274–314 correspond to the regulatory domain (red), containing a proximal

auto-inhibitory segment and distal calmodulin-binding site. (b,c) Unmasked 2D class average and single particle images (as shown in Fig. 1) with crystal

structures of the hub complex (blue surface) and kinase/regulatory domain (yellow surface) fit into the EM densities. A yellow halo in b represents the

diffuse positioning of kinase domains in the 2D class average. Scale bars¼ 25 nm. (d,e) Enlarged view of the fit domains in b,c illustrating the proposed

structural equilibrium and variable kinase domain arrangements observed in single particle images. Flexible linkers connecting individual kinase domains to

the central hub complex are represented as grey dotted lines.
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values of the distribution. (e) Correlation map of kinase radius versus kinase separation distance. This analysis revealed no statistical correlation between

these values (correlation coefficient¼0.2). The average of the two parameters is shown in red. Grey and yellow shading indicates regions of the correlation

map where kinase domain positioning is consistent with steric contact with the hub domain and/or kinase-kinase contact, respectively.
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that provide kinase domain extensions ranging from compact
forms (minimum radius¼ 77 Å) to highly extended forms
(maximum radius¼ 175 Å) (Fig. 3b).

A fully compact CaMKIIa architecture is not observed by EM.
A prominent model of a linker-less CaMKII construct has been
determined by X-ray crystallography, revealing a highly compact
structure where all twelve kinase domains are packed tightly
against the central hub complex23. As this compact structure is
proposed to have a role in the cooperative activation mechanism
of CaMKII, we attempted to recover this form of the holoenzyme
using our focused 2D classification methods (using an outer mask
radius¼ 110 Å). However, this approach did not identify any
structures consistent with 2D back-projections of the linker-less
crystal form (Supplementary Fig. 3). This result was corroborated
by our statistical analysis performed on individual particle
images. A particle radius less than B100 Å would potentially
place kinase domains in steric contact with the central hub
complex. Statistical analysis identified only a small fraction of
individual subunits with kinase domain radii that fall within this
category (o3% of kinase domains with radiuso100 Å) (Fig. 3e).
Altogether, these data indicate that an interaction between the
hub and kinase domain may only occur for a minor fraction of
individual subunits in full-length CaMKIIa holoenzymes, at least
under the conditions required for EM.

Evidence for meta-stable CaMKII kinase domain dimerization.
A second model of cooperative activation of CaMKII has been
proposed based on the observed dimeric-pairing in the crystal
structure of isolated CaMKII kinase domains obtained from C.
elegans19. We assessed the formation of potential kinase domain
dimers by measuring the center-to-center distance separating
neighbouring kinase domains within our individual particle data
set (Fig. 3c, inset). This analysis yielded a Gaussian distribution of
kinase domain separation distances, centered at B58 Å (±15 Å
s.d.) (Fig. 3c). This value is remarkably similar to average
separation distances determined by previous Förster resonance
energy transfer (FRET) studies29. Here we additionally
considered the approximate volume occupied by each kinase/
regulatory domain (B45 Å diameter) to indicate that the majority
of kinase domains are arranged independently (non-interacting)
from their neighbouring subunits, as represented by the
activation-competent structure determined by EM (Fig. 2a).

In addition to these independent states, a significant population
of neighbouring kinase domains (B20% of the population) were
found separated by o45 Å (that is, within steric contact distance)
(Fig. 3d,e). This close proximity of neighbouring kinase domains is
not simply due to positioning by shorter linker extensions. A
distribution plot of kinase domain radius versus kinase domain
separation revealed no significant correlation between these values
(correlation coefficient¼ 0.2) (Fig. 3e). For example, a kinase
domain with an extended radius (for example,4125 Å) may be
found closely positioned o45 Å to a neighbouring domain. Vice
versa, a kinase domain with a shorter radius (for example,o125 Å)
may be separated by 4100 Å from one of its neighbouring kinase
domains. Altogether these data suggest neighbouring kinase
domains may exist in two population states, as isolated
independent domains and as meta-stable dimeric pairs.

To assess the various patterns of kinase domain pairing, we
categorized the holoenzymes from our same individual image
data set according to the number of putative kinase domain pairs,
defined as having neighbouring kinase domains separated by
o45 Å (Fig. 4a). This analysis identified a variety of arrange-
ments, consisting of 0–6 sets of kinase domain pairs per particle.
Approximately 10% of the particles were classified as having all

kinase domains unpaired and independently arranged by the
holoenzyme (as shown in Figs 1 and 2). Holoenzyme structures
with 1–3 kinase domain pairs appeared to be most common
(representing a combined B60% of the population), while
configurations with all twelve kinase domains arranged as dimers
appeared to be rare (represented only B2.5% of the population).

