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The transcription factor p53 plays a crucial role in cancer development and dis-

semination, and thus, p53-targeted therapies are among the most encouraging

anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation

by interaction with murine double minute (MDM)2 and MDMX is a common

event. Simultaneous inhibition of the p53 interaction with both MDMs is cru-

cial to restore the tumor suppressor activity of p53. Here, we describe the syn-

thesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and

identify its activity as a dual inhibitor of the p53–MDM2/X interactions using

a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 sta-

bilization and upregulation of p53 transcriptional targets involved in cell cycle

arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or

MDMX-overexpressing cells. Importantly, DIMP53-1 inhibits the p53–
MDM2/X interactions by potentially binding to p53, in human colon adeno-

carcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion

of HCT116 cells, and the migration and tube formation of HMVEC-D

endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1

showed a p53-dependent antitumor activity through induction of apoptosis and

inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesir-

able toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a

novel p53 activator, which potentially binds to p53 inhibiting its interaction

with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multi-

functional activity, targeting major hallmarks of cancer through its antiprolifer-

ative, proapoptotic, antiangiogenic, anti-invasive, and antimigratory properties.

DIMP53-1 is a promising anticancer drug candidate and an encouraging start-

ing point to develop improved derivatives for clinical application.

Abbreviations

CETSA, cellular thermal shift assay; Co-IP, co-immunoprecipitation; DMSO, dimethyl sulfoxide; MDM, murine double minute; MVD,

microvessel densities; SRB, sulforhodamine B; VEGF, vascular endothelial growth factor; wt, wild-type.
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1. Introduction

The sequence-specific transcription factor p53 regulates

a plethora of genes involved in crucial cellular processes,

including cell cycle arrest, cell death, and DNA repair

(Hong et al., 2014). Inactivation of the p53 tumor sup-

pressor function is a common event in human cancers

with a dramatic impact on tumor development and dis-

semination (Burgess et al., 2016; Hong et al., 2014;

Wade et al., 2013). Although a substantial proportion of

cancers harbor wild-type (wt) p53, its function is found

inactivated or at least inhibited (Burgess et al., 2016;

Wade et al., 2013), mainly by the murine double minute

(MDM) proteins, MDM2 and MDMX (or MDM4).

Mechanistically, both MDMs bind to p53 inhibiting its

transcriptional activity. Additionally, the E3 ligase

MDM2 triggers p53 ubiquitin-proteasome degradation.

AlthoughMDMX has no E3 ligase activity, theMDM2–
MDMX heterodimer ubiquitinates p53 with higher effi-

ciency than MDM2 homodimers (Burgess et al., 2016;

Gomes et al., 2016; Wade et al., 2013). Therefore, both

MDMs are powerful oncogenes, commonly overex-

pressed in several human cancers (Burgess et al., 2016).

Accumulating data demonstrate that wt p53 is a valu-

able therapeutic target and that its activation through

inhibition of the p53–MDM interactions is a promising

anticancer strategy. Many p53–MDM2 interaction inhi-

bitors have been identified, several of which are currently

under clinical trials (Burgess et al., 2016; Gomes et al.,

2016; Wade et al., 2013). Nonetheless, given the distinct

and cooperative function of both MDMs on p53 inacti-

vation (Burgess et al., 2016; Gomes et al., 2016; Wade

et al., 2013), and the resistance of MDMX-overexpres-

sing cells to MDM2-only inhibitors (e.g., Nutlin-3a) (Li

and Lozano, 2013), small molecules that suppress the

inhibitory effect of both MDMs represent the ideal strat-

egy for full p53 reactivation (Burgess et al., 2016; Gomes

et al., 2016; Wade et al., 2013). However, the availability

of such compounds is still limited (Graves et al., 2012;

Lee et al., 2011; Soares et al., 2015a).

Here, we report the identification of DIMP53-1 as a new

p53 activator, which potentially binds to p53 inhibiting its

interaction with MDM2 and MDMX. Additionally,

DIMP53-1 has in vitro and in vivo p53-dependent antitu-

mor properties, involving antiproliferative, proapoptotic,

antiangiogenic, anti-invasive, and antimigratory activities.

2. Materials and methods

2.1. Reagents

Nutlin-3a, SJ-172550, etoposide, cycloheximide, and

cyclophosphamide were from Sigma-Aldrich (Sintra,

Portugal). All tested compounds were dissolved in

dimethyl sulfoxide (DMSO; Sigma-Aldrich). Primary

antibodies used in western blot and immunohistochemistry

were from Santa Cruz Biotechnology (Frilabo, Porto,

Portugal; mouse monoclonal anti-p53, anti-MDM2,

anti-BAX, anti-PARP, anti-PUMA, anti-GAPDH, and

rabbit polyclonal anti-p21), Bethyl Laboratories (Mon-

tgomery, TX, USA; rabbit polyclonal anti-MDMX), Invit-

rogen (Alfagene, Carcavelos, Portugal; mouse monoclonal

anti-Pgk1p), Abcam (Cambridge, UK; rabbit monoclonal

antihistone H2AX, phospho S139), and Pierce Thermo

Scientific (Taper, Sintra, Portugal; mouse monoclonal anti-

VEGF, anti-CD34, and rabbit monoclonal anti-Ki-67).

Secondary antibodies anti-mouse and anti-rabbit horserad-

ish peroxidase-conjugated were from Santa Cruz Biotech-

nology (Frilabo).

2.2. Chemical synthesis of DIMP53-1

Synthesis of DIMP53-1 (Fig. 1A) (Pereira et al., 2015;

Soares et al., 2016) is described in Supporting informa-

tion (Scheme S1; Fig. S1).

2.3. Yeast-based screening assay

Saccharomyces cerevisiae cells expressing human wt p53

alone or co-expressed with human MDM2/MDMX were

used, as described (Soares et al., 2015a). Briefly, cells were

grown in galactose-selective medium with compounds or

0.1% DMSO for 42 h; cell growth was analyzed by col-

ony-forming unit counts with the determination of EC50

(concentration that causes 50% of effect) values.

2.4. Human cell lines and growth conditions

Colon adenocarcinoma HCT116 cell lines expressing

wt p53 (HCT116p53+/+) and its p53-null isogenic

derivative (HCT116p53�/�) were provided by B.

