
Original article

Exploring convolutional neural networks for

drug–drug interaction extraction

V�ıctor Su�arez-Paniagua*, Isabel Segura-Bedmar and Paloma Mart�ınez

Department of Computer Science, University Carlos III of Madrid Leganés 28911, Madrid, Spain

*Corresponding author: Tel: þ34 91 6245934; Fax: þ34 91 6249129; Email: victor.suarez@uc3m.es

Citation details: Su�arez-Paniagua,V., Segura-Bedmar,I. and Mart�ınez,P. Exploring convolutional neural network for

drug–drug interaction extraction. Database (2017) Vol. 2017: article ID bax019; doi:10.1093/database/bax019

Received 2 November 2016; Revised 16 February 2017; Accepted 16 February 2017

Abstract

Drug–drug interaction (DDI), which is a specific type of adverse drug reaction, occurs

when a drug influences the level or activity of another drug. Natural language processing

techniques can provide health-care professionals with a novel way of reducing the time

spent reviewing the literature for potential DDIs. The current state-of-the-art for the

extraction of DDIs is based on feature-engineering algorithms (such as support vector

machines), which usually require considerable time and effort. One possible alternative

to these approaches includes deep learning. This technique aims to automatically learn

the best feature representation from the input data for a given task. The purpose of this

paper is to examine whether a convolutional neural network (CNN), which only uses

word embeddings as input features, can be applied successfully to classify DDIs from

biomedical texts. Proposed herein, is a CNN architecture with only one hidden layer,

thus making the model more computationally efficient, and we perform detailed experi-

ments in order to determine the best settings of the model. The goal is to determine the

best parameter of this basic CNN that should be considered for future research. The

experimental results show that the proposed approach is promising because it attained

the second position in the 2013 rankings of the DDI extraction challenge. However, it

obtained worse results than previous works using neural networks with more complex

architectures.

Introduction

There is currently a growing concern about adverse drug

events (ADEs), which are a serious risk for patient safety

(1) as well as a cause of rising health-care costs (2). Drug–

drug interactions (DDIs), which are a type of ADE, are

undesirable effects caused by the alteration of the effects of

a drug due to recent or simultaneous use of one or more

other drugs. Unfortunately, most DDIs are not detected

during clinical trials. Although clinical trials are designed

to ensure both safety and effectiveness of a new drug, it is

not possible to test all of its possible combinations with

other drugs (3).

The early detection of clinically important DDIs is a

very challenging task for health-care professionals because

of the overwhelming amount of related information that is

currently available (4). Physicians have to spend a long
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time reviewing DDI databases as well as the pharmacovigi-

lance literature in order to prevent harmful DDIs. The

number of articles published in the biomedical domain

increases by 10 000–20 000 articles weekly (http://www.

nlm.nih.gov/pubs/factsheets/medline.html). Each year,

300 000 articles are published within only the pharmacol-

ogy domain (5). Information extraction (IE) from both

structured and unstructured data sources may significantly

assist the pharmaceutical industry by enabling the identifi-

cation and extraction of relevant information as well as

providing a novel way of reducing the time spent by

health-care professionals to review the literature. Most of

the previous research on the extraction of DDIs from bio-

medical texts has focused on supervised machine-learning

algorithms and extensive feature sets, which are manually

defined by text miners and domain experts. Deep learning

methods are potential alternatives to classical supervised

machine-learning algorithms because they are able to auto-

matically learn the most appropriate features for a given

task. In particular, the hypothesis is that a convolutional

neural network (CNN) may be an effective method to learn

the best feature set to classify DDIs without the need for

manual and extensive feature engineering. Although pre-

vious works have already incorporated the use of CNNs

for DDI extraction (6, 7), none of them reported a detailed

study of the influence of the CNN hyper-parameters on the

performance. Similarly, to the best of our knowledge, there

has been no focus on evaluating the CNN-based approach

for each DDI type on the different types of texts, such as

scientific articles (e.g. MedLine abstracts) or drug package

inserts (e.g. text fragments contained in the DrugBank

database).

Related work

In recent years, several natural language processing (NLP)

challenges have been organized to promote the develop-

ment of NLP techniques applied to the biomedical domain,

especially pertaining to the area of pharmacovigilance. In

particular, the DDIExtraction shared tasks (8, 9) were

developed with two objectives: advancing the state-of-the-

art of text-mining techniques applied to the pharmacovigi-

lance domain, and providing a common framework for the

evaluation of the participating systems and other research-

ers who may be interested in the extraction of DDIs from

biomedical texts. In 2011, the first edition addressed only

the detection of drug DDIs, but the second edition also

included their classification. Each DDI is classified accord-

ing to one of the following types of DDIs: mechanism

(when the DDI is described by their pharmacokinetic (PK)

mechanism), effect (for DDIs describing an effect or a

pharmacodynamic (PD) mechanism), advice (when a sen-

tence provides a recommendation or advice about a DDI)

and int (the DDI appears in the text without providing any

additional information). Most of the participating systems

as well as the systems that were subsequently developed,

have been based on support vector machines (SVMs) and

on both linear and non-linear kernels, and obtained state-

of-the-art performance F1-scores of 77.5% for detection

and 67% for classification (10). All of them are character-

ized by the use of large and rich sets of linguistic features,

which have to be defined by domain experts and text min-

ers, and which require considerable time and effort. The

top system in the DDIExtraction Shared Task 2013 was

developed by the Fondazione Bruno Kessler team (FBK-

irst) (11). The system consisted of two phases: first, the

DDIs were detected, after which they were classified

according to the four types presented above. In the DDI-

detection phase, filtering techniques based on the scope of

negation cues and the semantic roles of the entities

involved were proposed to rule out possible negative

instances. In particular, a binary SVM classifier was

trained using contextual and shallow linguistic features to

determine these negative instances, which were not consid-

ered in the classification phase. Once these negative instan-

ces were discarded from the test dataset, a hybrid kernel

[combining a feature-based kernel, the shallow linguistic

kernel (SL) (12) and the path-enclosed tree (PET) kernel

(13)] was used to train a relation extraction (RE) classifier.