These individual particle statistics are in agreement with the
results obtained by reference-free 2D classification procedures,
where a majority of particles classified into structures where only
9–11 peripheral kinase densities are resolved (Supplementary
Figs 1 and 4). Although rare, we were able to capture a structure
from 2D classification results that is consistent with an
arrangement of the holoenzyme where all twelve kinase domains
are arranged as kinase dimer pairs (Fig. 4b,c). The crystal
structure of C. elegans CaMKII kinase domain dimer fits well into
the peripheral EM densities of this particular 2D class average
(Fig. 4c, right). The low population of particles fitting to this
individual class (o 1% of classified particles) is consistent with
the determined population distribution in Fig. 4a.

Wild-type CaMKIIa remains extended under molecular crowding.
The compact conformation CaMKII holoenzyme model is based on
the crystal structure of a linker-less (LL) CaMKIIa mutant expressed
in bacteria23 (Fig. 5a). This compact form of CaMKII is expected to
be a non-activatable state because the CaM-binding site is buried
within the compact kinase/hub interface. However, it was suggested
that this compact form enables cooperativity, because CaM binding
at one subunit would disrupt the compact conformation at adjacent
subunits, thereby facilitating subsequent CaM binding to the
neighbouring kinase domains23. In support of this notion, the (LL)
mutant was reported to have a dramatically increased EC50 for
activation by Ca2þ /CaM (B500-fold) and a mildly increased Hill
coefficient (B1.5-fold) compared with full-length wild-type
CaMKIIa, consistent with a compact conformation that decreases
Ca2þ /CaM binding and enhances cooperativity in solution23. By
contrast, our EM studies conducted on diluted full-length CaMKIIa
wild type was observed to form a predominant extended
conformation, consistent with the o3% of subunits in a potentially
compact conformation. However, it was suggested in the previous
study that molecular crowding conditions, as found within cells, was
required to induce a compact conformation for the wild type full-
length CaMKIIa23. The evidence for this came from molecular
crowding experiments conducted with lysozyme, which increased the
Hill coefficient for full-length CaMKIIa wild type by 1.3–2-fold, but
not for full-length CaMKII containing an I321E mutation shown to
disrupt the compact conformation. Under these molecular crowding
conditions, the EC50 was reported to increase equally by B3-fold for
both wild type and I321E mutant, which was interpreted to indicate
that the increase in the Hill coefficient (but not in the EC50) can be
used as a readout of the compact conformation23.

A caveat to this previous study, however, is that lysozyme has been
shown to bind directly to Ca2þ /CaM30, and, therefore, potentially
complicates the interpretation of these results, especially regarding
effects on the apparent EC50. Thus, we first compared the effects of
molecular crowding by 150 mg ml� 1 lysozyme and the putatively
more inert molecule bovine serum albumin (BSA) (Fig. 5b,c and
Supplementary Fig. 6). Consistent with lysozyme competition for
Ca2þ /CaM, crowding experiments performed with this reagent
dramatically increased the EC50, while crowding with BSA caused a
significantly smaller effect (Fig. 5c). However, neither crowding
condition increased the Hill coefficient; if any, it was slightly reduced
(Fig. 5c). Thus, for full-length rodent CaMKIIa wild type expressed
in eukaryotic cells, the Hill coefficients in these in vitro crowding
experiments did not provide any indication for a compact
conformation.
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Our initial experiments were conducted using rodent CaMKIIa,
as compared with the previous study that characterized the human
isoform. Rodent and human CaMKIIa differ only in one amino-
acid residue (asparagine versus serine at position 324 within the
linker region). Nonetheless, we decided to test if this one amino-
acid difference could explain the different effect of molecular
crowding on the Hill coefficient seen in our study with rodent
CaMKII. However, the effects of molecular crowding with BSA on
rodent versus human CaMKIIa were indistinguishable (Fig. 5d and
Supplementary Fig. 6). In order to test if the shift in EC50 that was
caused by crowding with BSA could be a reflection of a compact
conformation, this experiment additionally compared the effects on
the I321E mutant that is designed to be incompetent for the
compact conformation. Again, the effects on human CaMKII and
its I321E mutant were indistinguishable (Fig. 5d and Supplementary
Fig. 6), indicating that the observed shift in the EC50 did not reflect
induction of a compact conformation for the full-length wild-type
CaMKII. These results further confirmed that full-length CaMKII
exists largely in extended conformations, even under these
conditions of molecular crowding.