Vogelstein (The Johns Hopkins Kimmel Cancer Cen-

ter, Baltimore, MD, USA): breast adenocarcinoma

MCF-7, osteosarcoma SJSA-1, and nontumorigenic

breast epithelial MCF10A cell lines (ATCC, LGC

Standards S.L.U., Barcelona, Spain, 2013); dermal

microvascular endothelial HMVEC-D cells (Lonza,

VWR, Carnaxide, Portugal, 2013). Tumor cells were

cultured in RPMI-1640 with UltraGlutamine (Lonza,

VWR), supplemented with 10% fetal bovine serum

(FBS; Gibco, Alfagene). MCF10A cells were cultured

in DMEM/F-12 supplemented with MEGM Sin-

gleQuot Kit Suppl. & Growth Factors (Lonza, VWR).

HMVEC-D cells were cultured in endothelial cell

growth basal medium supplemented with Sin-

gleQuotsTM Kit (Lonza, VWR). Cell lines were

613Molecular Oncology 11 (2017) 612–627 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. Soares et al. DIMP53-1: inhibitor of the p53–MDM2/X interactions



maintained in a humidified incubator at 37 °C with

5% CO2.

2.5. Co-immunoprecipitation (Co-IP) assay

Co-IP was performed using the Pierce Classic Mag-

netic IP and Co-IP Kit (Thermo Scientific, Dagma,

Carcavelos, Portugal), as described (Soares et al.,

2015a). Detection of p53, MDM2, MDMX, and

GAPDH was performed by western blot.

2.6. Sulforhodamine B (SRB) assay

Cell lines were seeded in 96-well plates at the cells/well

density of 5.0 9 103 (for HCT116, MCF-7, and SJSA-1)

and 1.0 9 104 (for MCF10A and HMVEC-D). Cells

were thereafter treated with serial dilutions

(1.85–75 lM) of DIMP53-1 for 24 and 48 h, and its

effect on cell proliferation was analyzed by sulforho-

damine B (SRB) assay (Soares et al., 2015a) with the

determination of IC50 (concentration that causes 50%

of growth inhibition) values. The solvent (DMSO

0.25%) was included as control.

2.7. Cell cycle and apoptosis

HCT116, MCF-7, and SJSA-1 cells were seeded in six-

well plates at 1.5 9 105 cells/well density. Cells were

thereafter treated with DIMP53-1 or solvent for 24 h.

For cell cycle, cells were stained with propidium iodide

(PI; Sigma-Aldrich) followed by flow cytometric analy-

sis (Soares et al., 2015a). For apoptosis, cells were

analyzed by flow cytometry using the Annexin V-FITC

Apoptosis Detection Kit I (BD Biosciences, Enzi-

farma, Porto, Portugal) according to the manufac-

turer’s instructions (Soares et al., 2015a).

2.8. RNA extraction and RT-qPCR

Total RNA, from HCT116 cells treated with DIMP53-

1 or solvent for 24 h, was extracted using the IllustraTM

RNAspin Mini RNA Isolation Kit (GE Healthcare

Fig. 1. Identification of DIMP53-1 as a potential dual inhibitor of the p53–MDM2/X interactions using yeast. (A) DIMP53-1 chemical

structure. (B) Effect of 0.1–50 lM DIMP53-1, Nutlin-3a, and SJ-172550 on the reestablishment of p53-induced growth inhibition in MDM2/

MDMX-co-expressing yeast, for 42 h; results were plotted setting the growth of DMSO-treated cells expressing p53 alone as 100%; data

are mean � SEM of six independent experiments; values were significantly different from DMSO (***P < 0.001). (C) EC50 values of

DIMP53-1, Nutlin-3a, and SJ-172550 obtained from concentration–response curves presented in (B). (D) Co-IP was performed with anti-p53

(IP:p53) or anti-immunoglobulin G (IgG) antibodies, followed by immunoblotting with anti-MDM2, anti-MDMX, and anti-p53 antibodies in

cells treated with 10 and 20 lM of DIMP53-1 or DMSO for 42 h; whole-cell lysate (input).
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Life Sciences, Milan, Italy). One microgram of RNA

was used for cDNA synthesis using the M-MuLV

reverse transcriptase and RevertAid cDNA Synthesis

kit (ThermoFisher, Monza and Brianza, Italy) in

20 lL final volume, following the manufacturer’s

instructions. RT-qPCR assays were performed in a

384-well plate on a CFX Touch Real-Time PCR

Detection System (Bio-Rad, Milan, Italy), starting

with 25 ng of cDNA (Lion et al., 2013). The 2X

KAPA SYBR� FAST qPCR Kit (Kapa Biosystems,

Rome, Italy) and specific primers for BAX and

CDKN1A (p21), Eurofins (MWG, Milan, Italy), were

used; GAPDH and B2M were used as reference genes.

2.9. Western blot

HCT116, MCF-7, and SJSA-1 cells were seeded in six-

well plates at 1.5 9 105 cells/well density. After treat-

ment with compounds or solvent, cells were lysed and

the protein fractions were analyzed by western blot, as

described (Soares et al., 2015b). Antibodies are

described in 2.1.

2.10. Cellular Thermal Shift Assay (CETSA)

To evaluate drug target interactions in cells, the cellu-

lar thermal shift assay (CETSA) was performed as

described (Tan et al., 2015). Briefly, HCT116p53+/+

cells were lysed in appropriate buffer (25 mM Tris pH

7.4, 10 mM MgCl2, 2 mM DTT) by Dounce homoge-

nization. HCT116p53+/+ cell lysates were incubated

with DIMP53-1 or solvent for 1 h at room tempera-

ture and then heated to the indicated temperatures for

3 min, cooled to room temperature for 3 min, and

placed on ice. Insoluble protein was separated by cen-

trifugation, and soluble protein was detected by west-

ern blot. In the experiments at different heating

temperatures, the signal intensity was normalized to

the intensity at 25 °C (GAPDH denaturation with

heating temperatures unable to use as loading control).

At a constant temperature (39 °C), the increase in

nondenatured p53 was calculated setting the signal

obtained with DMSO at 39 °C as 0, and the signal

obtained with DMSO at 25 °C (considered the maxi-

mum amount of nondenatured p53) as 1.

