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Many structural variations (SVs) detection methods have been proposed due to the popularization of next-generation sequencing
(NGS).These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when
running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low
accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an
approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts
features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel
trains convolutional neural networks (CNNs) to distinguish true unlabeled candidates from false ones. Results show that CNNdel
works well with NGS reads from 26 low coverage genomes of the 1000Genomes Project.The paper demonstrates that convolutional
neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously.

1. Introduction

Genomic structural variation, usually longer than 50 bp [1], is
one of the most important types of genetic mutations, which
potentially leads to severe diseases, cancers, and even death
by breaking the structure of chromosomes. For example, the
deletions in ADAM17 are linked to inflammatory skin and
bowel diseases [2]. Lee et al. have shown that a variety of
prenatally diagnosed congenital heart diseases are related to
22q11.2 deletions [3].

NGS [4] parallelizes the sequencing process and produces
massive short reads within 400 bp, which are aligned to the
reference sequence by reads mappers like Burrows-Wheeler
Aligner (BWA) [5] and Bowtie2 [6]. The alignments of reads
are often stored in SAMor BAM format devised by SAMtools
[7].The datamapping step filters anomalouslymapped reads,
which are direct evidence of SVs.

Most existing SV callers are classified into four categories
[8]: (1) discordantly mapping read pairs (i.e., two reads in a
pair cross the SV region, and the distance between them is
inconsistent with the insert size); (2) split reads: split reads
are subdivided into soft-clip reads (i.e., one of the paired
reads is partially mapped) and one-end-anchored reads (i.e.,

one of the paired reads is unmapped); (3) read depth (i.e.,
the number of reads covering a region); (4) local contig
assembly (i.e., assemble reads to form longer consensus
sequences, which are called contigs, and then remap them
to the reference genome). Many NGS-based SV detection
methods have been proposed based on these four theories.
These SV detection methods vary in both accuracy and
sensitivity, since they utilize different properties to assess the
likelihood of SVs.

Each method has its own advantages on the judgement
standards of SVs. Take deletion as an example, which is the
most common mutation in structural variation [9]. Pindel
[10] concentrates on one-end-anchored reads. It performs
poorly under low coverage. BreakDancer [11] compares insert
size and the separation distance between discordant paired
reads to ascertain breakpoints. SVseq2 [12] and DELLY
[13] are hybrid approaches to call SVs. SVseq2 applies an
enhanced split-readsmapping algorithm to identify deletions
and filters the candidates with discordant read analyses.
DELLY, on the contrary, uses discordant reads to find can-
didate SVs and then verifies the exact breakpoints by split-
reads alignments. Unsatisfactorily, all these tools produce low
accuracy and sensitivity on low coverage sequence datasets.
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MetaSV [14], a recently proposed method, combines the
results derived frommany direct SV calling tools and verifies
the candidates using local assembly to reduce false positives
rate. Such integrated SV callers still suffer from low accuracy
despite relatively high sensitivity. It is worth learning that
MetaSV places higher weight to more accurate split-reads
methods than discordant paired reads methods.

In this paper, we introduce a SV caller named CNNdel.
CNNdel utilizes a convolutional neural network model to
accomplish the false positives filter procedure. Compared
with other integrated methods, CNNdel is capable of auto-
matically assigning the weights of SV features by neuron
networks and the detection accuracy on low coverage real
data greatly outstrips the prior methods.

2. Background

Convolutional neural network (CNN) [15] is a typical super-
vised deep learning algorithm, which is widely applied
in image and video recognition, such as face recognition,
license plate recognition, andmotion prediction in video. For
example, the famous LeNet-5 network is applied to recognize
handwritten characters [16].

