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Abstract

The 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors (statins), have been used for thirty 

years to prevent coronary artery disease and stroke. Their primary mechanism of action is the 

lowering of serum cholesterol through inhibiting hepatic cholesterol biosynthesis thereby 

upregulating the hepatic low-density lipoprotein (LDL) receptors and increasing the clearance of 

LDL-cholesterol (LDL-C). Statins may exert cardiovascular protective effects that are independent 

of LDL-C lowering called “pleiotropic” effects. Because statins inhibit the production of 

isoprenoid intermediates in the cholesterol biosynthetic pathway, the post-translational prenylation 

of small guanosine triphosphate binding proteins such as Rho and Rac, and their downstream 

effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases are also 

inhibited. In cell culture and animal studies, these effects alter the expression of endothelial nitric 

oxide synthase, the stability of atherosclerotic plaques, the production of pro-inflammatory 

cytokines and reactive oxygen species, the reactivity of platelets, and the development of cardiac 

hypertrophy and fibrosis. The relative contributions of statin pleiotropy to clinical outcomes, 

however, remain a matter of debate and are hard to quantify since the degree of isoprenoid 

inhibition by statins correlates to some extent with the amount of LDL-C reduction. This review 

examines some of the currently proposed molecular mechanisms for statin pleiotropy and 

discusses whether they could have any clinical relevance in cardiovascular disease.

Introduction

Cardiovascular diseases remain the leading cause of death worldwide.1 The development of 

coronary atherosclerosis involves a complex interplay between metabolic and inflammatory 

processes.2 Mechanistic and genetic evidence shows that apolipoprotein B (ApoB) 

containing lipoproteins, specifically low-density lipoprotein cholesterol (LDL-C) is causal 

for atherogenesis.3 Statins or 3-hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase 

inhibitors, decrease cholesterol biosynthesis and decrease serum LDL-C and triglyceride 

levels 4 Landmark clinical trials have demonstrated the efficacy of statins for both primary 

and secondary prevention of coronary heart disease (CHD).5-17 It has been proposed that 
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statins exert both LDL-C-dependent and LDL-C-independent (or pleiotropic) effects.18 

Clinical studies show statin benefits in diseases that are not clearly related to LDL-C (Table 

1), but some of the outcomes may be due to direct cholesterol lowering.19-30 Decreased 

gallstone formation could be due to decreased hepatic cholesterol formation, decreased 

cholesterol reduces platelet aggregation and could lead to less deep vein thrombosis, and 

decreased cholesterol could affect the progression of renal disease by decreasing renal artery 

atherosclerosis.20,25,31 The clinical significance of the pleiotropic effects of statins in the 

cardiovascular system remains controversial given the overwhelming benefits of cholesterol 

reduction in preventing cardiovascular events.

Pharmacokinetic Properties of Statins

HMG-CoA reductase produces mevalonate and is the rate limiting enzyme for cholesterol 

biosynthesis in the liver, and it is competitively and reversibly inhibited by statins through 

their lactone ring and side chains that help them bind to the enzyme’s active site (Figure 

1).32 Statins were initially identified as metabolites of fungi, have been on the market since 

1987, and each vary in their lipophilicity, elimination half lives, and potency (figure 2).32-34 

Inhibition of cholesterol synthesis leads to decreased cholesterol production and 

upregulation of the LDL receptor.4

The lipophilic statins cross cell membranes largely by passive diffusion, while pravastatin 

and rosuvastatin require activated carrier-mediated transport with organic anion transporting 

polypeptide (OATP) 1B1 and are more selective for hepatic tissues.35-37 Similar transporters 

exist in other tissues, such as OATP 1A4 and OATP 2B1 although their efficacy in 

transporting hydrophilic statins is unknown.38-40 The concentrations of statins and 

mevalonate in different cell types are incompletely understood. It is unclear if the pleiotropic 

effects of statins are due to the hepatic or non-hepatic effects of isoprenoid inhibition.

It is unclear whether statins exert effects independent of mevalonate synthesis inhibition. 

One paper reported that statins could bind to an allosteric site within the β2 integrin 

leukocyte function-associated antigen-1 (LFA-1).41 LFA-1 is involved in leukocyte 

trafficking and T cell activation and binds intercellular adhesion molecule-1 (ICAM-1).42 

ICAM-1 is crucial for the adhesion of monocytes to the endothelium and it is a biomarker 

for coronary events that is reduced by atorvastatin 43 However, to date, no consistent 

mevalonate-independent effects of any statin have been reported.

Evidence of Statin Pleiotropy in Clinical Trials

The concept of anti-inflammatory pleiotropic effects of statins has been tested for 

perioperative risk reduction. Several studies provide evidence for beneficial effects of statins 

on atrial fibrillation (AF) and outcomes after cardiac surgery 44-47 In contrast, in a study 

with 1922 patients in sinus rhythm who underwent elective cardiac surgery and received 

perioperative rosuvastatin 20 mg or placebo, statin therapy did not prevent postoperative AF 

or myocardial damage.48 Similarly, in a large trial among patients undergoing cardiac 

surgery, atorvastatin treatment did not reduce the risk of acute kidney injury.49 Cardiac 

surgery is pro-inflammatory and rosuvastatin reduced C-reactive protein (CRP) in one study, 

but subgroup analyses are not available from either study by CRP level. Although these 
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clinical studies do not show benefits of statin therapy, they do not exclude whether statin 

pleiotropy exists, but rather that statins are not beneficial in these diseases.