2.11. In vitro migration and invasion assays

Cell migration was analyzed using the wound healing

assay and the QCM 24-Well Fluorimetric Chemotaxis

Cell Migration Kit (8 lm; Merck Millipore, VWR), as

described (Soares et al., 2016). In the wound healing

assay, confluent HCT116p53+/+ and HMVEC-D cells,

with a wound in the middle of the well, were treated

with 3 lM DIMP53-1 or solvent. Cells were pho-

tographed using the Moticam 5.0MP camera with

Motic’s AE2000 inverted microscope with 4009 mag-

nification at different time-points of treatment until

complete closure of the wound. Wound closure was

calculated by subtracting the ‘wound’ area (measured

using IMAGE J software, Bethesda, MD, USA) at the

indicated time periods after treatment from the initial

(0 h) ‘wound’ area. In Chemotaxis Cell Migration Kit,

0.5 9 106 cells�mL�1 of HCT116p53+/+ cells were

prepared in serum-free RPMI 1640 and treated with

3 lM of DIMP53-1 or solvent, for 24 h. The prepared

cell suspensions were distributed in 24-well plates

(300 lL/insert), followed by the addition of 500 lL
medium containing 10% FBS to the lower chamber.

Cells that migrated through the 8-lm pore membranes

were eluted, lysed, and stained with a green fluores-

cence dye that binds to cellular nucleic acids. Cell

invasion was analyzed using the QCM 24-Well Fluori-

metric Cell Invasion Kit (Merck Millipore, VWR),

according to the manufacturer’s instructions. This

assay consists in the evaluation of the capacity of cell

migration through the ECMatrix layer of the upper

chamber of the system, and it was performed as

chemotaxis cell migration assay, except the incubation

time with DIMP53-1 or solvent of 48 h. In both

assays, the number of migrated cells was proportional

to the fluorescence signal measured using the Bio-Tek

Synergy HT plate reader (Izasa, Gondomar, Portugal)

at 480/520 nm (excitation/emission).

2.12. Angiogenesis assay

Endothelial tube formation was evaluated using the

in vitro Angiogenesis Assay Kit (Millipore, VWR)

according to the manufacturer’s instructions. Briefly,

3 9 104 HMVEC-D cells/well were seeded in 24-well

plates coated with ECMatrix with DIMP53-1 or sol-

vent for 16 h. Cells were photographed (Moticam

5.0MP camera; Motic’s AE2000 microscope, VWR).

2.13. Comet assay

DNA damage was evaluated in HCT116p53+/+ cells,

after 48-h treatment with 7, 14, and 21 lM DIMP53-1,

25 lM etoposide (positive control), or solvent, using

the OxiSelect Comet Assay kit (Cell Biolabs,

MEDITECNO, Carcavelos, Portugal), according to the

manufacturer’s instructions, with TBE (Tris/borate/

EDTA) for electrophoresis. Cells were photographed

(Nikon DS-5Mc camera; Nikon Eclipse E400 fluores-

cence microscope; Nikon ACT-2U software, Izasa).
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2.14. Micronucleus assay

Genotoxicity was analyzed by the cytokinesis-block

micronucleus assay in human lymphocytes, as

described (Soares et al., 2016). Briefly, fresh peripheral

blood samples were collected from healthy volunteers

into heparinized vacutainers. Blood samples, sus-

pended in RPMI medium supplemented with 10%

FBS, were treated with 7, 14, and 21 lM of DIMP53-

1, 1 lg�mL�1 cyclophosphamide (positive control), or

solvent for 44 h. Cells were thereafter treated with

3 lg�mL�1 cytochalasin B (cytokinesis preventive) for

28 h. Lymphocytes were isolated by density gradient

separation (Histopaque-1077 and -1119), fixed in 3 : 1

methanol/glacial acetic acid, and stained with Wright

stain. For each sample, 1000 binucleated lymphocytes

were blindly scored using a Leica light optical micro-

scope (Wetzlar, Germany); the number of micronuclei

per 1000 binucleated lymphocytes was recorded.

2.15. In vivo antitumor and toxicity assays

Animal experiments were conducted according to the

EU Directive 2010/63/EU and to the National Author-

ities. The BALB/c nude mice and Wistar rats (Charles-

River Laboratories, Barcelona, Spain) were housed

under pathogen-free conditions in individual ventilated

cages. For toxicity assays, Wistar rats were treated

with 50 mg�kg�1 DIMP53-1, vehicle (DMSO), or sal-

ine solution (control) by intraperitoneal injection,

twice a week, for two weeks. After four administra-

tions, blood samples and organs (kidneys, spleen,

heart, and liver) were collected for toxicological analy-

sis. Each group was composed of four animals. Xeno-

graft tumor assays were performed with HCT116p53+/

+ and HCT116p53�/� tumor cells. Briefly, 1 9 106

HCT116 cells (in PBS) were inoculated subcutaneously

in the mice dorsal flank. Tumor dimensions were

assessed by caliper measurement, and their volumes

were calculated [tumor volume = (L 9 W2)/2], where

L and W represent the longest and shortest axis of the

tumor, respectively. Treatment started when tumors

reached approximately 100 mm3 volume (14 days after

the grafts). Mice were thereafter treated twice a week

with 50 mg�kg�1 DIMP53-1 or vehicle by intraperi-

toneal injection for two weeks. Tumor volumes and

body weights were monitored twice a week until the

end of the treatment. Animals were sacrificed by cervi-

cal dislocation at the end of the study, when tumors

reached 1500 mm3 or if the animals presented any

signs of morbidity. Each group was composed of six

animals.

2.16. Immunohistochemistry

Tumor tissues were fixed in 10% formalin, embedded

in paraffin, sectioned at 4 lm, and stained with hema-

toxylin and eosin (H&E) or antibodies, as described

(Soares et al., 2016). Briefly, antigen retrieval was per-

formed by boiling the sections for 20 min in 10 mM

citrate buffer (pH 6.0) for staining with all antibodies,

except for anti-VEGF for which tissues were treated

with 10 mM EDTA buffer (pH 8.0). Antibodies are

described in 2.1. Immunostaining was carried out

using the UltraVision Quanto Detection System HRP

DAB Kit, from Lab Vision Thermo Scientific, accord-

ing to the manufacturer’s instructions. Evaluation of

DAB (3,30-diaminobenzidine) intensity and quantifica-

tion of marked cells were performed using IMAGE J

software. Microvessel densities were determined by

counting CD34-positive vessels, as described (Maeda

et al., 2007; Weidner et al., 1991).