CNN consists of multiple convolutional layers and pool-
ing layers, following full connected networks as hidden layers
and the output layer. Each neuron in convolved layers is
connected to a small region of the previous layer. Convolution
operation is executed with the input of the small region
and a filter. The products are summed up as the value of
the current neuron. Each convolved layer contains a set of
feature maps. Each map has its own filter or kernel. Pooling
is a form of nonlinear downsampling. For example, in max-
pooling, the inputmatrix can be divided into nonoverlapping
small regions, and for each small region, the layer outputs the
maximum. Similarly, in average-pooling or mean-pooling,
the layer outputs the average values of each small region.

There are many popular deep learning software frame-
works such as Caffe [17], Theano [18], TensorFlow [19], and
Torch [20]. The paper [21] gives a detailed presentation
about these frameworks. The latest neural network library
Keras [22] has attracted wide attention. Taking Theano or
TensorFlow as backend, Keras models minimalist and highly
modular networks. Other than frameworks that support
many kinds of deep architectures, Keras is designed for con-
volutional networks and recurrent networks. In this paper,
Keras is chosen tomodel a CNN classifier. To further confirm
the performance ofCNNdel, parameters of theCNNclassifier
are regulated.

3. Method

In this paper, we focus on the calling of deletions. CNNdel
is not a direct SV caller like Pindel or SVseq2; it collects the
results from other tools. The pipeline of CNNdel can be gen-
eralized to a 4-stage process: (1) get the union of candidates
derived from four prior tools by merging duplications; (2)
extract features of each candidate; (3) label each candidate
by checking the SV benchmark file; and (4) supervised by
the labels, use a major part of candidates to train the CNN
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Figure 1: CNNdel pipeline. The pipeline is generalized to 4 steps:
(1) get the union of candidates resulting from four tools; (2) get the
feature information of each candidate; (3) label each candidate; and
(4) use labeled candidates to train the CNNs and validate the trained
model.

model and validate the trained model with the remaining
candidates. Figure 1 illustrates the framework of CNNdel.

3.1. Get the Union of Candidates. In order to get as many
candidates as possible, Pindel, SVseq2, BreakDancer, and
DELLY are run with default parameters. When the distance
between two deletions is less than 2% of the shorter deletion
length, they are considered as duplications. Learning from
MetaSV, when a candidate is assigned with different bounds
in the merging process, the bounds given by split-reads
methods are more trustworthy.

3.2. Check the Feature Information of Candidates. By check-
ing the features which distinguish deletions from the normal
sequence regions, we transform each candidate deletion into
a multi-dimensional vector. Five major feature types are
specified as:

(i) Feature (1) (deletion length): split-reads mapping
reacts badly on overlong deletions. Longer deletions
are likely to have different reads distributions with
shorter deletions. It is essential to add the length of
a deletion as a feature.

(ii) Feature (2∼9) (consistency of mapped read pairs):
discordant mapped read pair is one of the most
direct lines of evidence to support the existence of a
deletion. For the discordant and concordant mapped
read pairs, refinement works are demanded. Both are,
respectively, subdivided into two branches: (i) read
mapping error (i.e., note whether the mapped reads
are error-free or with mismatches, since the reads
mapper BWA is designed to allow mismatches) and
(ii) read mapping uniqueness (i.e., note whether a
read is uniquelymappedor can bemapped tomultiple
positions).
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Table 1: List of features to call deletions.

Feature types Amounts
Deletion length 1
Consistency of mapped read pairs 8
Split reads analysis 24
Read depth 4
Mapping reads statistics 12

(iii) Feature (10∼33) (split-reads analysis): the reads over-
lapping the breakpoints of the deletions can be clas-
sified into three sorts: (i) fully mapped, (ii) soft-clip
(the read cannot be mapped as a whole but its prefix
or suffix part can be mapped), and (iii) one-end-
anchored (one read in a pair can be mapped while
the other one is unmapped). These three sorts are,
respectively, subdivided into three detailed branches:
(iv) breakpoint positions (the reads overlap whether
with the left or the right breakpoint), (v) anchor
positions (the mapped one in a pair lies whether
upstream or downstream of the deletion region), and
(vi) reads mapping uniqueness.