Additional considerations regarding the pleiotropic effects of statins come from their effects 

on CRP. JUPITER was a primary prevention trial between rosuvastatin and placebo for 

17,802 patients with a LDL-C of < 130 mg/dL and a CRP ≥ 2.0 mg/L.12 Rosuvastatin 

reduced LDL-C by 50%, CRP by 37%, and the primary endpoint by 44%.12 Plotting the 

expected benefit from JUPITER based on LDL-C lowering on the Cholesterol Treatment 

Trialists’ (CTT) Collaboration regression line, suggests that the realized benefit may be 

greater then the expected benefit based on LDL-C reduction alone (Figure 3). In contrast, the 

recent HOPE-3 study was a primary prevention trial with rosuvastatin 10 mg that did not 

have LDL-C or CRP as inclusion criteria and rosuvastatin reduced LDL-C by 26.5% and the 

co-primary outcomes by 24% and 25%.50 The benefit of rosuvastatin occurred in both high 

and normal CRP groups, and while rosuvastatin did lower CRP, the HOPE-3 study suggests 

that the benefit of statins may be primarily due to LDL-C lowering.50 In the A-Z trial, 

patients with acute coronary syndrome (ACS) received either simvastatin 40 mg for 1 month 

followed by titration to 80 mg versus placebo for 4 months and then simvastatin 20 mg. 

High dose simvastatin lowered LDL-C more effectively, but there was no difference in CRP 

levels at 30 days and the trial did not achieve its pre-specified endpoint 51 From month 4 

onwards, there was a reduction of CRP in the high intensity simvastatin group, and the trend 

to benefit was stronger after 4 months then earlier.51 Both groups had relatively low CRP 

(2.5 mg/L versus 2.4 mg/L) at 1 month, which may explain the lack of effect.51 The 

MIRACL trial was a ACS trial comparing atorvastatin 80 mg with placebo and atorvastatin 

lowered the primary endpoint in patients with both high and normal LDL-C and lowered 

CRP by 83%.14,52 While these data on CRP suggest that statins reduce inflammation, there 

are no data showing the change in CRP correlates with efficacy and it is unclear whether the 

benefit seen with CRP reduction on medication is due to statin therapy or a lower baseline 

CRP, indicating a lower risk cohort..

It is difficult to separate the LDL-C lowering benefit of statins from their potential 

pleiotropic effects in clinical trials given the strong association between elevated cholesterol 

and CHD.53 Lowering ApoB containing lipoproteins, therefore, represents the most 

important mechanism of statins. Nevertheless, there is cumulative evidence for the existence 

of pleiotropic effects in humans but the contribution in addition to LDL-C lowering remains 

unknown for two reasons:54

a. Pleiotropic effects mediated by inhibition of isoprenoids correlate with the 

inhibition of cholesterol biosynthesis and are difficult to quantitate.

b. Regulatory agencies require that new cholesterol-lowering treatments should be 

tested on top of background standard of care therapy, including statins. This does 

not allow quantitating potential cholesterol-independent effects of statins because 

potential pleiotropic statin effects are present in both treatment arms.

Non-statin LDL-C lowering therapies could reduce the risk of CHD, thus confirming the 

cholesterol hypothesis. A recent meta-analysis suggests that non-statin therapies that 

increase the LDL receptor have the same benefits as statins and fall on the CTT regression 
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line.55,56 Non-statin trials often take longer to show a benefit then statin trials. In the Lipid 

Research Clinic-Coronary Primary Prevention Trial (LRC-CPPT) with cholestyramine, the 

Program on the Surgical Control of Hyperlipidemias (POSCH) with partial ileal loop bypass 

surgery, and the IMPROVE-IT trial with ezetimibe in addition to simvastatin, benefits 

occurred after 7.4, 9.7, and 7.0 years, respectively whereas most of the statin trials showed 

benefits within 5 years (Table 2).56-58 Interpreting the time to benefit data is difficult 

because of the low event rates early in the trials prevent the separation of survival curves and 

both LRC-CPPT and POSCH were primary prevention trials with lower event rates but 

many of the statin trials are secondary prevention trials and the IMPROVE-IT trial was 

conducted until a pre-specified total event number was reached. Guidelines have generally 

recommended lifestyle changes and statins as first-line pharmacotherapy, with or without 

LDL-C targets. At present, non-statins are indicated only as adjunctive therapy for patients 

who are unable to reach their lipid goals despite optimal statin therapy.

Studies using “clamped” cholesterol designs, e.g. comparing the effect of statin-mediated 

LDL-C lowering with equal LDL-C lowering mediated by another intervention (e.g. diet) 

have reported pleiotropic effects of statins in animals including cynomolgus monkeys.59 

Non-statins such as the inhibitor of Niemann-Pick C1 like protein, ezetimibe, have been 

used in humans for this purpose. Ezetimibe lowers LDL-C by 15-20% and can only be 

compared with less potent statins, which makes vascular effects more difficult to observe. 