2.17. TUNEL assay

TUNEL assay was performed using the In Situ Cell

Death Detection Kit Fluorescein (Roche, Sigma-

Aldrich), according to the manufacturer’s instructions,

as described (Soares et al., 2016).

2.18. Flow cytometric data acquisition and

analysis

The AccuriTM C6 flow cytometer and the CELLQUEST

software (BD Biosciences, Enzifarma) were used. The

FLOWJO software (Ashland, OR, USA) was used to

identify and quantify cell cycle phases.

2.19. Statistical analysis

Data were statistically analyzed using the GRAPHPAD

PRISM software (La Jolla, CA, USA). Differences

between means were tested for significance using Stu-

dent’s t-test (*P < 0.05; **P < 0.01; ***P < 0.001).

3. Results

3.1. Identification of DIMP53-1 as a potential dual

inhibitor of the p53–MDM2/X interactions using

a yeast-based assay

Derivatives of SLMP53-1, a tryptophanol-derived oxa-

zoloisoindolinone p53 activator (Soares et al., 2016)

[International Patent (Soares et al., 2014)], containing

different protective groups in the nitrogen of the
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indole moiety, were synthesized. The effect of this new

chemical library on p53–MDM2 and p53–MDMX

interactions was thereafter investigated, using the

reported yeast-based screening assay (Soares et al.,

2015a). In this assay, the expression of human wt p53

in yeast causes growth arrest that is inhibited by

human MDM2 or MDMX. The effect of 0.1–50 lM
compounds was evaluated, and DIMP53-1 (Fig. 1A)

was identified as a potential dual inhibitor of the

p53–MDM2/X interactions (Fig. 1B). Nutlin-3a and

SJ-172550 were used as positive controls because, as in

human cells (Reed et al., 2010; Vassilev et al., 2004),

they inhibit the negative effect of MDM2 and

MDMX, respectively, having no impact on the other

MDM (Fig. 1B). Contrary to Nutlin-3a and SJ-

172550, DIMP53-1 relieved the negative effect of both

MDMs on p53 (Fig. 1B). Based on EC50 values,

DIMP53-1 was less effective than Nutlin-3a on p53–
MDM2 interaction, but more effective than SJ-172550

on p53–MDMX interaction (Fig. 1C). Additionally,

0.1–50 lM DIMP53-1 did not interfere with the growth

of control yeast (data not shown), corroborating its

selectivity toward the p53–MDM2/X interactions.

The ability of DIMP53-1 to block the p53–MDM2/X

interactions in yeast was further demonstrated by Co-

IP (Fig. 1D). Actually, 10 and 20 lM DIMP53-1 led to

a visible decrease in the amount of MDM2 or MDMX

co-immunoprecipitated with p53 in yeast cells co-

expressing p53 and MDM2 or MDMX, respectively.

3.2. DIMP53-1 causes p53 stabilization and

upregulation of p53 transcriptional targets

through potential binding to p53, inhibiting its

interaction with MDM2 and MDMX, in human

tumor cells

To confirm the molecular mechanism of action of

DIMP53-1 as a dual inhibitor of the p53–MDM2/X

interactions, its activity was ascertained in p53+/+ and

p53�/� HCT116 cells. The SRB assay revealed a signif-

icant reduction in the DIMP53-1 growth inhibitory

effect in the absence of p53, during 24- and 48-h treat-

ment (Fig. 2A). Despite the selectivity of DIMP53-1 to

the p53-pathway, this compound also inhibited the

growth of HCT116p53�/� cells. This may indicate an

alternative mechanism of action of DIMP53-1 inde-

pendent of p53, for longer incubation times and higher

concentrations of compound.

In HCT116p53+/+ cells, 7 and 14 lM of DIMP53-1-

induced growth inhibition were associated with G0/

G1-phase cell cycle arrest (Fig. 2B) and apoptosis, as

evidenced by the increase in Annexin V-positive cells

(Fig. 2C) and PARP cleavage (Fig. 2E), not observed

in p53-null HCT116 cells. Accordingly, 7 lM of

DIMP53-1 upregulated major p53 transcriptional tar-

gets, as revealed by the increased BAX and CDKN1A

(p21) mRNA levels (Fig. 2D), and MDM2, BAX,

PUMA, and p21 protein levels (Fig. 2E) in p53+/+,

but not in p53�/�, HCT116 cells. Interestingly, in

HCT116p53+/+ cells, the slight increase in p21 expres-

sion levels is in accordance with the modest cell cycle

arrest induced by DIMP53-1. Additionally, by cyclo-

heximide treatment to block the protein synthesis, it

was confirmed that DIMP53-1 increased the half-life

of p53, due to p53 stabilization (Fig. 2F).

The ability of DIMP53-1 to block the p53 interaction

with MDM2 and MDMX was demonstrated by Co-IP,

in HCT116p53+/+ cells. In fact, DIMP53-1 caused a

significant decrease in the amount of MDM2 (at 14 lM)
and MDMX (at 7 and 14 lM) co-immunoprecipitated

with p53 (Fig. 2G,H). Based on these results, we

attempted to identify the potential molecular target to

which DIMP53-1 would bind, causing the inhibition of

the p53 interaction with both MDMs. As DIMP53-1 is

a chemical derivative of the previously reported activa-

tor of p53, SLMP53-1 (Soares et al., 2016), we

Fig. 2. DIMP53-1 shows a p53-dependent growth inhibitory effect in human tumor cells mediated by cell cycle arrest, apoptosis, p53

stabilization, upregulation of p53 target genes, and disruption of the p53–MDM2/X interactions. (A) Concentration–response growth curves for

DIMP53-1 in p53+/+ and p53�/� HCT116, after 24- and 48-h treatments; data are mean � SEM of four independent experiments; incubation

with DMSO, in equivalent % of DIMP53-1, was used to normalize the results. (B,C) Cell cycle arrest (B) and apoptosis (C) were determined at 7

and 14 lM of DIMP53-1 for 24 h in p53+/+ and p53�/� HCT116 cells; data are mean � SEM of three independent experiments; values were

significantly different from DMSO (*P < 0.05; **P < 0.01; ***P < 0.001). (D) mRNA levels of BAX and CDKN1A (p21) after 24-h treatment with