For the classification of the DDIs, four separate SVM mod-

els were trained for each DDI type (using ONE-vs-ALL).

The experiments showed that the filtering techniques

improved both the precision and recall compared to the

case when only the hybrid kernel was applied. During the

classification, the system obtained an F1-score of 65.1,

70.5 and 38.3% over the whole database, DrugBank and

MedLine, respectively. This system was unable to classify

the DDI relations in sentences such as: Reduction of PTH

bycinacalcet is associated with a decrease indarbepoetin

requirement [False Negative (FN)] and There are no clini-

cal data on the use of MIVACRON with othernon-depola-

rizing neuromuscular blocking agents [False Positive

(FP)]. The above false negative may be due to this DDI is

described by a complex syntactic structure. As mentioned

before, one of the kernels used by the system is the PET

kernel, which heavily relies on syntactic parsing. For the

false FP, the main problem may be that the system failed to

correctly identify the scope of negation in the sentence.

Our work aims to overcome these problems by using a

method that does not require the use of syntactic
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information. A full discussion on the main causes of errors

in the DDIExtraction-2013 challenge task can be found in

Ref. (14).

Afterwards, the work described in Ref. (10) overcame

the FBK-irst’s top ranking system using a linear SVM clas-

sifier with a rich set of lexical and syntactic features, such

as word features, word-pair features, dependency-parse

features, parse-tree features and noun phrase-constrained

coordination features to indicate whether the target drugs

are coordinated in a noun phrase. To ensure generalization

of these features, references to the target drug and the

remaining drugs in the sentence are omitted. As part of the

pre-processing, numbers and tokens contained in the sen-

tences are replaced by a generic tag and normalized into

lemmas, respectively. Every pair of drugs in a sentence is

considered as a candidate DDI. Those candidates including

the same drug name, e.g. (aspirin, aspirin), were directly

removed. The system follows the two-phase approach

(detection and classification) proposed by Chowdhury and

Lavelli (11), but uses the ONE-vs-ONE strategy for the

DDI-type classification because it increases the perform-

ance for the imbalanced dataset. They obtained an F1-

score of 67% for the classification task.

The prominent use of deep learning in NLP and its good

performance in this field makes it a promising technique

for the task of RE. Matrix-vector recursive neural network

(MV-RNN) (15), recurrent neural network (16) and con-

volutional neural network (CNN) (17) have been success-

fully applied to RE tasks.

The MV-RNN model was the first work in RE using a

deep learning architecture which achieved state-of-the-art

results on the SemEval-2010 Task 8 dataset (18). Following

this approach, the work of Ebrahimi and Dou (19) demon-

strates that using dependency parse instead of constituency

parse in an RNN model improved the performance as well

as the training time. They modified the RNN architecture in

order to incorporate dependency graph nodes in which each

dependency between entities has a unique common ancestor.

In addition, they added some internal features from the built

structure, such as the depth of the tree, distance between

entities, context words, and the type of dependencies. They

also evaluated their approach on the DDIExtraction 2013

dataset [the DDI corpus (20)], obtaining an F1-score of

68.64%. It should be noted that these authors did not carry

out an in-depth study of the performance of their system for

each type of DDI and for each of the subcorpora (DDI-

DrugBank and DDI-MedLine) which comprise the DDI cor-

pus. A more comprehensive study about MV-RNN for DDI

extraction can be found in Ref. (21). This work concluded

that MV-RNN achieved very low performance for biomedi-

cal texts because it uses the syntactic trees, which are gener-

ated by the Stanford Parser, as input structures. In general,

these syntactic trees are incorrect because this parser has not

been trained to parse biomedical sentences, which are usu-

ally very long sentences with complex structures (such as

subordinate clauses, appositions and coordinate structures).

The results obtained are different to those presented in Ref.

(19) because these authors did not describe the setting

for this method, such as the values of the hyper-parameters

and the preprocessing phase, and did not clarify if

their results were for the task of DDI detection or for DDI

classification.

CNN is a robust deep-learning architecture which has

exhibited good performance in many NLP tasks such as

sentence classification (22), semantic clustering (23) and

sentiment analysis (24). One of its main advantages is that

it does not require the definition of hand-crafted features;

instead, it is able to automatically learn the most suitable

features for the task. This model combines the word

embeddings of an instance (i.e. a sentence or a phrase con-

taining a candidate relation between two entities) using fil-

ters in order to construct a vector which represents this

instance. Finally, a softmax layer assigns a class label to

each vector. Zeng et al. (17) developed the first work that

used CNN for RE using the SemEval-2010 Task 8 dataset

(18). This work concatenated the word embeddings with a

novel position embedding which represents the relative

distances of each word to the two entities in the instance

relation in a embedding vector. In addition, they added a

non-linear layer after the CNN architecture to learn more

complex features attaining an F1-score of 69.7%. They

obtained an improvement of 13% by adding external lexi-

cal features such as the word embeddings of the entities,

their WordNet hypernym and the word embeddings of the

context tokens.

Following these works, Liu et al. (96) demonstrated

that the use of CNN can outperform the rest of machine-

learning techniques using pre-trained word embeddings

and position embeddings trained with a large amount of

documents from the biomedical domain. Currently, this

work is the state-of-the-art system in the DDI classification

task, with an F1-score of 69.75%. They also obtained a

good performance for each DDI type: 70.24% for mecha-

nism, 69.33% for effect, 77.75% for advice and 46.38%

for int. Recently, the syntax CNN proposed by Zhao et al.