(iv) Feature (34∼37) (read depth): the depth in deletion
regions is close to 0, since few reads can be mapped
to the region. Use SAMtools to count the depths of
reads within the deletion region, reads upstream of
the deletion region, and reads downstream of the
deletion region. The depth of a region is defined as∑𝑙𝑖=1 depth(𝑖)/𝑙, in which depth(𝑖) is the depth of the𝑖th base in the region and “𝑙” is the length of the
region.The three counts are normalized to four values
between 0 and 1 in preprocessing.

(v) Feature (38∼49) (mapping reads statistics): the last
feature type counts the depths in and around the
deletions. In this type, the eligible reads in the same
three regions are counted: (i) readswithin the deletion
region, (ii) reads upstream of the deletion region, and
(iii) reads downstream of the deletion region. These
reads are sorted by (iv) reads mapping error and (v)
reads mapping uniqueness.

All features are listed in Table 1. Searching in and around
a candidate region according to its known chromosome ID,
individual ID, and start and end positions, reads whichmatch
the above conditions are counted. Before being imported
into the CNN model, these 49 features are normalized into
decimals between 0 and 1 in preprocessing.

In the application of CNNs on images, the local receptive
fields (sliding windows) are geographically relevant to the
neighboring fields. CNNs training could fail when shuffling
the pixels in images. As shown in Table 1, 49 features are
initially ranked according to the five types. In the Results and
Discussion, we will explore the impact of the order of features
on the performance of CNNdel.

3.3. Label Each Candidate. Search the deletion benchmark
files to inspect whether a candidate deletion is in it. Once a
deletion is confirmed, it will be labeled as 1 or 0 otherwise.

Thereby, the procedure of false positives filtering can be
regarded as a supervised binary-classification problem.

3.4. Use Labeled Candidates to Train the CNNs and
Validate the Trained Model

(i) Layer structure: the convolved layer is abbreviated
to “C.” The pooling layer is abbreviated to “P.” The
networks’ structure is usually set as “C1 + P1 + C2 +
P2 + ⋅ ⋅ ⋅ ” following flattening hidden layers and an
output layer.

(ii) Parameters: the convolutional neural network model
is trained in a supervised way, and we optimize the
weights of networks by stochastic gradient descent
(SGD), which is given as

𝜃 = 𝜃 − 𝛼∇𝜃𝐽 (𝜃; 𝑥(𝑖); 𝑦(𝑖)) . (1)

“𝜃” is the weights of input features. “𝛼” is the learning
rate. The gradient ∇𝜃𝐽 gives the descent direction of
weights. In gradient descent, all samples are calcu-
lated to decide the gradient, which costsmassive time.
To solve the problem, SGD learns the gradient on
a batch-size number of samples, followed by a next
round on other batch-size samples, until all samples
run out. This procedure is called one epoch. Grid
search method [23] is used to adjust the learning
rate and batch. Smaller epoch prevents the classifying
quality of CNN, while larger epoch has the risk of
overfitting the model. Split a fraction of the training
data as a validation set. Train only on the training set
and monitor the validation error every few epochs.
Early-stop method stops training as soon as the error
on the validation set is higher than it was the last time
it was checked.

(iii) Activation functions: activation functions are crucial
factors in CNNs which bring about nonlinearity into
networks. Figure 2 shows the typical activation func-
tions. Hyperbolic tangent (Tanh) function squashes
a real-valued number to the range [−1, 1]. It can
be computed as Tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥).
Rectified linear unit (ReLU), defined as ReLU(𝑥) =
max(0, 𝑥), involves simple operations and accelerates
the convergence of SGD compared to Tanh. However,
ReLU sometimes frustrates the training model, since
ReLU could prevent activating a neuron on data
again in the weights updating procedure. Softplus
function, a smooth approximation of ReLU, has the
mathematical form Softplus(𝑥) = log(1 + 𝑒𝑥). These
rectifiers are called biological activation functions.