7 and 14 lM of DIMP53-1 in p53+/+ and p53�/� HCT116 cells; fold expression changes are relative to DMSO and correspond to mean � SEM

of three independent experiments. (E) Western blot analysis was performed after 24-h (MDM2, p53) and 48-h (PARP, BAX, PUMA, p21)

treatments with 7 lM of DIMP53-1 or DMSO in p53+/+ and p53�/� HCT116 cells. (F) p53 protein levels in HCT116p53+/+ cells treated for 24 h

with DIMP53-1 or solvent followed with cycloheximide (CHX; 150 lg/mL). (G) Co-IP was performed with anti-p53 (IP:p53) or anti-

immunoglobulin G (IgG) antibodies, followed by immunoblotting with anti-MDM2, anti-MDMX, and anti-p53 antibodies in HCT116p53+/+ cells

treated with 7 and 14 lM of DIMP53-1 or DMSO for 8 h; whole-cell lysate (input); in IP:p53 of MDM2, the cut top band corresponds to the anti-

p53 antibody, and the other two bands correspond to MDM2 isoforms. (H) Quantification of IP:p53 immunoblots; data are mean � SEM of

three independent experiments; values were significantly different from DMSO (*P < 0.05; **P < 0.01; ***P < 0.001). In (E), (F), and (G),

immunoblots are representative of three independent experiments; GAPDH was used as loading control.
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hypothesized that DIMP53-1 might bind to p53. To

confirm this hypothesis, the potential interaction of

DIMP53-1 with p53 was checked by CETSA. In this

assay, we analyzed the impact of DIMP53-1 on p53

thermal stabilization, measured by the amount of sol-

uble p53 upon heating. From 39 °C to 42 °C, 10 lM
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DIMP53-1 caused significant p53 thermal stabilization

(Fig. 3A). Additionally, DIMP53-1 induced a concen-

tration-dependent p53 thermal stabilization, at 39 °C
(Fig. 3B), reestablishing the levels of nondenatured p53

protein observed at 25 °C in DMSO-treated sample.

Furthermore, 100 lM DIMP53-1 (the highest concentra-

tion tested to demonstrate the interaction of DIMP53-1

with p53) did not interfere with MDM2 and MDMX

thermal stabilization at different heating temperatures

(Fig. S2).

The growth inhibitory effect of DIMP53-1 was fur-

ther investigated in human tumor cells expressing wt

p53 and overexpressing MDM2 (SJSA-1 cells) or

MDMX (MCF-7 cells). In these tumor cells, a notice-

able growth inhibitory effect was also obtained with

DIMP53-1 (IC50 values of 11.8 � 0.7 lM in SJSA-1 and

13.3 � 0.5 lM in MCF-7) (Fig. 3C). Moreover, it was

shown that both in the MDM2-overexpressing SJSA-1

cells and in the MDMX-overexpressing MCF-7 cells,

the growth inhibitory effect of DIMP53-1 (IC50) was

mediated by cell cycle arrest (G0/G1- and S-phases in

SJSA-1; G0/G1-phase in MCF-7; Fig. 3D) and apopto-

sis, as evidenced by the increase in Annexin V-positive

cells (Fig. 3E) and PARP cleavage (Fig. 3F). Addition-

ally, in both tumor cell lines, DIMP53-1 (IC50) increased

the p53 protein levels and upregulated several p53 tran-

scriptional targets, as demonstrated by the increased

MDM2, BAX, and p21 protein levels (Fig. 3F).

Altogether, these results demonstrate that DIMP53-1

is a selective activator of the p53-pathway, suppressing

the MDM2 and MDMX inhibitory effect in human

tumor cells due to a potential interaction with p53.

3.3. DIMP53-1 is nongenotoxic in tumor and

normal cells and has low cytotoxicity against

normal cells

The genotoxicity of DIMP53-1 was evaluated in tumor

and normal cells. In HCT116p53+/+ tumor cells, the

impact of DIMP53-1 on DNA damage was analyzed

by checking comet-positive cells and histone H2AX

phosphorylated on serine 139 (cH2AX; phosphoryla-

tion of histone H2AX marks the first step in cellular

response to DNA double-strand breaks, and its visual-

ization allows the assessment of DNA damage). The

results obtained showed that, unlike etoposide (posi-

tive control), 7, 14, and 21 lM DIMP53-1 did not

increase the percentage of comet-positive cells after 48-

h treatment (Fig. 4A,B), or the levels of cH2AX after

12-h treatment (Fig. 4C). Furthermore, in peripheral

lymphocytes of normal individuals, 7, 14, and 21 lM
DIMP53-1 did not increase the number of micronuclei

compared to solvent (Fig. 4D,E).

DIMP53-1 cytotoxicity was also checked in normal

cells by assessing its growth inhibitory effect on breast

epithelial MCF10A cells, through the SRB assay

(Fig. 4F). The IC50 value of DIMP53-1 in these cells

was higher than 75 lM, supporting its selective cyto-

toxicity toward tumor cells.

Altogether, DIMP53-1 is nongenotoxic in human

tumor and normal cells and has low cytotoxic effects

against human normal cells.

3.4. DIMP53-1 reduces in vitro angiogenesis and

tumor cell migration and invasion

The impact of DIMP53-1 on HCT116p53+/+ cell

migration and invasion was investigated. With such

purpose, the concentration of 3 lM (IC10) of DIMP53-

1, which does not significantly interfere with

HCT116p53+/+ cell growth, was used. In the wound

healing assay, 3 lM of DIMP53-1 significantly inhib-

ited HCT116p53+/+ cell migration, and the subse-

quent wound closure, when compared to solvent

(Fig. 5A,B). These results were confirmed using the

chemotaxis cell migration assay, in which 24-h treat-

ment with 3 lM of DIMP53-1 led to a significant

reduction in HCT116p53+/+ cell migration compared

to solvent (Fig. 5C). Additionally, 3 lM of DIMP53-1

inhibited HCT116p53+/+ cell invasion through a

Matrigel� matrix, evaluated by the cell invasion assay

after 48-h treatment (Fig. 5D).