(7) included a new syntax word embedding and a part-of-

speech feature as an embedding, both of which are pre-

trained with an autoencoder. Moreover, they also added

some traditional features (such as the drug names, their

surrounding words, the dependency types and the biomedi-

cal semantic types) to the softmax layer, and they used

two-step classification (detection and classification).

However, this system, which has an F1 of 68.6%, did not

improve on the results reported in Ref. (6).
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Table 1 summarizes the state-of-the-art systems for

DDIExtraction Task. From the review of the related work,

although some works have already applied the CNN

model to the classification of DDIs, none of them involved

a detailed study of the effect of its hyper-parameters by

fine-tuning the performance of the model. In addition,

unlike previous works, our system does not employ any

external feature for the classification of DDIs. We also

studied in detail the results of the CNN model for each

type of DDI and on each dataset of the DDI corpus, i.e.

DDI-DrugBank and DDI-MedLine. This study is required

because these datasets involve very different types of texts

(i.e. scientific texts versus drug package inserts).

As mentioned above, some previous works based on

deep learning used syntactic information (7, 19).

Biomedical sentences are usually long sentences and con-

tain complex syntactic structures, which current parsers

are not able to correctly analyze. In addition, syntactic

parsing is a very time-consuming task, and hence may be

infeasible in real scenarios. For this reason, in this work we

explore an approach that does not require syntactic infor-

mation. Our approach is similar to (6), however we per-

form a more detailed study. These authors initialized their

CNN model with a pre-trained word embedding model

from Medline (which is not publicly available) and only

performed experiments with the default filter-size recom-

mended by Kim (22). We explore not only several word

embeddings models, but also a random initialization of the

word vectors. In addition, one of our hypothesis is that

because biomedical sentences describing DDIs are usually

very long and their interacting drugs are often far from

each other (the average distance between entities for all the

instances in the train set is 14.6), we should try different

window sizes to adapt this parameter to biomedical senten-

ces. Moreover, unlike to the work (6), which only provided

results for each DDI type on the whole test set, we provide

the performance of our system for each DDI type and for

each dataset of the DDI corpus (DDI-DrugBank and DDI-

MedLine).

Materials and methods

Dataset

The major contribution of the DDIExtraction challenge

was to provide a benchmark corpus, the DDI corpus. The

DDI corpus is a valuable annotated corpus which provides

gold standard data for training and evaluating supervised

machine-learning algorithms to extract DDIs from texts.

The whole DDI corpus contains 233 selected abstracts

about DDIs from MedLine (DDI-MedLine) as well as 792

other texts from the DrugBank database (DDI-DrugBank).

The corpus was annotated manually with a total of 18 502

pharmacological substances and 5028 DDIs. The quality

and consistency of the annotation process was guaranteed

through the creation of annotation guidelines, and it was

evaluated by measuring the inter-annotator agreement

(IAA) between two annotators. It should be noted that IAA

can be considered as an upper bound on the performance

of the automatic systems for detection of DDIs. The agree-

ment was very high for the DDI-DrugBank dataset

(Kappa¼ 0.83), and it was moderate for the DDIs in DDI-

MedLine (0.55–0.72). This is because MedLine abstracts

have a much higher complexity than texts from the

DrugBank database, which are usually expressed in simple

sentences. A detailed description of the method used to col-

lect and process documents can be found in Ref. (25). The

corpus is distributed in XML documents following the uni-

fied format for PPI corpora proposed by Pyysalo et al.

(26). A detailed description and analysis of the DDI corpus

and its methodology are described in Ref. (20).

Figure 1 shows some examples [in brat format (http://

brat.nlplab.org/)] of annotated texts in the DDI corpus.

The first example (A) describes a mechanism-type DDI

between a drug (4-methylpyrazole) that inhibits the metab-

olism of the substance (1,3-difluoro-2-propranol). The sec-

ond example (B) describes the consequence of an effect-

type DDI between estradiol and endotoxin in an experi-

ment performed in animals. The first sentence of the last

example (C) describes the consequence of the interaction

(effect type) of a drug (Inapsine) when it is co-administered

with five different groups of drugs. The third sentence in C

shows a recommendation to avoid these DDIs (advice

type). Table 2 shows the distribution of the DDI types in

the DDI corpus.

CNN model

This approach is based on the CNN model proposed in Ref.

(22), which was the first work to exploit a CNN for the task

of sentence classification. This model was able to infer the

class of each sentence, and returned good results without the

need for external information. To this end, the model

Table 1. State-of-the-art systems results using the whole DDI

Corpus for the classification task

Systems Precision Recall F1-score

Liu et al. [6] 75.72% 64.66% 69.75%

Ebrahimi and Dou [19] 75.31% 66.19% 68.64%

Zhao et al. [7] 72.5% 65.1% 68.6%

Kim et al. [10] Unknown Unknown 67%

Chowdhury and

Lavelli [11]

64.6% 65.6% 65.1%
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computes an output vector, which describes the whole

sentence, and applies convolving filters to the input

through several windows of different sizes. Finally, this

vector is used in a classification layer to assign a class label.

In this section, we present this model for the special case of

sentences which describe DDIs. Instead of using Kim’s

CNN implementation (https://github.com/yoonkim/CNN_

sentence) based on Theano (a python library for mathemati-

cal computation (http://deeplearning.net/software/theano/),

we adapt the implementation provided by Denny Britz

(https://github.com/dennybritz/cnn-text-classification-tf) based

on TensorFlow [an open-source library for machine learning

(https://www.tensorflow.org/)]. TensorFlow has a graphic vis-

ualization of the model, and generates summaries of the

parameters to keep track of their values, thus simplifying the

study of the parameters.