Finally, we tested the Ca2þ /CaM response for a linker-less
CaMKIIa mutant (LL) that was described to be in the compact
conformation even without crowding. We further compared this
construct to a linker-less I321E combination mutant (LLþ I321E)
that has been shown to remain in the extended conformation23.
Surprisingly, without crowding, both mutants showed the same
Ca2þ /CaM sensitivity, both for activation and for T286
autophosphorylation (Fig. 5e,f and Supplementary Fig. 6).
Compared with full-length CaMKII, a mild B1.5-fold decrease

in Ca2þ /CaM sensitivity was observed (Supplementary Fig. 6).
This effect is similar to the B2-fold difference seen between two
naturally occurring CaMKIIb variants with different linker
lengths (b and be31), but not to the B500-fold difference
previously reported for the linker-less mutant after bacterial
expression23. Thus, after expression in mammalian cells for our
kinase preparations, even the linker-less mutants were largely in
an extended conformation, at least under non-crowding
conditions. In contrast to full-length CaMKII, however,
molecular crowding conditions differentially affected the linker-
less kinase versus its I321E mutation that prevents the compact
conformation. While crowding with BSA caused a shift in EC50

both for the linker-less kinase and its I321E mutant, this shift was
significantly smaller for the I321E mutant (Fig. 5e,f). By contrast,
the Hill coefficient was decreased to the same extent for both the
linker-less kinase and its I321E mutant (Fig. 5e,f). These data
show that the more extensive increase in the EC50 may provide a
readout for the compact conformation for the linker-less kinase
under molecular crowding conditions, while the change in Hill
coefficient did not. More importantly, together these data show
that after mammalian expression, crowding with BSA may induce
a compact conformation for a linker-less mutant, but not for full-
length CaMKII wild type. The numerical values for the effect on
EC50 and Hill coefficient observed in our experiments are listed in
(Supplementary Tables 1 and 2).

The CaMKIIa linker promotes an extended state in cells.
Compact versus extended CaMKII conformations result in
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different positioning of the kinase domains (see Fig. 5a), which
would be expected to affect the FRET efficiency between labelled
CaMKII subunits. Thus, we employed a FRET assay to evaluate a
potential equilibrium between compact and extended CaMKII
conformations by live cell imaging. Specifically, we compared full-
length CaMKIIa (WT) and the linker-less mutant (LL), with and
without the I321E mutation that disrupts the compact con-
formation. Significant FRET was detected for all of these CaMKII
forms, but not for a control CaMKII (1-316) that lacks the hub
(association) domain and thus cannot form multimeric holoen-
zymes (Fig. 6 and Supplementary Fig. 7). Note that the control
CaMKII shows significant localization in both the cytoplasm and
in the nucleus, consistent with its monomeric nature that abol-
ishes the nuclear exclusion seen for the larger holoenzymes
(Fig. 6a). However, this does not affect the FRET results, as the

FRET measurements were restricted to the cytosol and to cells
with similar cytosolic FRET acceptor (mGFP) to donor
(mCherry) ratio. Specifically, an acceptor excess of 4–11-fold was
selected in order to limit the analysis to cells in which the average
holoenzyme (12-mer) contains at least one donor, but o3 donors
(Fig. 6b). For the linker-less CaMKII, FRET was significantly
reduced by the additional I321E mutation (Fig. 6c). This result is
consistent with a compact conformation of the linker-less CaM-
KII that is disrupted by the mutation, and thus indicates that a
compact conformation can be detected by this FRET assay within
cells. In contrast to the linker-less mutant, full-length CaMKII
wild type showed FRET that was unaffected by the I321E
mutation (Fig. 6c). Thus, these data support the conclusion that
full-length CaMKIIa wild type exists largely in extended con-
formations within cells.
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during crowding with BSA as rodent CaMKIIa. (e,f) Linker-less (LL) CaMKII and its I321E mutant showed the same Ca2þ/CaM response without crowding.

However, crowding with BSA caused a lesser increase in E50 for the I321E mutant that is incompetent for the compact conformation. The Hill slope was

identical for both linker-less mutants and no longer showed significant cooperativity under crowding conditions. Error bars represent the s.e. calculated

from the curve fits.
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Discussion
The intrinsic dynamics within the CaMKII holoenzyme archi-
tecture identified here has confounded previous attempts at
obtaining a complete structural description of CaMKII. However,
it is this intrinsically dynamic behaviour of CaMKII that enables
the complex regulation that leads to molecular memory
formation. Single particle EM is ideally suited for studying such
dynamic systems because images of individual particles are
obtained with extraordinarily high-resolution, and computational
classification methods may effectively deconvolute inherent
conformational heterogeneity. Using this approach, we have
described (i) a pseudo-atomic model of the dodecameric CaMKII
holoenzyme in its activation-competent extended conformation,
(ii) a high flexibility of kinase domain positioning for this
predominant extended state and (iii) an equilibrium with other
conformational states that are activation-incompetent (Fig. 7).