The antiangiogenic potential of DIMP53-1 was also

investigated. Initially, its antiproliferative effect on

HMVEC-D endothelial cells was assessed, and an IC50

higher than 50 lM was obtained (data not shown),

indicating low toxicity of DIMP53-1 toward endothe-

lial cells. Thereafter, the wound healing assay was per-

formed to evaluate the effect of 14 lM of DIMP53-1

(IC10 value in HMVEC-D) on HMVEC-D cell migra-

tion. At this concentration, a significant decrease in

endothelial cell migration was observed (Fig. 5E,F).

Moreover, using an in vitro angiogenesis assay, a sig-

nificant antiangiogenic effect was observed after 16-h

treatment with 10 and 14 lM of DIMP53-1. In fact,

DIMP53-1 led to a dose-dependent decrease in

HMVEC-D tube formation (Fig. 5G,H).

Altogether, DIMP53-1 demonstrates in vitro antian-

giogenic, antimigration, and anti-invasive effects.

3.5. DIMP53-1 has in vivo antitumor activity

without apparent toxic side effects

To evaluate some primary toxicity signs, 50 mg�kg�1

DIMP53-1 was tested in Wistar rats. Following the

same administration procedure conducted in tumor
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Fig. 3. DIMP53-1 potentially binds to p53 and inhibits the growth of MDM2- and MDMX-overexpressing tumor cells through induction of

cell cycle arrest, apoptosis, and upregulation of p53 target genes. (A and B) CETSA experiments were performed in HCT116p53+/+ cell

lysates in the presence or absence of DIMP53-1. In (A), 10 lM of DIMP53-1 was used and lysate samples were heated at different

temperatures; plot represents the signal intensity normalized to the intensity at 25 °C. In (B), lysate samples were treated with increasing

DIMP53-1 concentrations and heated at 39 °C; plot represents the increase in nondenatured p53 calculated setting the signal obtained with

DMSO at 39 °C as 0, and the signal obtained with DMSO at 25 °C (considered the maximum amount of nondenatured p53) as 1. Results

are mean � SEM of three independent experiments. (C) DIMP53-1 concentration–response growth curves in SJSA-1 and MCF-7 cells, after

48-h treatment; data are mean � SEM of four independent experiments; incubation with DMSO, in equivalent % of DIMP53-1, was used to

normalize the results. (D,E) Cell cycle arrest (D) and apoptosis (E) were determined in SJSA-1 and MCF-7 cells at IC50 and 2 9 IC50 (2 9

DIMP53-1) concentrations, after 24-h treatment; data are mean � SEM of three independent experiments; values were significantly

different from DMSO (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Western blot analysis was performed in SJSA-1 and MCF-7 cells, after 24-h

(p21) and 48-h (PARP, p53, MDM2, BAX) treatments with the IC50 of DIMP53-1 or DMSO. In (A), (B), and (F), immunoblots are

representative of three independent experiments; in (B) and (F), GAPDH was used as loading control.
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xenograft mice models, organs’ relative weight (troph-

ism) and biochemical and hematological data were

analyzed for saline, vehicle, and DIMP53-1 groups

(Table 1). No differences between the three groups on

relative weight of liver, kidneys, heart, and spleen were

observed. Concerning biochemical data, only a slight

decrease in urea in the vehicle group compared to the

saline group, and a slight increase in uric acid in the

DIMP53-1 group compared to controls (saline and

vehicle groups) were observed. These results indicated

no apparent liver or kidney toxicity. Regarding hema-

tological data, just a small increase in reticulocyte

number was observed in the vehicle group compared

to the saline group, with no alterations between

DIMP53-1 and the control groups. Overall, no appar-

ent toxic side effects were observed for DIMP53-1 on

the tissues most commonly affected by conventional

chemotherapeutics.

Fig. 4. DIMP53-1 is nongenotoxic in normal and tumor cells and has low cytotoxicity against normal cells. (A–C) DNA damage was

measured in HCT116p53+/+ cells by comet assay (A and B) and by analysis of cH2AX expression levels (C) after treatment with etoposide

(ETOP; positive control) or DIMP53-1. In (A), scale bar = 20 lm; magnification = 200 9. In (B), quantification of comet-positive cells

(containing more than 5% of DNA in the tail; assessed by OPEN COMET/IMAGEJ); 100 cells were analyzed in each group. In (C), cH2AX levels

were determined by western blot; immunoblots are representative of three independent experiments; GAPDH was used as loading control.

(D and E) Genotoxicity of 7, 14, and 21 lM DIMP53-1 by cytokinesis-block micronucleus (MN) assay after 72-h treatment in human

lymphocyte cells; 5 lg�mL�1 cyclophosphamide (CP; positive control). In (D), scale bar = 20 lm; magnification = 1000 9. In (E), the number

of MN per 1000 binucleated lymphocytes was recorded. (F) DIMP53-1 concentration–response growth curve in MCF10A cells, after 48-h

treatment; incubation with DMSO, in equivalent % of DIMP53-1, was used to normalize the results. In (B), (E), and (F), data are

mean � SEM of three to four independent experiments; in (B) and (E), values were significantly different from DMSO (**P < 0.01;

***P < 0.001).
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The in vivo antitumor potential of DIMP53-1 was

evaluated using human tumor xenograft mice models

of p53+/+ and p53�/� HCT116 cells. Four intraperi-

toneal administrations of 50 mg�kg�1 DIMP53-1

inhibited the growth of p53-expressing HCT116 tumor

compared to vehicle (Fig. 6A). Conversely, for the

same conditions, DIMP53-1 did not interfere with the

growth of p53-null HCT116 tumors, further

Fig. 5. DIMP53-1 prevents in vitro angiogenesis and tumor cell invasion and migration. (A,B) HCT116p53+/+ confluent cells treated with

3 lM DIMP53-1 or DMSO were observed at different time-points in the wound healing assay. (B) Quantification of wound closure of

HCT116p53+/+ cells in five randomly selected microscopic fields. (C) Effect of 3 lM of DIMP53-1 on the migration of HCT116p53+/+ cells for