Ezetimibe reduces cholesterol absorption in the small intestine and animal data suggests an 

increase in the LDL-C receptor, but human data is inconsistent.60,61 Nevertheless, multiple 

small studies have attempted to determine if statins have pleiotropic effects compared to 

ezetimibe. These studies are characterized by surrogate endpoints. For example, a 

randomized study of heart failure patients with simvastatin 10 mg or ezetimibe 10 mg found 

a 15% reduction in LDL-C for both groups, but only simvastatin improved radial artery 

flow-dependent vasodilation, increased functionally-active endothelial progenitor cells 

(EPCs), and increased superoxide dismutase.62 Several studies randomized healthy 

volunteers or patients with CHD to protocols comparing high dose statins to a combination 

of lower dose statins and ezetimibe and reported greater improvement in endothelial 

function and vascular inflammation with high dose statins, despite comparable lowering of 

LDL-C in both groups.63-66 Other studies did not find differences between groups, 

suggesting the absence of statin pleiotropy.67-69 Additional evidence for pleiotropy stems 

from studies that report effects of statins that were observed before serum LDL-C was 

lowered. 70 All of these studies were relatively small, were performed in heterogeneous 

patient populations with different outcome measures and duration of therapy, and showed 

conflicting results. These studies provide interesting data but do not provide definitive 

clinical evidence of statin pleiotropy.

The notion of whether statin pleiotropy has clinical relevance in terms of cardiovascular risk 

reduction may benefit from ongoing trials with the proprotein convertase subtilisin kexin 9 

inhibitors (PCSK9i) that lower LDL-C levels by about 60% alone and could be compared 

with a high dose statin in terms of equivalency in LDL-C reduction.71,72 High dose statin 

therapy has demonstrated impressive benefits on plaque reduction that has been postulated 

to be due to their anti-inflammatory effects in addition to their intensive LDL-C lowering 

effects.73,74 The GLAGOV (NCT01813422) results have been recently announced and will 
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be published later this year and demonstrate that the PCSK9i reduce plaque size on top of 

optimal statin therapy demonstrating that plaque regression may not be due primarily to 

pleiotropic effects of statins. The large FOURIER (NCT01764633), ODYSEEY Outcomes 

(NCT01663402) and SIPRE1,2 (NCT01975376, NCT01975389) are event driven trials that 

test the effects of PCSK9i on cardiovascular outcomes and are expected to result in the next 

few years. It would be interesting to see if the outcomes benefits with PCSK9i are equivalent 

to outcome trials with high dose statins when comparable LDL-C lowering is considered.

PCSK9i lower LDL-C by a mechanism similar to statins because they increase the LDL 

receptor-mediated hepatic uptake of ApoB-containing lipoproteins. However, they do not 

inhibit the mevalonate pathway, and would not have similar pleiotropic effects stemming 

from Rho GTPase inhibition. Despite their potent LDL-C lowering effects, PCSK9i do not 

reduce serum markers of inflammation such as CRP, interleukins (IL) or tumor necrosis 

factor alpha (TNFα).75 These observations do not exclude anti-inflammatory effects on 

circulating monocytes or on vascular cells. Together with CANTOS (NCT01327846), a 

study testing the inhibition of the pro-inflammatory cytokine IL-1β and CIRT 

(NCT01594333) examining methotrexate, the PCSK9i outcome trials will provide important 

information on the relevance of the reduction of systemic inflammatory markers for clinical 

outcomes.

DIVERSE TARGET POINTS FOR STATIN ACTIONS

Statins and Isoprenylated Proteins

By inhibiting mevalonic acid synthesis, statins prevent the synthesis of isoprenoid 

intermediates farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP).76 

FPP and GGPP serve as lipid attachments for the post-translational modification of 

heterotrimeric G-proteins, including Ras and Rho.77 Ras and Rho regulate cell proliferation, 

differentiation, apoptosis, and the cytoskeleton.78 In endothelial cells (ECs), Ras 

translocation is dependent on farnesylation, whereas Rho translocation is dependent on 

geranylgeranylation.79,80 While the inhibition of isoprenoid intermediate synthesis is central 

to the possible pleiotropic effects of statins, it is unclear if the primary LDL-C lowering 

benefit of statins is due to reduced cholesterol production and reduced mevalonic acid 

production or upregulation of the LDL receptor.81 There is a relative paucity of human 

studies regarding the levels of FPP and GGPP with chronic statin therapy.