The predominant form is organized by the central dodecameric
hub complex, with each of the twelve kinase domains tethered at
peripheral positions by a flexible internal linker (the variable
linker region). Two activation-incompetent states were identified
as minor populations and included kinase domain dimers
(o20%) and a compact conformation (o3%). An additional
minor population was found with holoenzymes assembled as
14-mers (o4%) instead of 12-mers (Supplementary Fig. 3). As
discussed below, these equilibria shape the regulation of CaMKII
activation and may enable subunit exchange between
holoenzymes.

Our 3D EM reconstruction shows a CaMKII holoenzyme in an
extended activation-competent conformation at pseudo-atomic
resolution, with each of the major domain components being well
defined by high-resolution crystallographic structures. It should
be noted that previous attempts at 3D CryoEM reconstructions
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have been made; however, the results were inconsistent with
X-ray crystallographic structures of the organizing hub com-
plex32,33, likely due to complications associated with particle
orientation preference that were described in these studies and
observed in our own work as well. For our work, complications
with specimen orientation preferences were overcome by
applying tomographic tilted-imaging routines, which resulted in
a 3D reconstruction that matches well with individual particle
images (Supplementary Fig. 5) and to previous X-ray
crystallographic structures of the isolated hub and kinase
domain (Fig. 2). However, while the hub domains in our
reconstruction occupy a very defined volume, our results also
show that the kinase domain positioning is highly flexible.
Consequently, only a minor fraction of holoenzymes would be in
the actual conformation of this average structure. While the
average structure marks the preferred positioning for an
individual kinase domain, the degree of this preference is so
small that it is highly unlikely for all kinase domains of a
holoenzyme to occupy this average position at the same time. As

a consequence of this kinase domain flexibility, individual
holoenzyme particle sizes can vary in diameter from B15 to
35 nm.

It was clear that kinase domain flexibility must exist in order to
enable the inter-subunit autophosphorylation at T286 that
generates autonomous CaMKII activity and is required for
long-term synaptic plasticity. However, it was unclear if such
flexibility needed to be induced by Ca2þ /CaM stimulation, or if it
is already an intrinsic property of the holoenzyme in its basal
state, as shown here. The presence of such dynamic behaviour
even in the basal-state suggests an additional functional role,
which we propose to be involved in shaping the activation
properties of the holoenzyme.

It has been previously proposed that the cooperative activation
profile of CaMKII is a result of a dynamic equilibrium between an
activatable extended state and a non-activatable compact state23.
In this model, CaM binding to one subunit promotes the
activatable state of neighbouring subunits, leading to cooperative
activation, which in turn would shape the frequency-dependent
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Figure 7 | Overview of CaMKIIa kinase domain arrangements. (a) Illustration of the CaMKII holoenzyme indicating an overall volume of kinase domain

occupancy observed by single particle EM (yellow halo). Flexible linker regions support a continuum of kinase domain arrangements within this volume of

occupancy (maximum diameter of B35 nm). (b) Three major conformational states appear to exist in equilibrium. A predominant extended and activatable

state, as depicted in a, is distinguished by an extended conformation with non-interacting kinase domains. Additional non-activatable states are

distinguished by the presence of dimeric pairing between neighbouring kinase domains (representing o20% of subunits), as well as a putative compact

form distinguished by kinase-hub domain interactions (representing o3% of subunits). For clarity, fully paired and fully compact states are illustrated in b.

However, conformational states where all twelve kinase domains are simultaneously paired appear to be rare (B2.5% of structures) and the fully compact

state with all kinase subunits of an individual holoenzyme in the compact conformation was not observed at all for full-length CaMKII holoenzymes by EM

or by live cell FRET analysis.
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response of CaMKII to Ca2þ -oscillations. Indeed, we found
CaMKII activation with Hill Coefficients of 1.5–2. This is
consistent with previous reports, and indicates that activation
by Ca2þ /CaM is a cooperative process20,32,34. However, the
compact conformation constituted only a very small fraction of
eukaryotically expressed CaMKII holoenzymes, even under
molecular crowding conditions (in vitro or within cells).
Indication for a compact conformation was found only for a
linker-less CaMKII mutant, but not for full-length (wild type)
CaMKIIa holoenzymes. Thus, we conclude that cooperativity of
CaMKII activation must be based on additional mechanisms.