(iv) Input: CNNs are frequently applied in image recog-
nition systems, in which the inputs are 2D images.
Our samples are 1D text data. Thus, we regard our 1D
data as 2D “images.” Each 49-feature deletion can be
viewed as an image with 1 by 49 “pixels.” According
to simple cross-validation [24], we randomly split all
candidates into a training set and a test set. We use
the labeled training set to train the CNN model and
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Figure 2: Typical activation functions: Tanh, ReLU, and Softplus.

validate the trained model with the test set. The size
of the training set is two times the test set.

4. Results and Discussion

Throughout the following experiments, we first recommend
the befitting CNN model by adjusting different parameter
settings. Secondly, it is substantiated that the order of 49
features has no crash to the final performance, but shuffling
the order of training candidates generates adverse effects
instead. Finally, the comparisons between CNNdel and the
prior tools and comparisons between CNNdel and SVM are
exhibited. Taking both accuracy and sensitivity into account,
the parameter 𝐹-score is used to evaluate the performance
of the CNN model. 𝐹-score is specified as “2 × accuracy ×
sensitivity/(accuracy + sensitivity).”

4.1. Experimental Environment and Dataset. Pindel, SVseq2,
BreakDancer, DELLY, and CNNdel are implemented on an
Intel(R) Xeon(R) CPU E5-1620 v2 @3.70GHz, 16GB RAM,
and 1 TB storagewith average disk access speed of 164.8MB/s.
Keras runs on Python 2.7 with the backend of Theano.

The raw sequences for the experiments contain 26 sam-
ples derived from chromosome 11 and chromosome 20 from
human reference hs37d5. All reads are mapped to reference
sequences by mapper BWA with default parameters, with
BAM files as outputs. And the BAM files are indexed by
SAMtools. Benchmark files are released by 1000 Genomes
Project Phase III [25]. The mean insert size and mean read
length are 425 bp (range: 237–579 bp) and 79 bp, respectively.
As a low coverage dataset, the average depth covers 10.6x.

Figure 3 shows the length distribution of deletion
datasets. There are a total of 2138 deletions in 26 samples.
Copy number variations (CNVs) [26], defined as insertions
or deletions that extend to 1 kilobase (kb) or above, occupy
about 30% of total SVs. Medium-length deletions take the
biggest share.

4.2. CNN Model Adjustment

4.2.1. Layer Structure. Table 2 records the efficiency and run
time of different structures. Learning rate and batch in the
beginning are empirically initialized as 0.1 and 64. Tanh is
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Figure 3: Length distribution of deletion datasets.

Table 2: Comparisons of different structures.

Layers 𝐴 𝑆 𝐹 Run time
C1 + P1 + F1 +
F2 0.7001 0.7081 0.704 23

C1 + P1 + C2 +
P2 + F1 + F2 0.6894 0.7069 0.6980 30

C1 + P1 + C2 +
P2 + C3 + P3 +
F1 + F2

0.6845 0.7124 0.6981 54

“𝐹” means 𝐹-score. The unit of run time is seconds. “𝐴” indicates accuracy.
“𝑆” indicates sensitivity.

employed as the initial activation function. The results show
the following:

(a) The efficiency differs a little in the three kinds of
structures.

(b) Structures with fewer layers spend less run time.
The simplest structure “C1 + P1 + F1 + F2” performs best

whether in efficiency or in run time.However, fewer layers are
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Figure 4: Grid search results of learning rate and batch. “𝐴” in
the legend means accuracy. “𝑆” in the legend means sensitivity. The
numbers after “𝐴” and “𝑆” are learning rates. The horizontal axis
shows the batch range. The bar chart shows the accuracy, while the
line chart shows the sensitivity.

accompanied by more weights, which increase the burden of
memory.