Figure 2 shows the whole process from its input, which is

a sentence with marked entities, until the output, which is

the classification of the instance into one of the DDI types.

Pre-processing phase

Each pair of drugs in a sentence represents a possible rela-

tion instance. Each of these instances is classified by the

CNN model.

The DDI corpus contains a very small number of dis-

continuous drug mentions (only 47). An example of dis-

continuous mention is exemplified in the following noun

phrase ganglionic or peripheral adrenergic blocking drugs,

which contains two different drug mentions: ganglionic

adrenergic blocking drugs and peripheral adrenergic block-

ing drugs, with the first one being a discontinuous entity.

As this kind of mentions only produces a very small per-

centage (1.26%) of the total number of instances, we

decided to remove them. The detection and classification

of DDIs involving discontinuous drug mentions is a very

challenging task, which will be tackled in future work.

First, following a similar approach as that described in

Ref. (22), the sentences were tokenized and cleaned (con-

verting all words to lower-case and separating special char-

acters with white spaces by regular expressions.). Then, the

two drug mentions of each instance were replaced by the

labels ‘drug1’ and ‘drug2’ for the two interacting entities,

and by ‘drug0’ for the remaining drug mentions. This

method is known as entity blinding, and verifies the

generalization of the model. For instance, the sentence:

Amprenavir significantly decreases clearance of rifabutin

and 25-O-desacetylrifabutin should be transformed to the

following relation instances.

1. ‘drug1 significantly decreases clearance of drug2 and

drug0’ for the relation (Amprenavir, rifabutin);

2. ‘drug1 significantly decreases clearance of drug0

and drug1’ for the relation (Amprenavir, 25-O-

desacetylrifabutin);

3. ‘drug0 significantly decreases clearance of drug1

and drug2’ for the relation (rifabutin, 25-O-

desacetylrifabutin).

Word table layer

After the pre-processing phase, we created an input matrix

suitable for the CNN architecture. The input matrix

should represent all training instances for the CNN model;

therefore, they should have the same length. We deter-

mined the maximum length of the sentence in all the

instances (denoted by n), and then extended those senten-

ces with lengths shorter than n by padding with an auxili-

ary token ‘0’.

Figure 1. Some examples of sentences in the DDI corpus [14].

Table 2. DDI types in the DDI corpus

DDI types DDI-DrugBank DDI-MedLine Total

Advice 1035 (22%) 15 (4.6%) 1050 (20.9%)

Effect 1855 (39.4%) 214 (65.4%) 2069 (41.1%)

Int 272 (5.8%) 12 (3.7%) 284 (5.6%)

Mechanism 1539 (32.7%) 86 (26.3%) 1625 (32.3%)

Total 4701 327 5028
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Moreover, each word has to be represented by a vector.

To do this, we considered two different options: (a) to ran-

domly initialize a vector for each different word, or (b) to

use a pre-trained word embedding model which allows us

to replace each word by its word embedding vector

obtained from this model: We 2 RjVj�me where V is the

vocabulary size and me is the word embedding dimension.

Finally, we obtained a vector x ¼ x1; x2; . . . ; xn½ � for each

instance where each word of the sentence is represented by

its corresponding word vector from the word embedding

matrix. We denote p1 and p2 as the positions of the two

interacting drugs mentioned in the sentence.

The following step involves calculating the relative posi-

tion of each word to the two interacting drugs, i� p1 and

i� p2, where i is the word position in the sentence. For

example, the relative distances of the word inhibit in the

sentence shown in Figure 2 to the two interacting drug

mentions Grepafloxacin and theobromine are 2 and �4,

respectively. In order to avoid negative values, we trans-

formed the range �nþ 1; n� 1ð Þ to the range 1;2n� 1ð Þ.
Then, we mapped these distances into a real value vector

using two position embedding Wd1 2 R 2n�1ð Þ�md and

Wd2 2 R 2n�1ð Þ�md . Finally, we created an input matrix X

2 Rn� meþ2mdð Þ which is represented by the concatenation

of the word embeddings and the two position embeddings

for each word in the instance.

One of the objectives of this work was to study the

effect of the pre-trained word embeddings on the perform-

ance of CNNs. Thus, in addition to the CNN with a

random initialization, we trained a CNN with different

pre-trained word embedding models. First, we pre-trained

different word embedding models using the toolkit word2-

vec (27) on the BioASQ 2016 dataset (28), which contains

more than 12 million MedLine abstracts. We used both

architectures of word2vec, skip-gram and continuous bag-

of-words (CBOW), and applied the default parameters

used in the C version of the word2vec toolkit (i.e. mini-

mum word frequency 5, dimension of word embedding

300, sample threshold 10-5 and no hierarchical softmax).

In addition, we used different values for the parameters

context window (5, 8 and 10) and negative sampling (10

and 25). For a detailed description of these parameters,

refer to (27). We also trained a word embedding model

(with the default parameters of word2vec) on the XML

text dump of the English 2016 version of Wikipedia

(http://mattmahoney.net/dc/text8.zip).