Our data suggest cooperativity of CaMKII activation is enabled
by an equilibrium with an additional activation-incompetent
conformation that involves kinase domain dimerization via their
Ca2þ /CaM-binding regulatory domains. Our results indicate that
such dimeric-pairs may represent as much as 20% of the total
subunit population; within single holoenzymes a variety of paired
and unpaired arrangements appear to be present. For isolated
kinase domains, such dimerization has been captured in a crystal
structure of C. elegans CaMKII19 and has been reported to occur
with low affinity for human CaMKII (Kd 200–600 mM) (ref. 21).
While this is an extremely low affinity for a specific protein–
protein interaction, the local kinase domain concentration in
context of the holoenzyme structure determined here is estimated
to be B3 mM (see Methods). Under such high local
concentrations, both paired and unpaired states would be
significantly populated under equilibrium conditions, as
observed here. In addition to affinity and concentration, the
extent of kinase domain dimerization would be governed by the
freedom of movement of the kinase domains, which is provided
by the variable linker domain. Thus, deletion of the linker domain
would be expected to impair kinase domain dimerization, which
in turn should reduce cooperativity of activation. Consistent with
this notion, cooperativity was found to be reduced in the linker-
less CaMKII (Fig. 5 and Supplementary Tables 1 and 2). Under
molecular crowding conditions, the Hill Coefficient for the linker-
less CaMKII approached 1, indicating that cooperativity was
almost completely abolished. Taken together, CaMKII
holoenzymes exist in an equilibrium between a predominant
extended, flexible, activation-competent state and two distinct
and more restricted activation-incompetent states (Fig. 7). One of
the activation-incompetent states is characterized by kinase
domain dimerization and the other by kinase domain binding
to the association domain that result in a compact conformation.
However, the compact conformation constitutes only a very
minor fraction and, therefore, does not significantly contribute to
the cooperative CaMKII activation characteristics.

Biochemical and EM studies have established a general
consensus that the CaMKII holoenzyme is formed by 12
subunits33,35,36. However, this was recently called into question
by a study that reported a B1:1 ratio of 12-meric to 14-meric
holoenzymes22. By contrast, while our study detected a small
fraction of 14-meric particles (o4%), the vast majority of
holoenzymes were 12-meric (Supplementary Fig. 3). Previously, it
was thought that truncated association domains form 14-mers
with sevenfold symmetry while full-length subunits form 12-mers
with sixfold symmetry37. However, the majority of 14-meric
particles in our study were associated with 14 kinase domains,
demonstrating that 14-mers can indeed be formed by full-length
subunits. By contrast, the higher extent of 14-mers in this other
recent study could potentially be due to partial loss of kinase
domains. Alternatively or in addition, the difference may be due
to bacterial expression versus eukaryotic expression in our study.
Importantly, while eukaryotic CaMKII holoenzymes are largely
12-meric, the 14-meric holoenzymes may provide a transition
state that allows exchange of subunits. As stated above, it has been

shown that proteolytic cleavage of the kinase domains from a
12-meric holoenzyme preparation results in the subsequent
formation of 14-meric hub domain assemblies37. Therefore,
while CaMKII wild type is exclusively observed in holoenzymes,
an exchange of subunits is possible. This mechanism may allow
the exchange of damaged subunits without necessitating that the
entire holoenzyme be discarded. Other more speculative
functions of subunit exchange have also been suggested; as such
exchange can be promoted not only by kinase domain deletion,
but also by stimulation38. These studies have used FRET-based
approaches to examine subunit exchange, and the transition
states are not resolved. As in the damage-induced exchange
process, these transition states may be 14-meric, and our study
provides direct evidence that intact full-length CaMKII
holoenzyme can indeed form such 14-mers.

It remains unclear what other functional roles are enabled by
the dynamic behaviour of CaMKII holoenzymes. For example,
how are the various populations of conformational states affected
by Ca2þ /CaM stimulation, and what organization takes place
between local kinase domains to facilitate inter-subunit trans-
activation and transition to autonomously active particles.
Previous FRET studies suggest additional reorganization
or expansion of the holoenzyme upon stimulation by
Ca2þ /CaM29,39,40. This observation is consistent with our
basal-state model and the expected release of the auto-
inhibitory domain upon activation, which should enable a
further increase the distance between the kinase and hub
domains. However, it is unclear how these induced
conformational changes may influence the overall dynamic
behaviour of the signalling particle. Furthermore, it is uncertain
how the holoenzyme architecture enhances binding to GluN2B,
enabling molecular memory formation in this context6,9,10.
Future experiments aimed at addressing these questions are
almost certain to provide new insights into the enigmatic
mechanism of molecular memory formation, and unveil more
surprising features of this remarkable signalling complex.

Methods
CaMKII and CaM preparations. Rat CaMKIIa wild type was purified after
baculovirus/Sf9 cell expression and CaM was purified after bacterial expression.
Briefly, CaM was purified by differential ammonium sulfate precipitation followed
by phenyl-sepharose columns41. CaMKII was purified from cytoplasmic 100,000 g
supernatants via two sequential column purification steps, a P11 phospho-cellulose
column followed by a CaM-sepharose affinity column42,43.