Statins and Rho/Rho Kinase

Rho kinases (ROCKs) are protein serine/threonine kinases of 160 kDa that contribute to the 

downstream effects of Rho GTPases.82 ROCK shifts to an active open conformation when 

RhoA binds to ROCK (Figure 4).82 ROCKs regulate actin cytoskeletal changes through 

effects on myosin light chain phosphorylation. This affects focal adhesion complex 

formation, smooth muscle contraction, cell migration, and gene expression.83

In human aortic ECs, simvastatin prevented tissue factor induction by thrombin in a Rho/

ROCK-dependent manner.84 In animal models, inhibition of ROCK has cardiovascular 

effects similar to statins, the ROCK inhibitors (fasudil and Y27632), limit cardiac fibrosis, 
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hypertrophy, and pathologic remodeling in response to angiotensin II (Ang II) and NG-nitro-

L-arginine methyl ester, transverse aortic constriction (TAC), and myocardial infarction 

(MI).85-88 Increased leukocyte ROCK activity is observed in patients with hypertension, 

pulmonary hypertension, metabolic syndrome, dyslipidemia, coronary artery disease (CAD), 

coronary vasospasm, left ventricular hypertrophy (LVH), and in heart failure with decreased 

systolic function.63,89-99 Statins reduce ROCK activity (Table 3).100-107 Statins have 

demonstrated inhibition of leukocyte ROCK activity in humans independent of LDL 

reduction.108 ROCK inhibition is a candidate for mediating statin pleiotropy because of 

ROCK’s effects on the cardiovascular system, ROCK activity is a biomarker of 

cardiovascular disease, and ROCK inhibition by statins occurs through cholesterol-

independent mechanisms.

Statins and Rac

Rac is a 20-39 kDa monomeric G-protein and a member of the Rho GTPase subfamily.109 

Rac1 modulates phosphorylation of intercellular proteins occludin, vascular endothelial 

cadherin, and β-catenin, which are critical for tight junction and adherence junction 

integrity.110 Rac1 activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

and produces reactive oxygen species (ROS) leading to LVH.111 ROS could also modify 

LDL to oxidized LDL which is atherogenic and mediates foam cell formation.112 Elevated 

Rac1 and NADPH oxidase activity is seen in rats undergoing TAC, vascular smooth cells 

(SMC) stimulated by Ang II, in saphenous vein grafts and internal mammary artery after 

coronary artery bypass, in ischemic and non-ischemic cardiomyopathy (NICM), and AF and 

is attenuated by statins.54,113-118 The inhibition of Rac1 links statins to reduced ROS and 

NADPH oxidase activity, and may explain some of the pleiotropic actions of statins.

Statins and the Peroxisome Proliferator-Activated Receptor (PPAR)

Statins have been shown to activate PPARs.119 Statins acutely decrease lipopolysaccharide 

(LPS) related inflammation in wild type mice but not in PPARα-null mice, independent of 

cholesterol lowering mechanisms.120 Statins increase PPAR-γ activity and inhibit LPS 

induced TNFα and monocyte chemotactic protein 1 (MCP-1) activity.119,121 The 

administration of simvastatin in combination with PPAR-γ agonists elicits additive 

beneficial vascular effects.122 Atorvastatin reduces advanced glycation end products in rats 

and attenuates fibroblast proliferation and cardiac fibrosis, which was reversed with the 

PPAR-γ antagonist GW9662.123 Statins reduced ROS production by augmenting the 

messenger ribonucleic acid (mRNA) expression of the PPAR-γ co-activator, which is an 

important regulator of mitochondrial biogenesis.124 However, statins, especially the high 

intensity statins, increase the risk of diabetes.125 Thus, the ability of the PPAR-γ agonists, 

thiazolidinediones, to lower blood sugar is in contrast to the effects of statins on PPAR-γ 
and demonstrates the complex nature of statin interactions with other pathways, including 

glucose metabolism.
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CELLULAR EFFECTS OF STATINS

Statins and the Endothelium

Endothelial dysfunction is caused by hypercholesterolemia and is characterized by impaired 

bioavailability of endothelial-derived nitric oxide (NO). Endothelial NO is important for 

vasodilation, platelet aggregation, vascular smooth muscle proliferation, and endothelial-

leukocyte interactions.126 Statins increase endothelial NO production, in part, by 

upregulating endothelial NO synthase (eNOS), which may be a pleiotropic effect of statins 

(Table 4).79,80 While the increase in eNOS is important, it should be noted that much of the 

animal studies examining eNOS and other cellular targets used significantly higher doses of 

statins than are used in clinical practice.

Statins upregulate eNOS through multiple mechanisms. One pathway involves Rho/ROCK 

signaling. In vitro studies show that Rho inhibition increases eNOS expression.80 Increased 

ROCK activity downregulates eNOS, and ROCK inhibitors (Y-27632 and fasudil) increase 

eNOS expression.127,128 The effects of statins on eNOS expression are not reversed by FPP 

or LDL-C, indicating that the effect is likely mediated through the geranylgeranylation of 

RhoA and ROCK signaling 80

Statins also increase eNOS activity by post-translational activation of the 

phosphatidylinositol 3-kinase/protein kinase Akt (PI3k/Akt) pathway as eNOS is 

phosphorylated by Akt.129 Inhibition of the Rho/ROCK pathway activates the PI3k/Akt 

pathway and cardioprotection.130,131 ROCK is a negative regulator of the Akt pathway, 

possibly through activation of phosphatase and tensin homologue.131

Statins also act on caveolin 1 which is an integral membrane protein that binds to eNOS in 

caveolae, and directly inhibits NO production. 132 Statins decrease caveolin-1 expression in 

vitro and in mice, thereby promoting eNOS activity.132

Statins could also exert pleiotropic effects through the transcription factor kruppel-like factor 