Convolutional layer

Once we obtained the input matrix, we applied a filter

matrix f ¼ f1; f2; . . . ; fw½ � 2 Rw� meþ2mdð Þ to a context win-

dow of size w in the convolutional layer to create higher

Figure 2. CNN model for DDIExtraction task.
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level features. For each filter, we obtained a score sequence

s ¼ s1; s2; . . . ; sn�wþ1½ � 2 R n�wþ1ð Þ�1 for the whole sentence

as

si ¼ g
Xw

j¼1

fjx
T
iþj�1 þ b

 !

where b is a bias term and g is a non-linear function (such as

tangent or sigmoid). Note that in Figure 2, we represent the

total number of filters, denoted by m, with the same size

w in a matrix S 2 R n�wþ1ð Þ�m. However, the same process

can be applied to filters with different sizes by creating addi-

tional matrices that would be concatenated in the following

layer. The filter size is an important parameter in the

CNN model, and may influence its performance because it

directly defines the size of the vector, which represents each

instance. Moreover, window contexts have been tradition-

ally exploited by most relation-classification systems. In par-

ticular, a window with a size of 3 is widely adopted (12).

Pooling layer

Here, the goal is to extract the most relevant features of

each filter using an aggregating function. We used the max

function, which produces a single value in each filter as

zf ¼ maxfsg ¼ maxfs1; s2; . . . ; sn�wþ1g. Thus, we created a

vector z ¼ z1; z2; . . . ; zm½ �, whose dimension is the total

number of filters m representing the relation instance. If

there are filters with different sizes, their output values

should be concatenated in this layer.

Softmax layer

Prior to performing the classification, we performed a

dropout to prevent overfitting. We obtained a reduced vec-

tor zd, randomly setting the elements of z to zero with a

probability p following a Bernoulli distribution. After that,

we fed this vector into a fully connected softmax layer

with weights Ws 2 Rm�kto compute the output prediction

values for the classification as

o ¼ zdWs þ d

where d is a bias term; in the dataset, we have k¼ 5 classes

(advice, effect, int, mechanism and non-DDI). At test time,

the vector z of a new instance is directly classified by the

softmax layer without a dropout.

Learning

For the training phase, we need to learn the CNN parame-

ter set h¼ (We; Wd1; Wd2; Ws; Fm), where Fmare all of

the m filters f. For this purpose, we used the conditional

probability of a relation r obtained by the softmax opera-

tion as

p rjx; hð Þ ¼ exp orð ÞPk
l¼1

exp olð Þ

to minimize the cross entropy function for all instances

(xi,yi) in the training set T as follows.

J hð Þ ¼
XT

i¼1

log p yijxi; hð Þ

In addition, we minimize the objective function by using

stochastic gradient descent over shuffled mini-batches and

the Adam update rule [29] to learn the parameters. Finally,

we add l2-regularization for the weights of the softmax

layer Wsto prevent over-fitting.

Results and discussion

In this section, we summarize the evaluation results

with our CNN model on the DDI corpus, and we provide

a detailed analysis and discussion. The results were

measured using the Precision (P), Recall (R) and F1-score

(F1) for all of the categories in the classification. To

investigate the effect of the different parameters, we fol-

lowed an evaluation process to choose the best model,

selecting the parameters separately in a validation set

to obtain the best values. Due to the fact that the DDI

corpus is only split into training and test datasets, we

randomly selected 2748 instances (candidate pairs)

(10%) from the training dataset at the sentence level,

forming our validation set, which was used for all our

experiments to fine-tune the hyper-parameters of the

architecture.

To validate each setting, we performed a statistical

significance analysis between the models. For this

purpose, we tested the significance with the v2 and P-

value statistics. Two models produce different levels

of performance whether v2 is>3.84 and P-value is lower

than 0.05.

First, we show the performance in a learning curve to

find the optimal number of epochs for which the system

achieves the best results with the stopping criteria. Second,

a basic CNN was computed using predefined parameters

to create a baseline system, after which we analyze its

results. Third, the effects of the filter size and the selection

of different word embeddings and position embeddings

were observed. Finally, a CNN model using the best

parameters found in the above steps was created. In
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addition, for all the experiments, we define the remainder

of the parameters using the following values:

• Maximal length n ¼ 128.

• Filters for each window size m ¼ 200.

• Dropout rate p ¼ 50%.

• l2-regularization ¼ 3.

• Mini-batch size ¼ 50.

• Rectified Linear Unit (ReLU) as the non-linear function g.

The parameter n is the maximum length in the dataset after

the pre-processing phase, m is the same as in Ref. (6) and

the rest of the parameters are the same as in Ref. (22).

Learning curve

Figure 3 shows the learning curve for our CNN from ran-

dom initialization, i.e. instead of using pre-trained word

embeddings as input features for our network, we gener-

ated random vectors of 300 dimensions using a uniform

distribution in the range �1;þ1ð Þ.
The curve shows the performance of each iteration of a

learning step (epoch), and is measured in terms of F1 in the

softmax layer. According to this learning curve, the best

validation F1 is reached with 27 epochs (77.7%), which

was identified as the optimum number of epochs (see the

green point in Figure 3). Moreover, we observe that the

training F1 is still around 100%, and the validation F1

does not improve by using more epochs. There is not a

large gap between the training and validation F1, and

therefore, the model does not appear to produce overfit-

ting. Figure 3 also shows that the validation and test varia-

tion perform very similar, confirming that the choice of the

parameters in the validation set is also valid for the test set.

Finally, we used 25 epochs to train the network in the

following experiments because after this point the model

starts to decrease its performance. Moreover, it was the

value chosen by Kim (22).

Baseline performance

As previously mentioned, we trained our baseline CNN

model from random initialization (i.e. without pre-trained

word embeddings) of 300 dimensions, filter size (3, 4 and

5) and no position embeddings. The performance of this

model for each of the DDI types is shown in Tables 4, 5

and 6. The model achieves an F1 of 61.98% on the DDI-

DrugBank dataset, while its F1 on the DDI-MedLine data-

set is lower (43.21%). This may be because the DDI-

MedLine dataset (with 327 positive instances) is much

smaller than the DDI-DrugBank dataset (with 4701 posi-

tive instances).