Human CaMKIIa and CaMKIIa mutants were expressed in HEK-293 cells. The
cells were grown to B50% confluence in 10 cm dishes, then transfected using the
Ca2þ -phosphate method44,45. After two days of expression, HEK cells were
homogenized with a motorized pellet pestle (Kontes) for 10 s in 0.4 ml of ice-cold
50 mM PIPES pH 7.2, 10% glycerol, 1 mM EDTA, 1 mM dithiothreitol, and
complete protease inhibitor (Roche), then centrifuged at 16,000 g for 20 min. The
CaMKII concentration in the resulting supernatant was determined by quantitative
western blot using a standard curve containing 250–1,250 fmole of purified
recombinant CaMKIIa diluted in non-transfected HEK cell extract. Blots were
probed for CaMKIIa expression using CBa2 antibody (1:2,000, produced in-
house).

CaMKII activity assay. CaMKII activity was measured by 32P incorporation into
the peptide substrate Syntide-2. Reactions were started by adding purified CaM-
KIIa or HEK cell extract containing CaMKIIa to a final concentration of 2.5 nM in
a mix of 50 mM PIPES pH 7.2, 0.1% BSA, 2 mM CaCl2, 10 mM MgCl2, 100 mM
[g-32P]ATP (B1 Ci mmole� 1) 1 mM microcystine-LR, 75 mM Syntide-2 and 3 nM
to 20 mM calmodulin42,43. Some reactions additionally contained 150 mg ml� 1

BSA or lysozyme, as indicated. Mixtures (50 ml) were reacted for 3 min at 30 �C.
Reactions were stopped by adding 15 ml of ice cold 15% TCA, vortexing, and
incubating on ice for 20 min. Reactions were then centrifuged at 16,000 g for 20 min
to remove precipitated protein. Thirty-five microlitres of the supernatant
containing the peptide substrate was spotted onto P81 cation exchange
chromatography paper (Whatman) squares. After extensive washes with water,
phosphorylation of the substrate peptide bound to the P81 paper was measured by
liquid scintillation counting. Results were plotted using Graph Pad Prism 5 and fit
using a non-linear regression with variable slope.
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CaMKII autophosphorylation assay. To assess the ability of CaMKIIa WT and
mutants to autophosphorylate at T286, the kinases were added at a final con-
centration of 20 nM to a reaction buffer containing 50 mM PIPES pH 7.2, 0.1%
BSA, 2 mM CaCl2, 10 mM MgCl2, 100 mM ATP, 1mM microcystin-LR, 100 nM
calmodulin. Kinases were reacted at 30 �C for 30 seconds, or as indicated. Reactions
were stopped by addition of gel loading buffer (2% SDS, 50 mM dithiothreitol,
67.5 mM Tris pH 6.8, 10% glycerol, 0.16 mg ml� 1 bromophenol blue) and boiling
for 5 min. Samples were loaded on 10% SDS–polyacrylamide gel electrophoresis
gels then transferred to polyvinylidene difluoride membranes42,43. Blots were
blocked in 5% milk then probed with anti-phospho-T286 CaMKII antibody
(Phosphosoutions) diluted 1:3,000 in 1% milk. Images were acquired on an Alpha
Imager (Alpha Innotech) after exposure to Western Lightning ECL reagent (Perkin
Elmer) and quantified42–44.

FRET microscopy and image analysis. HEK-293 cells (authenticated by short
tandem repeat (STR) analysis and tested for mycoplams) were grown to 50%
confluency on glass coverslips and then transfected using the Ca2þ /phosphate
method, using a 4:1 ratio of mCherry over green fluorescent protein (GFP) con-
structs. Twenty-four hours after transfection, images of live cells were acquired at
32 �C on a climate controlled Zeiss Axiovert 200M microscope (Carl Zeiss GmbH,
Oberkochen, Germany) at 100� magnification using slide book 5.5 software
(Intelligent Imaging Innovations) in imaging solution containing 0.87 X HBSS,
25 mM HEPES, 2 mM Glucose, 2 mM CaCl2, 1 mM MgCl2. FRET image acquisi-
tion and analysis were done by the three-filter ‘micro-FRET’ image subtraction
method46. In brief, three single plane images (40-ms to 500-ms exposure sets, 2� 2
binning) were obtained: a GFP excitation/GFP emission image; a mCherry
excitation/mCherry emission image; and a GFP excitation/mCherry emission
image (raw, uncorrected FRET). Background-subtracted GFP and mCherry images
were then fractionally subtracted from raw FRET images based on measurements
for GFP bleedthrough (0.02093 fraction of GFP image) and mCherry cross-
excitation (0.09484 fraction of mCherry image). This fractional subtraction
generated corrected FRETC images, represented in pseudo-colour. The fractional
subtraction coefficients are rounded up from average cross-bleed values determined
in cells expressing GFP- or mCherry-tagged constructs alone. Thus, these
coefficients result in a slight underestimation of FRETC signals for true FRET
partners but limit false positive detection of FRET.