-2 (KLF2). Statins induce KLF2 mRNA in ECs, which may be required for eNOS 

expression.133 Statins reduce T proliferation through KLF2, which may explain some of 

their immunomodulatory effects.134

Statins may exert pleiotropic effects by enhancing the mobilization of EPCs. Impaired EPCs 

are associated with impaired endothelial function and decreased NO levels.135 Atorvastatin 

increases EPCs in patients with CAD within one week. 136 This effect is apparently 

observed only at low statin concentrations, higher concentrations of statins tend to have 

angiostatic effects, which may explain why high-intensity statins are able to reduce 

intraplaque angiogenesis in patients with atherosclerosis.137,138

Statins and Vascular Smooth Muscle

The proliferation of vascular SMCs is important in vascular lesion pathogenesis.139 

Transplant arteriosclerosis is an immune response directed against donor ECs and vascular 

SMCs independent of hypercholesteremia that is still attenuated by statins.140 Inhibition of 

isoprenoid synthesis by statins decreased platelet derived growth factor (PDGF)-induced 
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deoxyribonucleic acid (DNA) synthesis in vascular SMCs by increasing the cyclin-

dependent kinase, p27Kip1, which was possibly mediated by Rho GTPase.141 Simvastatin 

decreases intimal thickening, reduces cellular proliferation, leukocyte accumulation, and 

PDGF receptor phosophorylation in LDL receptor deficient mice.142 In vitro, atorvastatin 

reduces the effects of the pro-inflammatory cytokine IL-18, which inhibits SMC migration, 

nuclear factor-κB (NF-κB) activation, and matrix metalloproteinase (MMP)-9 

expression.143 In bovine pulmonary artery SMCs, atorvastatin inhibits migration of 

pulmonary artery SMC, which was reversed by GGPP and mevalonate, again implicating the 

potential for the Rho/ROCK pathway in SMC proliferation.144

Statins and the Myocardium

The GTP-binding proteins, Ras, Rho, and Rac play a critical role in cardiac hypertrophy.145 

Mice without Rac1 showed decreased NADPH oxidase activity and myocardial oxidative 

stress, confirming that Rac1 is essential for myocardial hypertrophy.146 Rac1 also increases 

the activity of the mineralocorticoid receptor.147 In vitro, statins increase small guanosine 

triphosphate binding protein guanosine diphosphate dissociation stimulator (SmgGDS) and 

decrease Rac1 in a lipid-independent fashion.148 Statins decrease Rac1 levels, 

cardiomyocyte hypertrophy, and fibrosis in wild type mice, but not in mice that lack 

SmgGDS.149 Rac1 contributes to doxorubicin-related cardiotoxicity through both a ROS-

dependent and independent mechanism.150 Finally, preoperative atorvastatin induced Rac1-

mediated inhibition of NADPH in human atrial myocardium.151

The effect of statins on the myocardium is also mediated through RhoA and ROCK, because 

both lead to increased apoptosis and increased fibrosis, which could lead to the development 

of LVH and heart failure. Overexpression of RhoA in rat ventricular myocytes induces 

increased caspase-9 activation, DNA fragmentation, and apoptosis, which are blocked by 

ROCK inhibitors.152 Mice with a genetic deletion of ROCK1 had less ischemic reperfusion-

related fibrosis compared to wild type mice.153 Mice without ROCK2 demonstrated less 

LVH, fibrosis, and apoptosis when exposed to Ang II or TAC compared to wild type 

mice.154 In humans, leukocyte ROCK levels are 4.5 times higher in patients with LVH and 

hypertension compared to those with hypertension without LVH and ROCK activity also is 

increased with LVH in chronic kidney disease.95,96 Statins increase NO bioavailability, 

which increases myocardial blood flow under hypoxic conditions and inhibits IL-6, IL-8, 

and vascular cell adhesion molecule-1 (VCAM-1).155-157 In vitro studies show that statins 

reduce mitochondrial dysfunction and cardiomyocyte death.158

There is, however, conflicting data about whether statins improve outcomes in NICM. A 

cohort study demonstrated decreased mortality and a small randomized controlled trial 

showed improvement in ejection fraction, symptoms, and lower levels of pro-inflammatory 

cytokines.159,160 However, both the large randomized GISSI-HF and CORONA trials did not 

show any benefit for either death or the composite endpoint.161,162 While there are questions 

about the efficacy of statins for heart failure, it is possible that statin therapy is beneficial if 

started earlier in the disease course.
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Statins and Platelets

Platelets are essential in the pathogenesis of ACS. Hypercholesteremia is associated with 

increased platelet reactivity and thrombin generation, which is decreased with pravastatin 

and is likely both cholesterol associated and LDL-C independent.163 Mice treated with 

atorvastatin showed increased eNOS and down regulated platelet factor 4 and beta 

thromboglobulin in platelets, effects which are absent in eNOS knockout mice.164 

Fluvastatin acts through PPARα and PPAR-γ to reduce platelet aggregation in response to 

arachidonic acid and decreased platelet aggregation compared to colestimide.165,166 