24 h, analyzed by the chemotaxis assay. (D) Effect of 3 lM of DIMP53-1 on the invasion of HCT116p53+/+ cells for 48 h, analyzed by cell

invasion assay. In (C) and (D), migratory cells were quantified by fluorescence signal; fold changes are relative to DMSO and correspond to

mean � SEM of three independent experiments. (E,F) HMVEC-D endothelial confluent cells treated with 14 lM of DIMP53-1 or DMSO

were observed at different time-points in the wound healing assay. In (F), quantification of wound closure of HMVEC-D endothelial in five

randomly selected microscopic fields. (G) Antiangiogenic effect of 10 and 14 lM of DIMP53-1 was evaluated in HMVEC-D cells for 16 h by

the endothelial cell tube formation assay. (H) Quantification of tube-like structures in five randomly selected microscopic fields; fold changes

are relative to DMSO and correspond to mean � SEM of three independent experiments. In (A), (E), and (G), scale bar = 5 lm and

magnification = 100 9. In (B), (C), (D), (F), and (H), values were significantly different from DMSO (**P < 0.01; ***P < 0.001).
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reinforcing its p53-dependent antitumor activity

(Fig. 6A). Furthermore, no significant body weight

loss or morbidity signs were observed in DIMP53-1-

treated mice compared to vehicle (Fig. 6B).

The subsequent analysis of tumor tissues was per-

formed to check in vivo p53-dependent antitumor

events promoted by DIMP53-1. Proliferation, apopto-

sis, and angiogenesis markers were checked in p53+/+

and p53�/� HCT116 tumor tissues by immunohisto-

chemistry and TUNEL staining (Fig. 6C–F). In

p53-expressing tumor tissues, DIMP53-1 reduced pro-

liferation (decrease in Ki-67-positive staining) and

stimulated apoptosis (increase in BAX expression and

DNA fragmentation demonstrated by TUNEL-posi-

tive staining), compared to vehicle (Fig. 6C–E). To

study the angiogenic profile of tumor tissues, the vas-

cular endothelial growth factor (VEGF; angiogenesis-

inducing factor) and the microvessel density (MVD;

determined using the marker of newly formed vessels

CD34) were determined. The results obtained revealed

Table 1. Toxicity studies of DIMP53-1 in Wistar rats.

Saline Vehicle Treated

Body weight and relative tissue weight (trophism)

BW (g) 340.30 � 13.45 361.80 � 0.01 353.25 � 3.99

Heart/BW (g�kg�1) 3.03 � 0.03 3.01 � 0.09 3.19 � 0.12

Liver/BW (g�kg�1) 38.71 � 2,36 38.52 � 0.89 40.72 � 1.14

Kidney/BW (g�kg�1) 7.08 � 0.40 6.81 � 0.27 6.96 � 0.32

Spleen (g�kg�1) 2.10 � 0.20 2.15 � 0.12 2.07 � 0.20

Biochemical data

Blood glucose (mg�dL�1) 188.0 � 7.51 207.20 � 7.00 242.25 � 25.68

Urea (mg�dL�1) 20.67 � 0.77 18.34 � 0.24* 19.10 � 0.62

Uric acid (mg�dL�1) 1.07 � 0.07 0.82 � 0.10 4.10 � 0.50*

Creatinine (mg�dL�1) 0.30 � 0.00 0.30 � 0.01 0.36 � 0.03

Total proteins (g�dL�1) 5.50 � 0.00 5.35 � 0.17 6.38 � 0.40

Albumin (g�dL�1) 3.03 � 0.03 2.90 � 0.05 3.13 � 0.03

ALT (U�L�1) 36.00 � 2.89 30.75 � 3.30 35.00 � 1.87

AST (U�L�1) 95.33 � 25.36 56.25 � 4.60 115.75 � 20.89

Total cholesterol (mg�dL�1) 44.33 � 1.76 52.40 � 3.54 54.00 � 3.37

Triacylglycerols (mg�dL�1) 107.00 � 16.29 161.40 � 17.55 229.50 � 26.70

Hematological data

RBC count (9106 lL�1) 7.10 � 0.15 7.41 � 0.28 8.23 � 0.24

HGB (g�dL�1) 13.97 � 0.18 13.95 � 0.46 14.68 � 0.28

HCT (%) 40.50 � 0.82 42.28 � 2.03 47.85 � 1.87

WBC counts (9103 lL�1) 1.93 � 0.68 2.15 � 0.88 1.05 � 0.26

PLT counts (9106 lL�1) 811.00 � 29.61 793.80 � 28.35 726.75 � 47.43

RET counts (%) 2.80 � 0.12 3.56 � 0.23* 3.59 � 0.31

Data were analyzed for saline, vehicle, and 50 mg�kg�1 DIMP53-1 (treated) rat groups, after four intraperitoneal administrations (twice a

week). Results are mean � SEM of four independent experiments; *P < 0.05 (comparison was made between saline and vehicle groups,

and between vehicle and treated groups). ALT, alanine aminotransferase; AST, aspartate aminotransferase; BW, body weight; CK, creatine

kinase; HCT, hematocrit; HGB, hemoglobin concentration; PCT, plateletcrit; PLT, platelet; RBC, red blood cell count; RET, reticulocytes;

WBC, white blood cells.

Fig. 6. DIMP53-1 has in vivo p53-dependent antitumor activity by inducing apoptosis and inhibiting proliferation and angiogenesis. BALB/c

nude mice of about 10 weeks were inoculated subcutaneously, in the dorsal flank, with HCT116p53+/+ and HCT116p53�/� tumor cells;

when tumors reached approximately 100 mm3 volume (14 days after the grafts), mice were treated twice a week with 50 mg�kg�1

DIMP53-1 or vehicle (control) by intraperitoneal injection for two weeks. (A) Tumor volume growth curves of mice carrying p53+/+ or p53�/�

HCT116 xenografts treated with DIMP53-1 or vehicle; data are mean � SEM of the tumor volume fold change to the start of treatment. (B)

Mice body weight during treatment with DIMP53-1 or vehicle; values were not significantly different from vehicle (P > 0.05). (C)