Absolute FRETC values depend both on FRET efficiency and on the amount of
fluorophores present. Thus, in order to compare FRET among different cells, the
FRETC values were divided by the intensity of the donor fluorophore. This simple
normalization method is valid when the acceptor is in excess; here, only cells with
4–11-fold acceptor excess were included in the analysis. Acceptor/donor ratio was
determined based on the detected GFP/mCherry signal combined with the 4.8
more efficient fluorescence detection of GFP in our setup (as determined in cells
expressing a GFP-mCherry fusion protein).

Image acquisition was done based on the GFP and mCherry channels, that is,
blind of the raw FRET channel. Image analysis was performed blind of the
condition.

CaMKII preparation for EM. Full-length CaMKIIa purified from eukaryotic Sf9
cell expression was prepared for negative stain EM by diluting the purified protein
(1:40 vol vol� 1) in EM buffer containing 50 mM HEPES (pH 7.4), 120 mM KCl
and 0.5 mM EGTA. A 3 ml drop of sample (B100 nM) was applied to a glow-
discharged continuous carbon coated EM specimen grid (Ted Pella). Excess protein
was removed by blotting with filter paper, and washing the grid two times with EM
buffer. The specimen was then stained with freshly prepared 0.75% (wt vol� 1)
uranyl formate (SPI-Chem). Cryogenically prepared specimens were prepared by
applying a 3 ml drop of sample (B1 mM) to a negatively charged Quantifoil holey
carbon specimen grid (Electron Microscopy Science). The sample was blotted with
filter paper and plunged into liquid ethane using a vitrobot (FEI) and stored under
liquid nitrogen.

EM and image processing. Negatively stained specimens were visualized on a 120
kV TEM (iCorr, FEI) at a nominal magnification of 49,000� at the specimen level.
Digital micrographs were recorded on a 2 K� 2 K CCD camera (FEI Eagle) with a
calibrated pixel size of 4.37 Å pixel� 1 and a defocus of 1.5–2.5mm. To overcome
issues with particle orientation preference on the EM grid, serial tomographic images
were collected at tilts angles of 0�–50� (D 10�) (Supplementary Fig. 5)47. Contrast
transfer function (CTF) parameters were determined in EMAN2 (ref. 48) and
micrographs free of significant astigmatism and drift were selected based on Thon
rings in the power spectra. A total of 16,616 particles were hand selected in EMAN2
(10902 un-tilted and 5,714 tilted particles) and extracted with a box size of 128� 128
pixels. Reference-free 2D class averages were generated in EMAN2 (ref. 48) and
RELION v1.4 (ref. 49) using CTF-corrected (phase-flipped) and band-pass filtered
images without any applied symmetry. 2D variance maps were calculated in RELION
by squaring the s.d. of aligned particle images present in the 2D class average.

To separate coexisting conformational states of the CaMKIIa hub domain
(dodecamer or tetradecamer), a focused reference-free 2D classification was
preformed in RELION using a subset of B8,000 un-tilted particles with a soft outer
mask (75 Å radius) applied before classification. A set of 80 classes was produced

and analysed to determine the relative populations of hub domains comprising of
sixfold and sevenfold symmetry (Supplementary Fig. 3). The constituent particles
from classes with apparent sevenfold symmetry were extracted as unmasked
images, and reclassified for validation. For analysis of the kinase domains, a soft
inner mask (50 Å radius) was applied to remove densities corresponding to the hub
domain before 2D classification.

Cryogenically prepared CaMKIIa particles were imaged on a 300 kV Titan
Krios (FEI). Digital micrographs were recorded on a Falcon II direct electron
detector (FEI) using low-dose imaging routines at a nominal magnification of
47,000� and defocus of 3–5 mm. CTF correction and image processing routines
were carried out in EMAN2, as described above. 2D class averages were obtained
from a small dataset of B500 individual particle images.

Single particle measurements and statistical analysis. Statistical analyses of
individual particle dimensions were obtained by measuring particle lengths on un-
binned micrographs using the measurement tool in EMAN2. A random set of 82
representative un-tilted individual particle images was inspected. A radius of
extension for individual kinase subunits (n¼ 928) was obtained by measuring the
distance from the center of the pore in the hub domain complex to the center of
each peripheral density corresponding to the kinase domains. For each of these
measurements, a distance of 22.5 Å was appended (corresponding to the average
radius of the kinase domain) to yield a value that represents the full extension of
the kinase domain. Inter-kinase domain separation distances were determined by
measuring from the center of one peripheral kinase domain density to the center of
the closest neighbouring density in the clockwise direction. Only densities that
could be clearly resolved as individual kinase domains were incorporated into this
analysis (n¼ 883). The distribution of individual particle measurements were
binned into 5 Å increments for histogram analysis (corresponding approximately
to the pixel value of these images¼ 4.37 Å). A standard Gaussian curve was fit to
the distribution using the experimentally determined mean and s.d. Whisker plots
were generated to represent the minimum, maximum and 25%, 50%, and 75%
quartile values for each data set. A correlation map was obtained by scatter plot
analysis of kinase radius versus kinase domain separation. All statistical analyses
were performed in Microsoft Excel.