Atorvastatin acutely inhibited platelet recruitment, decreased Nox2, Rac1, protein kinase C, 

platelet phospholipase A2 and thromboxane A2 while increasing NO levels.167 Finally, the 

anti-thrombotic effect was also shown in the JUPITER trial because treatment with 

rosuvastatin was associated with decreased thromboembolism, an effect that is likely to be 

unrelated to cholesterol reduction since hypercholesterolemia is not a particularly strong risk 

factor for venous thromboembolism. 31

DIRECT NON-LDL EFFECTS ON STATINS IN CARDIOVASCULAR DISEASE

Statins and Atherosclerosis

Atherosclerosis is a chronic inflammatory process of the vascular wall that is initiated by 

excessive LDL-C and is mediated by activated macrophages, T lymphocytes, B 

lymphocytes, and SMCs.2 Statins are anti-inflammatory and reduce inflammatory cytokines 

and adhesion molecules, and acting on both the innate and adaptive immune responses.168 

Statins reduce Rac1-mediated ROS species production and reduce the oxidation sensitive 

inflammatory pathways.169 Statins decrease inflammatory cytokines such as IL-6, IL-8, and 

MCP-1.170 In vitro statins inhibited IL-6 induced monocyte chemotaxis and MCP-1 

expression and inhibited Janus kinase and the signal transducers and activators of 

transmission pathway, an effect that was reversed by GGPP.171 Statins reduce MMP-1, 

MMP-3 and MMP-9 from both SMCs and macrophages in a rabbit model, which was 

reduced by both GGPP and mevalonate.172

In the adaptive immune system, statins have effects on T-cell differentiation. Simvastatin 

reduced the differentiation of the proinflammatory IL-17 helper T cells (Th17) and enhanced 

the production of forkhead box P3 (Foxp3)+ Cd4+ regulatory T cells (Tregs) in a 

geranylgeranylation dependent manner. 173 Transforming growth factor beta (TGF-β) 

induces Foxp3+ Cd4+ Tregs and simvastatin acts through geranylgeranylation to inhibit the 

TGF-β inhibitors Smad6 and Smad7 and therefore increase TGF-β and Foxp3+ Cd4+ Treg 

expression.174 Cd4+ T lymphocytes from patients with ACS induced EC apoptosis through 

an upregulated TNF-related apoptosis inducing ligand (TRAIL) receptor DR5 on ECs and 

increased TRAIL expression on T lymphocytes, an effect that was blocked by statins and 

may provide a pathway for improved plaque stability by statins.175

Statins decrease the leukocyte and EC interaction that occurs in atherogenesis. ICAM-1 and 

VCAM-1 regulate the migration of leukocytes to ECs and platelet and endothelial cell 

adhesion molecute-1 (PECAM-1) is involved in leukocytes crossing ECs.176,177 Statins 

inhibit VCAM-1 through PPARα and increased NO production.157,178 RhoA inhibition 
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inhibits the clustering of VCAM-1 and ICAM-1 and decreases monocyte adhesion to 

ECs.179 Lovastatin regulates PECAM-1 expression, which was reversed by GGPP and 

mevalonate, suggesting a role of Rho in regulating leukocyte migration.180

Statins and Stroke

While elevated cholesterol and LDL-C are risk factors for ischemic strokes in many 

epidemiological studies, it has not been established in every study and the link remains more 

controversial then the link for CAD.181 Nonetheless statins reduce the risk of stroke by 25% 

in both the Heart Protection Study and the Treating to New Targets study and 48% in the 

JUPITER trial. 10,182,183 The SPARCL trial demonstrated that atorvastatin is effective for 

stroke secondary prevention.184 While there has been debate if non-statin cholesterol 

medications effect stroke incidence the IMPROVE-IT trial showed the ezetimibe in addition 

to simvastatin had a 21% reduction in ischemic stroke.56

A potential pleiotropic target for statins in stroke is the effect of statins on eNOS, given that 

mice without eNOS demonstrate larger infarcts.155 The effects of statins are likely mediated 

by Rho/ROCK because ROCK inhibitors upregulate eNOS and improve cerebral blood flow 

in mice.128

Conclusion

Given the cell culture and the animal studies as well as indirect evidence from clinical trials, 

it remains important to assess whether the non-LDL-C lowering effects of statins could be 

replicated by other cholesterol lowering therapies or by agents that act downstream of 

isoprenoid synthesis, e.g., squalene synthase inhibitors. Unfortunately, all of the current 

novel hyperlipidemia treatments are tested in patients receiving statins, which will only 

provide information regarding how much further to lower serum LDL-C, but does not 

exclude or include the potential pleiotropic effects of statins. The concept of statin 

pleiotropy has provided a window of opportunity to test and target other non-lipid-lowering 

signaling pathways that may affect cardiovascular disease. Agents that target inflammation 

alone, such as anti-IL-1β therapy (canakinumab) and methotrexate, are currently being 

tested in secondary prevention trials as adjunctive therapy to lipid lowering.185,186 