4.2.2. Learning Rate and Batch. In gradient descent or full
batch learning, batch size is identical to the number of all
training samples. Full batch learning and online learning
(batch size is equal to 1) are two extreme situations. The
number of training candidates is a little higher than 8000. So,
in the beginning, the batch size is between 1 and 8192. As a
general rule, learning rate is usually set as 0.1 and then divided
by 2 or 5. Thus, learning rates are assigned as 0.1, 0.05, 0.03,
0.01, and 0.005. The initial activation functions are still set as
Tanh.

Figure 4 illustrates the grid search results of learning rate
and batch. The test results show the following:

(a) The accuracies of these learning rates keep stable
around 0.7 when batch size varies.

(b) The sensitivities of learning rates descend with the
increase of batch size.

(c) Larger learning rate outperforms smaller ones in
sensitivity.

(d) Smaller learning rates always fail to train the model
under a huge batch.

Besides, smaller learning rates make the model suffer
longer running time. Thus, we conclude that 0.1 is the most
appropriate learning rate. In such a case, Table 3 lists the
performances of different batch sizes. Too small batch size
(such as 1) hinders the convergence of networks, while too
large batch size cuts down the times of iterations, leading
to longer time to reach a good precision. Getting rid of less
accurate batch values, the range 8–512 is appropriate whether
in performance or in running time. It is suggested to assign
64 as the batch size since models achieve the highest 𝐹-score
when batch is equal to 64.

Table 3: Comparisons of different batch sizes with learning rate of
0.1.

Batch 𝐴 𝑆 𝐹 Run time
1 0.6641 0.6574 0.6607 31
8 0.7024 0.6906 0.6964 20
64 0.7001 0.7081 0.704 30
128 0.6809 0.7213 0.7005 28
256 0.6907 0.7017 0.6962 24
512 0.6941 0.6915 0.6928 30
1124 0.7153 0.6237 0.6664 70
2048 0.7191 0.5988 0.6535 86
4096 0.7122 0.53 0.6077 107
8192 0.701 0.4817 0.571 113
“𝐹” means 𝐹-score. The unit of run time is seconds. “𝐴” indicates accuracy.
“𝑆” indicates sensitivity.

4.2.3. Activation Function. As shown in Figure 5, Tanh,
ReLU, and Softplus are applied inCNNs in turn, with learning
rate of 0.1 and batch assigned as 64. Each kind of model
is run for 10 rounds to verify the stability of the model.
The average run times are recorded as 10.2 s, 22.9 s, and
33.9 s when the models are applied with Tanh, ReLU, and
Softplus, respectively. It can be concluded that, on accuracy
and sensitivity, successfully trained models with Tanh and
ReLU do not have significant differences. Softplus makes
performance parameters abide violent fluctuation. Besides,
models with ReLU and Softplus functions often die during
training because they can prevent a neuron from being
activated again.Thus, Tanh function stands out for its stability
and decent performance.

Learning rate is confirmed as 0.1 for its speed advantage.
To further confirm the reliability of the other recommended
parameter settings, Table 4 displays the comparisons between
combinations of layers, learning rate, activation functions,
and batch sizes. The performances of the models are mainly
influenced by activation functions. Networks employing
Tanh functions always can achieve high accuracy and sensi-
tivity with batch size in such a large scale (8–512).

Modelmortalitymeans the frequencywithwhich amodel
fails during training. According to the highest 𝐹-score, the
learning rate is suggested to be 0.1. It is advocated to use
Tanh as activation functions and maintain “C1 + P1 + F1 +
F2” as a hierarchical structure if the equipment can satisfy
the memory requirements. As to the batch, we recommend
smaller ones such as 8 and 64.

4.2.4. Other Tricks about the CNN Model. Other tricks that
are beneficial to the models are listed:

(a) Max-pooling or mean-pooling: mean-pooling costs
longer time and receives similar results to max-pooling. We
suggest using max-pooling in the model.

(b) Filter size and stride size: smaller filter (e.g., we use “1× 4” as the filter size) and small strides (e.g., 1) help improve
the accuracy of the CNN model.