3D reconstruction and refinement. An initial 3D reconstruction was determined
using EMAN2 from a culled subset of tilted and un-tilted particles showing clearly
defined hub domains and separated kinase domains in 2D class averages. A cal-
culated map for the isolated human CaMKIIa hub domain (PDBID 51G3 (ref. 22))
was filtered to 40 Å and used as a search model for initial alignments. This
produced a B25 Å resolution reconstruction with imposed D6 symmetry
displaying strong density for the central hub domain and weak peripheral densities
representing the twelve kinase domains assembled by the dodecameric holoenzyme
(Supplementary Fig. 4). This initial reconstruction was filtered to 60 Å and used as
a reference for masked 3D refinements in RELION.

Separate refinements of the hub domain and kinase domains were performed in
RELION by incorporating a 3D Gaussian mask based on the central hub feature
produced by the initial 3D reconstruction in EMAN (Supplementary Fig. 4). For
the hub-only refinement, the mask was set to remove peripheral densities
corresponding to the kinase domains during the alignment procedure
(maxdiameter¼B125 Å). For the kinase domain refinement, the 3D mask was
extended by 22 Å and inverted to remove density corresponding to the central hub
domain during alignment. Both refinements proceeded with applied D6 symmetry.
The hub-only refinement was determined to a resolution of B19 Å (gold standard
FSC). For the kinase domain refinement, a subset of images was obtained from a
combination of 2D and 3D classification performed in RELION. For 3D
classification, six classes were generated with D6 symmetry imposed. Four of the
six classes had clearly resolved kinase domains and the particles in these classes
were selected for further refinement, resulting in a final resolution of B20 Å (gold
standard FSC). These two maps were then combined using a spherical mask to
remove overlapping densities (radius¼ 75 Å). A final combined density map
representing the full-length holoenzyme has been deposited to the EM Data Bank
(EMD-8514).

Molecular modelling of the human CaMKIIa holoenzyme. A pseudo-atomic
model of the full-length CaMKIIa holoenzyme was constructed by fitting the
atomic coordinates of the dodecameric human CaMKIIa hub domain (PDBID
5IG3 (ref. 22) residues 345–472) and monomeric human CaMKIIa kinase/reg-
ulatory domain (PDBID 2VZ6 (ref. 21) residues 13–300) into the EM density map
by rigid body fitting using UCSF Chimera50. The orientations of the kinase
domains were chosen based on best fit to the map. Two neighbouring kinase
domains were fit separately and symmetrized to reflect the sixfold dihedral
symmetry in the EM map. The fitted domains gave good agreement to the
experimental density (cross-correlation at 20 Å resolution¼ 0.95 for the hub
complex and 0.98 for kinase domains). A flexible linker connecting these two
structured domains (residues 301–344, human sequence), including the distal
region of the CaM-binding site (residues 301–314) and variable linker region
(residues 315–344). Linkers were constructed separately for each chain using the
MODELER loop building tool25, and subjected to steepest descent minimization
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and subsequent conjugate gradient minimization routines in Chimera to regularize
the geometries and remove steric interactions. Atomic coordinates for the
constructed model have been deposited with the Protein Data Bank (PDBID
5U6Y).

A model for calculating the local concentration of kinase domains within the
CaMKII holoenzyme was based on calculating the volume of a torus
(Volume¼ (pr2) � (2pR)); where R and r represent the major and minor radius of
the torus, respectively), as defined by the minimum and maximum kinase radius of
extension determined in this work (providing R¼ 126 Å and r¼ 49 Å). This
volume, representing the space occupied by kinase domains surrounding the
central hub complex, was then used to estimate the local concentration of kinase
domains for a dodecameric holoenzyme, resulting in B3.3 mM, which corresponds
well to previously determined estimates22.

Protein structures were visualized and images captured in UCSF Chimera.
Figures were prepared in Adobe Photoshop. The contrast of EM micrographs and
2D class averages were similarly adjusted for manuscript presentation.

Data availability. The EM map has been deposited with the EM database (EMD-
8514). The pseudo-atomic model of the CaMKII holoenzyme fit to the EM density
has been deposited with the Protein Data Bank (PDBID 5U6Y). The data that
support the findings of this study are available from the corresponding authors
upon request.
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