Next, we focus on the results obtained for each DDI type

on the whole DDI corpus. The advice class is the type with

the best F1. This can be explained because most of these

interactions are typically described by very similar patterns

such as DRUG should not be used in combination with

DRUG or Caution should be observed when DRUG is

administered with DRUG, which can be easily learned by

the model because they are very common in the DDI corpus,

especially in the DDI-DrugBank dataset. The mechanism

type is the second one with the best performance (F1¼ 63%),

even though its number of instances is lower than the effect

type (Table 4). While the systems which were involved in the

DDIExtraction-2013 challenge agreed that the second easiest

type was effect (14), this may have been because it was the

second type with more examples in the DDI corpus; our

model appears to obtain better performance for the mecha-

nism type. As described in Herrero-Zazo et al. (20), one of

the most common reasons for disagreement between the

annotators of the DDI corpus is that a DDI is described by

information related to both its mechanism and its effect, and

Figure 3. Learning curve of a CNN with random initialization. The blue

line shows the training-curve variation along the number of epochs, the

green represents the validation and the red one the testing curve.

Table 3. Number of instances in each dataset of the DDI cor-

pus after the pre-processing phase

DDI types DDI-DrugBank DDI-MedLine Total

Advice 1028 14 1042

Effect 1815 214 2029

Int 272 12 284

Mechanism 1535 83 1618

Other 26 486 1892 28 373

Total 31 136 2215 33 351

Train 25 885 1778 27 663

Test 5251 437 5688

The class Other represents the non-interaction between pairs of drug

mentions.
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thus the selection of the type is not obvious. For example, the

sentence Concomitant administration of TENTRAL and

theophylline-containing drugs leads to increased theophylline

levels and theophylline toxicity in some individuals describes

a change in the mechanism of the DDI (increased theophyl-

line levels), as well as an effect (theophylline toxicity). In

order to solve these cases, the annotators defined the follow-

ing priority rule: first mechanism, second effect and third

advice. While the systems developed so far have not been

able to learn this rule, our CNN model appears to have

acquired it correctly. Moreover, it should be noted that the

sentences describing mechanism DDIs are characterized by

the inclusion of PK parameters such as area under the curve

(AUC) of blood concentration–time, clearance, maximum

blood concentration (Cmax) and minimum blood concentra-

tion (Cmin). These kinds of parameters, which in general are

expressed by a small vocabulary of technical words from

the pharmacological domain, may be easily captured by the

CNN model because the word vectors are fine-tuned for the

training.

Finally, we observe that the int class is the most difficult

type to classify. This may be because the proportion of

instances of this type of DDI relationship (5.6%) in the

DDI corpus is much smaller than those of the remainder of

the types (41.1% for effect, 32.3% for mechanism and

20.9% for advice).

Tables 5 and 6 also show that the performance of each

type is different depending of the dataset. Thus, while the

above explanation can be extrapolated to the DDI-

DrugBank dataset, the conclusions are completely different

for the DDI-MedLine dataset. For example, the CNN

model obtains lower results for the advice type (F1¼ 25%)

compared to the effect and mechanism types (with an F1

around 43–45%). This may be because the advice type is

very scarce in the DDI-MedLine dataset. Likewise, our

CNN model is unable to classify the int type, which is even

scarcer than the advice type in this dataset.

Filter-size selection

Figure 4 shows the distances between entities in the DDI

corpus, which were obtained from >100 samples. We

observe that the most common distances are 2, 4 and 6,

with 3205, 1858 and 1586 samples, respectively. Because

biomedical sentences describing DDIs are usually very long

and their interacting drugs are often far from each other

(the average distance between entities is 14.6), we used dif-

ferent window sizes to adapt this parameter to biomedical

sentences.

Table 7 shows the results of our CNN baseline trained

with different filter sizes. With the excepting of some cases

(e.g. filter size¼ 2), most of the filter sizes provide very

close results. In the case of a single filter size, 14 is the best

one because it can capture long dependencies in a sentence

with just one window. Although it seems logical to con-

sider that larger filter sizes should give better performance,

Table 5. Results obtained for CNN from random initialization

on the DDI-DrugBank dataset

Classes TP FP FN Total P R F1

Advice 130 43 84 214 75.14% 60.75% 67.18%

Effect 212 190 86 298 52.74% 71.14% 60.57%

Int 27 2 67 94 93.1% 28.72% 43.9%

Mechanism 169 79 109 278 68.15% 60.79% 64.26%

Overall 538 314 346 884 63.15% 60.86% 61.98%

Table 6. Results obtained for CNN from random initialization

on the DDI-MedLine dataset

Classes TP FP FN Total P R F1

Advice 1 0 6 7 100% 14.29% 25%

Effect 27 30 35 62 47.37% 43.55% 45.38%

Int 0 1 2 2 0% 0% 0%

Mechanism 7 5 13 20 58.33% 35% 43.75%

Overall 35 36 56 91 49.3% 38.46% 43.21%
Figure 4. Distance between entities in sentences describing DDIs.

Table 4. Results obtained for CNN from random initialization

on the whole DDI corpus

Classes TP FP FN Total P R F1

Advice 131 43 90 221 75.29% 59.28% 66.33%

Effect 239 220 121 360 52.07% 66.39% 58.36%

Int 27 3 69 96 90% 28.12% 42.86%

Mechanism 176 84 122 298 67.69% 59.06% 63.08%

Overall 573 350 402 975 62.08% 58.77% 60.38%
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our experiments did not agree with this conclusion. Increasing

the size appears to create incorrect filter weights, which can-

not capture the most common cases. In fact, the best filter size

was (2, 4 and 6), which may be because they are the most

common distances between entities in the DDI corpus.