Furthermore, the ROCK inhibitors, fasudil and ripasudil, which are currently approved in 

Japan for the treatment of cerebral vasospasm after subarachnoid hemorrhage and to treat 

glaucoma, respectively, may be of interest as novel therapies for reducing cardiovascular 

diseases. Finally, the PCSK9i may help provide evidence for statin pleiotropy, especially 

when low-dose PCSK9i is compared with high-potency statins that are matched for 

equivalent LDL-C lowering. This design would provide the opportunity to definitively test 

the clinical relevance of statin pleiotropy on cardiovascular outcomes.
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Non-standard abbreviations and Acronyms

ApoB Apolipoprotein B

LDL-C low-density lipoprotein cholesterol

HMG-CoA hydroxy-methylglutaryl coenzyme A

CHD coronary heart disease

OATP organic anion transporting polypeptide

LFA-1 leukocyte function-associated antigen-1

ICAM-1 intercellular adhesion molecule-1

AF atrial fibrillation

CRP C-reactive protein

ACS acute coronary syndrome

CTT Cholesterol Treatment Trialists

EPCs endothelial progenitor cells

PCSK9i proprotein convertase subtilisin kexin 9 inhibitors

IL interleukins

TNFα tumor necrosis factor alpha

EC endothelial cells

FPP farnesylpyrophosphate

ROCK Rho kinase

Ang II angiotensin II

TAC transverse aortic constriction

MI myocardial infarction
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CAD coronary artery disease

LVH left ventricular hypertrophy

NADPH nicotinamide adenine dinucleotide phosphate

ROS reactive oxygen species

SMC smooth muscle cells

NICM non-ischemic cardiomyopathies

PPAR peroxisome proliferator-activated receptor

LPSM lipopolysaccharide

MCP-1 monocyte chemotactic protein-1

mRNA messenger ribonucleic acid

NO nitric oxide

eNOS endothelial nitric oxide synthase

PI3K phosphatidylinositol 3-kinase

KLF2 kruppel-like factor -2

PDGF platelet derived growth factor

DNA deoxyribonucleic acid

NFκB nuclear factor κB

MMP matrix metalloproteinase

SmgGDS small GTP binding protein GDP dissociation stimulator

VCAM-1 vascular cell adhesion molecule-1

Tregs regulatory T cells

CD cluster of differentiation

Foxp3M forkhead box P3

Th17 IL-17 helper T cells

TGF-β Transforming growth factor beta

TRAIL TNF related apoptosis inducing ligand

PECAM – 1 platelet and endothelial cell adhesion molecule-1
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Figure 1. 
Cholesterol and isoprenoid synthesis pathway which shows the inhibition of 3-hydroxy-3-

methyl-glutaryl-coenzyme A (HMG-CoA) reductase by statins. Decrease in isoprenylation 

of signaling molecules, such as Ras, Rho, and Rac, leads to the modulation of various 

signaling pathways. ROCK – rho associate protein kinase, NAD(P)H – nicotinamide adenine 

dinucleotide phosphate, eNOS – endothelial nitric oxide synthase, t-Pa – tissue-type 

plasminogen activator, ET-1 – endothelin 1, PAI-1 – plasminogen activator inhibitor 1.
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Figure 2. 
The structure and pharmacokinetic properties of the commercially available statins.32 LDL – 

low density lipoprotein, T1/2 – half life, h - hours
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Figure 3. 
The predicted reduction in vascular event rate from the JUPITER trial based on its low 

density lipoprotein (LDL) cholesterol lowering. The gray square represents the average 

effect of statins versus placebo based on the Cholesterol Treatment Trialists’ collaboration 

regression line. The individual black squares represent individual trials, the open circle 

represents the predicted effect of atorvastatin in the Jupiter trial, the black circle represents 

the observed effect.12
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Figure 4. 
Regulation of the Rho GTPase cycle. Rho cycles between an inactive, cytoplasmic, 

guanosine diphosphate (GDP) bound form and after geranylgeranylation is translocated to 

the plasma membrane and activated when it is bound to guanosine triphosphate (GTP). 

Inhibition of mevalonate synthesis by statins decreases geranylgeranyl pyrophosphate and 

prevents the geranylgeranylation of Rho and therefore its activation of Rho kinase (ROCK). 

ROCK mediates the downstream effects of Rho and has effect on endothelial cells, 

inflammatory cells, fibroblasts, cardiomyocytes, and vascular smooth muscle cells (SMC) 

that promote atherosclerosis and cardiac remodeling and may be responsible for the 

pleiotropic effects of statins. GG – geranylgeranyl, GDI – guanine nucleotide dissociation 

inhibitors, GEF – guanine nucleotide exchange factors, GAP – GTPase – activating proteins, 

PI3K - phosphatidylinositol 3-kinase, eNOS – endothelial nitric oxide synthase, CRD – 

Cysteine rich domain, RBD – Rho-binding domain
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Table 1