(c) Regularization: dropout, a simple regularization tech-
nique, is applied to prevent overfitting. Dropout rate is tested
from 0.5 to 0.1, and through testing 0.3 is suggested.
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Figure 5: The performances of CNN models which are applied with Tanh, ReLU, and Softplus, respectively.

Table 4: Comparisons of different model parameters.

Layers Activation Learning rate Batch range Run time Mortality Space requirements

C1 + P1 + F1 + F2
Tanh 0.1 8∼512 Medium Hardly

LargeReLU 0.1 8∼512 Fast Medium
Softplus 0.1 1, 8, 64 Slow High

C1 + P1 + C2 + P2 + F1 + F2
Tanh 0.1 8∼512 Medium Hardly

MediumReLU 0.1 8∼512 Fast Medium
Softplus 0.1 1, 8 Slow High

C1 + P1 + C2 + P2 + C3 + P3 + F1 + F2
Tanh 0.1 8∼512 Medium Hardly

SmallReLU 0.1 8, 64 Faster Medium
Softplus 0.1 1, 8 Slow High
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Figure 6: Impact of shuffling features.

4.3. Shuffling

4.3.1. Features Shuffling. With the experiments already
shown above, the learning rate and batch are set as 0.1 and 64.
49 features are randomly shuffled. Results in Figure 6 certify
that the accuracies and sensitivities of the successful trails
have a little difference with the nonshuffled one.

Most detailed subclasses in the five main types are
opposite, such as “mapped without error” and “mapped with
mismatches” and “mapped uniquely” and “mapped to multi-
ple positions.” Most features are biologically independent of
each other. Thus, shuffle has a little effect on the efficiency of
models.

4.3.2. Candidates Shuffling. It is hazardous to shuffle the 49-
dimensional training candidates. Ten rounds of operating
results shown in Figure 7 authenticate this conjecture. In such
a case, the CNN model faces frequent frustrating results.

In the preprocessing stage, candidates derived from prior
tools line up in the order of coordinates. Man-made translo-
cations happen if two deletions switch their positions. There
are features like “breakpoint positions” which are related
to the relative positions. According to the experimental
results shown in Figure 7, candidates without shuffle are
recommended.

4.4. Comparisons with the Prior Tools. 10 rounds of simple
cross-validation are carried out to insure the reliability of
CNNdel. In each round, gather the candidates of 9 individuals
on chromosome 11 and chromosome 20 (70% of the candi-
dates, totally 18 files) as the training set and the remaining as
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Figure 7: Impact of shuffling candidates.

Table 5: Accuracy, sensitivity, and 𝐹-score of initial tools and
CNNdel.

Tools Accuracy Sensitivity 𝐹-score
Pindel 0.3957 0.5315 0.4537
SVseq2 0.5573 0.5813 0.5690
BreakDancer 0.3831 0.388 0.3855
DELLY 0.4064 0.448 0.4262
Union 0.4329 0.7906 0.5595
CNNdel 0.6894 0.7069 0.698

test set (30% of the candidates, 8 files). The average accuracy,
sensitivity, and 𝐹-score of the 10 rounds are reported. Table 5
compares the effectiveness of CNNdel with the prior tools.
For Pindel, the parameters are set as “-w 0.1 -x 5.” SVseq2 is
run with cutoff values 3. And other tools are run with default
parameters in order to get as many candidates as possible.

With handcrafted features capturing reads distribution,
CNNdel outperforms all prior methods in both accuracy and
sensitivity. In comparison to the union results of the tools,
CNNdel removes plenty of likely false positives and achieves
a higher accuracy. However, it is possible for CNNdel to
misjudge nondeletion candidates as deletion, which forces
the emergence of false negatives. Thus, the sensitivity suffers
a little decline compared to sensitivity of the union of tools.
CNNdel largely preserves the sensitivity (mean loss of 8.4%)
of the test set.