Table 8 shows the significance tests for the experiments

assessing the effect of filter-size parameter. In general,

most of the comparisons are statistically significant, and

especially those with the filter-size (2, 4 and 6) that

achieves the best performance. Therefore, we conclude

that the best performance is obtained using a filter-size of

(2, 4 and 6). Thus, we can claim that the most frequent dis-

tances between entities are the best choice to be used as

filter-size parameter.

Effects of the embeddings

Table 9 shows the results for the different word embed-

dings as well as for several dimensions (5, 10) of position

embeddings with a filter size (3, 4 and 5). As previously

explained, position embedding enables us to represent the

position of the candidate entities (which are involved in the

DDI) as a vector. When the position embedding is not

implemented in the model, we only use the word embed-

ding as an input matrix.

Table 7. Results for several filter sizes

Filter size P R F1

2 56.89% 52.1% 54.39%

4 65.65% 52.92% 58.6%

6 75.35% 49.23% 59.55%

(2, 3, 4) 63.15% 57.13% 59.99%

(3, 4, 5) 62.08% 58.77% 60.38%

(2, 4, 6) 73.57% 52.82% 61.49%

(2, 3, 4, 5) 71.31% 52% 60.14%

14 71.23% 51.79% 59.98%

(13, 14, 15) 72.64% 49.03% 58.54%

Table 8. v2 and P-value statistics between the different filter sizes

Filter size 4 6 (2, 3, 4) (3, 4, 5) (2, 4, 6) (2, 3, 4, 5) 14 (13, 14, 15)

2 13.22* 50.68* 155.88* 1.20 25.77* 119.71* 44.52* 5.28*

2.77e�04* 1.09e�12* 8.99e�36* 2.73e�01 3.84e�07* 7.32e�28* 2.52e�11* 2.16e�02*

4 20.01* 118.53* 21.92* 3.87* 97.79* 17.79* 0.14

7.71e�06* 1.33e�27* 2.84e�06* 4.91e�02* 4.66e�23* 2.46e�05* 7.12e�01

6 44.14* 73.39* 7.92* 26.78* 0.08 22.25*

3.06e�11* 1.06e�17* 4.89e�03* 2.28e�07* 7.73e�01 2.39e�06*

(2, 3, 4) 177.61* 69.08* 4.82* 33.78* 81.04*

1.61e�40* 9.48e�17* 2.81e�02* 6.18e�09* 2.21e�19*

(3, 4, 5) 33.25* 146.78* 67.70* 11.33*

8.12e�09* 8.75e�34* 1.91e�16* 7.65e�04*

(2, 4, 6) 51.97* 7.16* 5.06*

5.63e�13* 7.45e�03* 2.45e�02*

(2, 3, 4, 5) 20.44* 67.10*

6.16e�06* 2.58e�16*

14 31.01*

2.57e�08*

Asterisk denotes results statistically significant.

Table 9. Performance with different word embedding and dif-

ferent position embedding size

Word embedding Position embedding P R F1

random 0 62.08% 58.77% 60.38%

5 69.34% 55.9% 61.9%

10 70.76% 54.36% 61.48%

Wiki_bow_8w_25n 0 60.89% 54.46% 57.5%

5 59.2% 60.72% 59.95%

10 70.64% 53.54% 60.91%

Bio_skip_8w_25n 0 62.39% 57.85% 60.03%

5 67.8% 53.33% 59.7%

10 66.92% 55.18% 60.48%

Bio_skip_10w_10n 0 70.66% 49.64% 58.31%

5 61.84% 56.51% 59.06%

10 68.77% 54.87% 61.04%

Bio_bow_8w_25n 0 64.09% 54.36% 58.82%

5 69.43% 54.05% 60.78%

10 67.27% 49.95% 57.33%

Bio_bow_5w_10n 0 58.25% 59.38% 58.81%

5 60.18% 61.23% 60.7%

10 65.21% 56.72% 60.67%

The prefix Wiki (Wikipedia corpus) or Bio (BioASQ dataset) refers to the

corpus used to train the word embedding model. The label bow (CBOW) or

skip (skip-gram) refers to the type of architecture used to build the model.

The number preceding w and n indicates the size of the context window and

the negative sampling, respectively.
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In general, the implementation of position embeddings

appears to realize a slight improvement in the results, pro-

viding the best scores when the dimension is 10. For exam-

ple, for random initialization (i.e. the word vectors are

randomly initialized and fine-tuned for the training), we

observe that the inclusion of position embeddings achieves

a slight increase in F1. In this case, the best F1 is achieved

with a dimension of 5 for the position embedding. On the

contrary, the CNN model which was trained using a word

embedding model on Wikipedia (with a default setting in

the C version of word2vec, which is represented as

Wiki_bow_8w_25n in Table 9) appears to benefit from the

implementation of position embeddings, achieving its best

F1 (60.91%) with a dimension of 10 for the position

embedding. Likewise, the CNN models, which were

trained on the word embedding model from the BioASQ

collection with skip-gram architecture (Bio_skip_8w_25n

and Bio_skip_10w_10n), also provide better results when

the dimension is 10. If the architectures are CBOW

(Bio_bow_8w_25n and Bio_bow_5w_10n), the best F1 are

obtained with dimension 5.

The results of training the CNN models on pre-trained

word embeddings model from Wikipedia are slightly lower

than those obtained with the model from random initializa-

tion. This may be because the word embedding learned

from Wikipedia, which contain texts from a very wide vari-

ety of domains, may not be appropriate for the pharmaco-

logical domain. Neither of the word embedding models

learned from the BioASQ collection (which focuses on the

biomedical scientific domain) appear to provide better

results than the CNN model initialized with random vec-

tors. A possible reason for this may be that most texts in

the DDI corpus are not scientific texts, but also fragments

from health documents for patients, such as drug package

inserts (which contain information about a given

medication).