Representative images of Ki-67, BAX, DNA fragmentation (TUNEL), CD34, and VEGF detection in p53+/+ and p53�/� HCT116 xenograft

tumor tissues treated with DIMP53-1 or vehicle at the end of treatment (scale bar = 5 lm; magnification = 4009); H&E (hematoxylin and

eosin). (D–F) Quantification of immunohistochemistry of p53+/+ and p53�/� HCT116 xenograft tumor tissues treated with DIMP53-1 or

vehicle. In (D), BAX and VEGF staining quantification by evaluation of DAB (3,30-diaminobenzidine) intensity. In (E), quantification of the

number of positive and negative Ki-67 and TUNEL cells. In (F), evaluation of microvessel density by quantification of vessels stained with

anti-CD34; data are mean � SEM of the number of vessels per mm2 fold change to the vehicle. In (A), (D), (E), and (F), values were

significantly different from vehicle (*P < 0.05; **P < 0.01; ***P < 0.001).
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lower levels of VEGF and MVD in p53-expressing

tumor tissues treated with DIMP53-1, compared to

vehicle (Fig. 6C,D,F). Particularly, an overall fivefold

reduction in MVD was observed in p53-expressing

tumor tissue treated with DIMP53-1 (Fig. 6F). Con-

versely, no apparent differences in these markers were

observed between DIMP53-1 and vehicle in p53-null

tumors (Fig. 6C–F).
Altogether, these results support an in vivo p53-

dependent antiproliferative, proapoptotic, and antian-

giogenic activity of DIMP53-1.

4. Discussion

The complexity underlying cancer highlights the need

for the development of strategies that would target the

intricate cancer network, in order to modulate the dif-

ferent hallmarks of cancer and hence treat cancer as a

complex disease. The key role of p53 in cancer hall-

marks renders p53-targeted anticancer therapies highly

encouraging. Actually, an effective inhibition of cancer

development and progression has been achieved with

strategies devised to rectify a dysfunctional p53 path-

way, particularly due to MDM2 and MDMX overex-

pression (Hong et al., 2014; Li and Lozano, 2013; Wade

et al., 2013). Consistently, the dual inhibition of the

p53–MDM2/X interactions, for full p53 reactivation,

has gained strength to treat wt p53-expressing tumors,

particularly MDMX-overexpressing tumors commonly

resistant to only MDM2 inhibitors (Burgess et al., 2016;

Li and Lozano, 2013).

Here, we report a novel tryptophanol-derived oxa-

zoloisoindolinone, DIMP53-1, identified as a new dual

inhibitor of the p53–MDM2/X interactions. The

molecular mechanism of action of DIMP53-1, identi-

fied in yeast, was validated in human tumor cells with

and without p53. In fact, DIMP53-1 caused tumor cell

growth inhibition mediated by p53 stabilization and

upregulation of p53 transcriptional targets involved in

cell cycle arrest and apoptosis, in wt p53-expressing

tumor cells, including MDM2- or MDMX-overexpres-

sing cells. Notably, DIMP53-1 inhibited the p53–
MDM2/X interactions by potentially binding to p53 in

human tumor cells.

The loss of p53 function has been related to the

development of a metastatic phenotype (Powell et al.,

2014), the most frequent cause of mortality in patients

with cancer (Cordani et al., 2016; Spano et al., 2012).

Actually, p53 stimulates the transcription of repressors

of cell migration and invasion (Powell et al., 2014). It

is therefore expected that the restoration of p53 func-

tion may suppress cancer dissemination. Thus, an

effective antimigratory and anti-invasive activity of

DIMP53-1 was demonstrated in wt p53-expressing

tumor cells.

Angiogenesis is a major hallmark of cancer as pro-

liferation and metastatic spread of cancer cells depend

on the adequate supply of oxygen and nutrients

(Baeriswyl and Christofori, 2009). Actually, several

antiangiogenic agents have been explored in cancer

treatment, particularly in combination with conven-

tional chemotherapeutic agents (Vasudev and Rey-

nolds, 2014). The p53 activity has been negatively

correlated with this process through indirect inhibi-

tion of key proteins, such as VEGF. Particularly, it

was demonstrated that p53 indirectly represses VEGF

expression by inhibiting transcription factors such as

SP1 and E2F (Pal et al., 2001; Qin et al., 2006).

Here, the therapeutic potential of DIMP53-1 was fur-

ther reinforced through confirmation of in vivo

antiangiogenic activity through depletion of VEGF in

tumors. Interestingly, despite the antiangiogenic activ-

ity of DIMP53-1 in an in vitro endothelial cell system

(without tumor cells), the results obtained in vivo

showed that this antiangiogenic effect is highly depen-

dent on tumor environment, particularly of the p53

status in these tumors. In fact, the antiangiogenic

activity of DIMP53-1 was suppressed in p53-null

tumor xenografts. These results emphasize a strong

connection between the activation of the p53 pathway

by DIMP53-1 and its antiangiogenic activity in

tumors. Further studies are required to clarify the

molecular pathways involved in DIMP53-1 antiangio-

genic activity.

Additionally, DIMP53-1 is nongenotoxic in both

normal and tumor cells and presents no significant

toxicity both in normal cells and in rats. Most impor-

tantly, in human tumor xenograft mice models, a p53-

dependent antitumor activity of DIMP53-1 was

observed. Actually, DIMP53-1 suppressed the growth

of wt p53-expressing tumors, through inhibition of

proliferation and induction of apoptosis, without inter-

fering with the growth of p53-null tumor xenografts.

Interestingly, to date, only the furan derivative RITA

was reported as a small-molecule inhibitor of the p53–
MDM2 interaction by binding to p53 instead of MDM2

(Gomes et al., 2016; Hong et al., 2014; Wade et al.,

2013). However, conversely to RITA, DIMP53-1 has

no genotoxic effects, also acts on the p53–MDMX

interaction, and exhibits selectivity to the p53 pathway,

particularly highlighted in in vivo mice models.

5. Conclusions

This work reports the identification of a new potential

p53 ligand, which activates the p53 function through
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inhibition of its interaction with MDM2/X. DIMP53-1

has in vivo p53-dependent antitumor properties with

no apparent toxic side effects, and exhibits antiprolif-

erative, proapoptotic, antiangiogenic, anti-invasive,

and antimigratory activities. Collectively, although

DIMP53-1 is a targeted agent, it also presents a

multifunctional activity, interfering with several hall-

marks of cancer. Besides its great promise as an

anticancer drug candidate, DIMP53-1 is also an

encouraging starting point for further development

of dual inhibitors of the p53–MDM2/X interactions

with improved therapeutic potential for clinical

translation.
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