Table 6 denotes the accuracies of CNNdel and the prior
tools in different deletion length ranges. SVseq2 outperforms
the other tools for deletions in the length of 500 bp–1000 bp.
BreakDancer and DELLY operate well on CNVs within the
deletion length scope of 10000 bp. Despite a minute gap with
SVseq2 on deletions of 500 bp–1000 bp, CNNdel outstrips
these tools from a general view, especially on deletions longer
than 10000 bp.

4.5. Comparisons with SVM. Both CNNs and SVM can
perform well on false positive filtering with similar 𝐹-
scores. The primary dissimilarity is that CNNdel exports
stable performance all along while SVM deeply relies on
the parameters and waves violently when the parameters are

adjusted. Therefore, it requires a considerably long run time
for SVM on grid search to adjust the parameters for the sake
of better results.

In SVM, the penalty factor represents the tolerance to
classification error. Radial basis function (RBF), one of the
commonest kernel functions, is defined as function (2), in
which𝜎 stands for thewidth argument. Grid searches of SVM
are carried out on the penalty factor (denoted by “𝑐”) and the
width argument (denoted by “𝑔”):

𝑘 (𝑥 − 𝑥𝑐) = exp(−
𝑥 − 𝑥𝑐2𝜎2 ) . (2)

Table 7 chooses the results of SVM when it performs best on
accuracy, sensitivity, and 𝐹-score correspondingly.

CNN tends to outperform SVM significantly in accuracy
when SVM receives better sensitivity. After repeated trials,
SVM acquires a similar set of performance parameters.

5. Conclusion

In this paper, we propose a CNN-based method to call dele-
tions on low coverage real data. CNNdel pipeline first collects
the union of candidates derived from Pindel, BreakDancer,
SVseq2, and DELLY and then finds all features of candidates.
Afterwards, CNNdel searches the SV benchmark to get the
labels of candidates. Finally, CNNdel trains the CNN model
with labeled feature-presented candidates and filters the false
positives out.

Based on the above experiments, in order to achieve
better accuracy, CNNdel should be optimized by adjusting
CNN model parameter settings, especially the activation
functions. As a matter of fact, CNN model achieves stable
accuracy and sensitivity when the structure, parameters, and
activation functions vary in appropriate ranges.The impact of
the order of features is also discussed. Experiments show that
randomly shuffling the 49 features has a little influence on the
performance of CNN. On the contrary, shuffling the order
of training candidates causes severe damage to the results.
The experimental results show that CNNdel outperforms
other tools on low coverage real data. Not only CNN model,
but also other nonlinear classification models such as SVM
can remove the false positives, though it needs complex
parameter regulations.

Efforts will be made to incorporate more strategies of
SV detection to extract more cogent features. And CNNdel
will be improved by modeling better deep learning networks.
Besides, extensive experiments on genomes frompatientswill
be conducted to realize higher clinical application value.
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Table 6: Comparison with prior tools on different deletion lengths.

Deletion length Deletions number Pindel SVseq2 BreakDancer DELLY CNNdel
50–200 147 0.2791 0.3233 0.2222 0 0.53
200–500 275 0.6484 0.6738 0.3347 0.3191 0.8
500–1000 65 0.7576 0.8611 0.4920 0.5658 0.72
1000–10000 172 0.575 0.6606 0.7203 0.7181 0.88
10000+ 24 0.09 0.375 0.5 0.2857 0.72

Table 7: Accuracy, sensitivity, and 𝐹-score of initial tools and
CNNdel.

Tools Accuracy Sensitivity 𝐹-score
SVM (𝑐: 1𝑔: 3) 0.8236 0.4202 0.5565
SVM (𝑐: 32𝑔: 0.1) 0.6901 0.7054 0.6977
SVM (𝑐: 32𝑔: 0.01) 0.6152 0.7789 0.6874
CNNdel 0.6894 0.7069 0.698
“𝑐” stands for penalty factor. “𝑔” stands for 𝜎 in RBF.
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