We also studied the effect of the word2vec parameters

on the CNN performance. In Table 9, we observe that the

two architectures (skip-gram and CBOW) provide very

similar scores. However, it should be noted that the former

has a very high computational complexity with a very long

generation time compared to the latter, and CBOW

therefore appears to be the best option to train our word

embedding models. For more information about these

architectures, refer to (27). For the CBOW architecture,

the best F1 is 60.91% (window size 8 and negative sam-

pling 25, trained on Wikipedia). When the same model

trained on BioASQ, we obtained a very close F1 (60.78%).

The significance tests for the different word embeddings

and position embeddings indicate that many of the com-

parisons are significant. In particular, our best model

(whose word vectors were randomly initialized and the

position embedding was set to 5) is statistically significant

compared to the remainder models (Table 10).

Optimal parameter performance

From the observation of the results on the validation set, it

can be concluded that our best model has to be randomly ini-

tialized, with filter size (2, 4 and 6) and dimension of position

embedding 5. Table 11 shows the results of this model for

each type. The type with the best F1 is advice (71.25%), fol-

lowed by mechanism (58.65%) and effect (58.65%). The

worst type appears to be int, which has an F1 of only

41.22%. The possible causes for these results were previously

discussed in this paper. The overall F1 is 62.23%. In Figure 5,

we see that although our model does not achieve a new state-

of-the-art F1 for DDI classification, it is very promising, and

its results are comparable to those of previous systems.

Finally, we performed a statistical significance analysis

between the baseline system and the model with the optimal

parameter values with the v2and P-value statistics and

obtained 5.7 and 0.017, respectively. These results suggest

that the two models produce different levels of performance.

Conclusions and future work

State-of-the-art methods for DDI extraction use classical

supervised machine-learning algorithms (such as SVM)

and intensive feature-engineering. We propose a CNN

model to automatically learn features, which can be used

to classify DDIs. The main contributions of this paper

were as follows: (1) to make a detailed comparison of pre-

vious work for DDI extraction, (2) to provide an in-depth

study of the influence of the CNN hyper-parameters on the

results and (3) to evaluate the performance of a CNN

model for different types of texts such as scientific articles

and drug package leaflets as well as for the different type

of DDIs.

Unlike some previous works based on deep learning (7,

19), our CNN model does not employ any external fea-

tures in the classification layer. Their systems used external

features such as the distance between the entities, the depth

of the tree of the entities, the type of syntactic dependencies

that links the entities or the contexts around the entities,

among others. There is an extensive literature showing that

these features can positively contribute to solve the relation

extraction task. Consequently, if these external features

were used, it would be difficult to claim about the real con-

tribution of a deep learning model as a feature learning

model. Therefore, although our results are lower, our sys-

tem achieves very promising results without any feature-

engineering. The classification of DDIs remains an

unsolved challenge in scientific texts, such as MedLine
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abstracts, and this is primarily because the size of the train-

ing dataset is not enough to learn the features, which are

more appropriate for the extraction of DDIs from

MedLine abstracts. Thus, it is crucial to increase the size of

the DDI-MedLine dataset. The same problem occurs with

the classification of the advice and int DDI types, which

have very low frequency in the DDI corpus, and therefore,

their results were worse than those obtained for the mecha-

nism and effect types.

Comparing with previous works that did not use deep

learning methods, we propose an automatic feature-

learning method with 62.23% in F1 that is a suitable alter-

native for the classification task without any external

information. It should be noted that these systems with

higher classification rate (10, 11) used an ensemble of ker-

nel methods with an extensive feature set built from a

demanding feature-engineering task. In the related work,

we also described recently developed systems for DDI clas-

sification based on deep-learning methods, such as RNN

or CNN. Unlike previous works, we performed an exhaus-

tive and detailed study of possible settings (in particular

the filter size, word and position embeddings) of the CNN

architecture, and we performed an in-depth analysis of the

results for each type of DDI and over each dataset of the

DDI corpus. We plan to study the effect of adding

additional layers to this architecture and use the two-step

classification (detection and classification of each DDI) as

(7). Furthermore, we plan to implement other deep-

learning architectures for DDI classification, e.g. recurrent

neural network, exploring its parameters without external

features as in the present work.

With respect to the CNN hyper-parameters, our experi-

ment results showed that the random initialization of the

input word vectors realized a better performance than the

pre-trained word embedding models. This may be because

these models are learned from text collections such as

Wikipedia or MedLine, which do not contain texts which

are similar to those on drug package inserts. Most texts of

the DDI-DrugBank dataset were obtained from these kinds

of documents. In future work, we plan to acquire a wide

collection of drug package inserts, and use them to train a

word embedding model in order to study the effect of this

model on the performance of our proposed system. We also

studied the effect of the word2vec parameters, and we can

conclude that both architectures (i.e. skip-gram and

CBOW) achieved very similar results. However, it is recom-

mended that CBOW be used because it has a significantly

less computational complexity compared to skip-gram. For

the other word2vec parameters, the default setting used in

the C version of word2vec appears to give the best perform-

ance. The filter size is another parameter that significantly

affects the model performance. Although the early assump-

tions were that a large filter size would provide better results

because biomedical sentences are usually very long, our

experiments confirmed that the best filter was (2, 4 and 6).

With respect to the effect of position embeddings on the per-

formance, their implementation generally appears to give

improved results, being 10 dimensions slightly better than 5.
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Int 27 8 69 96 77.14% 28.12% 41.22%
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Overall 547 236 428 975 69.86% 56.1% 62.23%
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