The effect of statins on LDL-C independent diseases

Kidney disease ↓ Creatinine with normal and abnormal renal function19,20

Pneumonia ↓ Incidence22

↓ Mortality21

Venous thromboembolism ↓ Incidence31

Multiple Sclerosis ↓ Whole brain atrophy23

↓ Disability23

Bone strength ↓ Hip fracture in postmenopausal women24

Gastrointestinal ↓ Cholecystectomy for gallstones25

↓ Pancreatitis with normal triglycerides26

Erectile dysfunction ↑ Function in sildenafil nonresponders27

Periodontal disease ↓ Periodontal inflammation28

Rheumatoid arthritis ↓ Mortality29

↓ Inflammatory markers and improved disease activity score30
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Table 2

Time to benefit for LDL-C lowering strategies

Non-statins Control Trial Time to benefit

Cholestyramine placebo LRC-CPPT57 7.4 years

partial ileal bypass surgery no surgery POSCH58 9.7 years

Ezetimibe with simvastatin 40 mg placebo with simvastatin 40 mg IMPROVE-IT56 7.0 years

Statins

Rosuvastatin placebo JUPITER12 1.9 years

Pravastatin placebo WOSCOPS8 5.0 years

placebo CARE6 5.0 years

placebo LIPID17 6.1 years

Atorvastatin placebo SPARCL184 4.9 years

placebo ASCOT-LLA11 3.3 years

Lovastatin placebo AFCAPS/Tex-CAPS9 5.2 years

Simvastatin placebo HPS10 2.0 years

placebo 4S5 5.4 years

Fluvastatin placebo LIPS16 3.9 years
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Table 3

Studies Showing Statin Inhibition of Rho Kinase

Author Year Sample Effect

In vitro and animal studies

Eto et al84 2002 Human endothelial cells ↓ tissue factor induction

McNeish et al106 2013 Rat middle cerebral arteries ↓ thromboxane receptor stimulation

Massaro et al187 2010 Human endothelial cells ↓ COX2 and MMP-9 expression

Li et al144 2007 Bovine pulmonary artery SMCs ↓ SMC mitogensis and migration

Ma et al107 2012 Rats with hypertension ↓ ROCK activity

Ohnaka et al100 2001 Human osteoblasts ↓ ROCK activity and BMP-2 expression

Tramontano et al101 2004 Human endothelial cells ↓ endothelial micorparticle levels

Gojo et al102 2007 Rats with diabetes ↓ urinary albumin and 8- hydroxydeoxyguanosine 
excretion

Yamanouchi et al103 2005 Rabbits with normal cholesterol and human 
endothelial cells

↓ ROCK activity and carotid intimal hyperplasia

Kozai et al104 2005 Human saphenous vein SMCs ↓ ROCK activity and carotid intimal hyperplasia

Trebicka et al105 2007 Rats with cirrhosis ↓ ROCK activity and ↑ eNOS

Human studies

Rawlings et al108 2009 Humans with stable CAD ↓ ROCK activity

Liu et al63 2009 Humans with hyperlipidemia ↓ ROCK activity

Nohria et al94 2009 Humans with stable CAD ↓ ROCK activity

COX2 – cyclooxygenase 2;MMP - matrix metalloproteinase; SMC – smooth muscle cell; ROCK – rho kinase; BMP-2 – bone morphogenetic 
protein 2; eNOS – endothelial nitric oxide synthase; CAD – coronary artery disease
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Table 4

The Pleiotropic Effects of Statins by Cell Type

Endothelial cells ↑ eNOS expression and activity79,80

↓ Plasminogen activator inhibitor-1 expression, and ↑ Tissue-type plasminogen activator expression 188

↓ Endothelin-1 synthesis and expression182

↓ ROS113

↑ Peroxisome proliferator-activated receptor-α and γ expression119-121

↓ Proinflammatory cytokines (IL-1β, IL- 6, cyclooxygenase-2) expression157,187

↓ CD40 expression189

Vascular Smooth Muscle Cells ↓ Migration and proliferation142,144

↓ ROS113,115,116

↓ NADPH oxidase activity111,115,116

↓ AT1 receptor expression113

↓ Platelet derived growth fator141

Myocardium ↓ NADPH oxidase activity114,151

↓ ROS124

↓ Left ventricular fibrosis and hypertrophy114,149

↑ Nitric oxide155,156

↓ Apoptosis152

Platelets ↓ Platelet reactivity163,166

↓ Thromboxane A2 biosynthesis167

Monocyte/Macrophages ↓ Macrophage growth171

↓ MMP expression and secretion143,172

↓ Tissue factor expression and activity84

↓ Proinflammatory cytokines (IL-1β, IL- 6, IL-8, TNFα) expression120,170

↓ Monocyte chemoattractant protein-1 secretion170,171,189

Vascular Inflammation ↓ CRP level12,52

↓ Leukocyte-endothelial cell adhesion41,42,168,176,177

↓ T cell activation134,168,173,174

↓ Nuclear factor-κB activation143,169

Endothelial Progenitor Cells ↑ Mobilization of stem cells136

IL indicates interluekin; CD – cluster of differentiation; AT1 – angiotensin type 1; TNF – tumor necrosis factor; NADPH – nicotamide adenine 

dinucleotide phosphate; ROS – reactive oxygen species; MMP - matrix metalloproteinase; eNOS – endothelial nitric oxide synthase
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