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Abstract

The discovery of disease-causing mutations typically requires confirmation of the variant or gene 

in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due 

to difficulty identifying second families. To enable the secure sharing of case records by clinicians 

and rare disease scientists, we have developed the PhenomeCentral portal (https://

phenomecentral.org). Each record includes a phenotypic description and relevant genetic 

information (exome or candidate genes). PhenomeCentral identifies similar patients in the 

database based on semantic similarity between clinical features, automatically prioritized genes 

from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free 

and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on 
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promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic 

diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed 

Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent 

clinicians and scientists. Though the majority of these records have associated exome data, most 

lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations 

for several patients, and its ability to find matching patients and diagnose these diseases will grow 

with each additional patient that is entered.
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Introduction

The availability of low-cost whole-exome sequencing (WES) has revolutionized the study 

and diagnosis of rare diseases. WES has enabled the discovery of the genetic cause for well 

over 180 Mendelian diseases [Boycott et al., 2013], opening up new avenues to diagnostics 

and treatment. While some disorders have been solved by identifying a cohort and 

discovering a commonly mutated gene, or by investigating the inheritance of a suspected 

genetic variant through a large family (linkage), many others are not amenable to such 

approaches due to the lack of family history, including extremely rare recessive disorders 

and dominant disorders caused by de novo mutations [Beaulieu et al., 2014]. Even when 

WES screening identifies a single candidate variant in a previously uncharacterized disease 

gene, this is typically insufficient evidence to implicate it in the disease.

A promising method for identifying the causes of such rare conditions is the comparison of 

the exomes or genomes of unrelated individuals with a specific disorder. However, 

identifying multiple unrelated patients with similar indications is a nontrivial task. Such 

patients will likely be seen by different clinicians at different hospitals, and the clinician 

working with one family will often be unaware of other cases. Historically, such cases have 

been shared by clinicians through case reports, while attending “unsolved” symposia, or 

through other interactions, where one clinician may present an unsolved case and another 

recalls a similar case. While the causes of some rare diseases have been identified in this 

manner, such interactions are serendipitous and may take years to occur, if ever. A 

centralized Web portal that enables clinicians to effectively share undiagnosed patient 

information could allow similar patients to be instantly found anywhere in the world and 

significantly shorten the time to gene discovery and diagnosis.

The effective sharing of phenotypic and genetic data between clinicians is fraught with 

social and technical challenges. On the social level, in addition to privacy constraints, it is 

necessary to build trust between the two individuals; information about rare disease patients 

is scientifically valuable, and many clinicians have a natural tendency not to share the data if 

it may be used without appropriate attribution. Thus, in any solution, one user should not be 

able to access data contributed by another user without that person’s knowledge or consent. 

Once trust is established, there are additional difficulties. Sharing of standard rare disease 

Buske et al. Page 2

Hum Mutat. Author manuscript; available in PMC 2017 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



names, for example, based on OMIM [Amberger et al., 2015] or Orphanet (http://

www.orpha.net/) is not practical when the very goal of data sharing is the diagnosis of a 

disorder. Further, standardized data such as billing codes (ICD-9) and even SNOMED CT 

terms typically have insufficient granularity and completeness to describe rare disorders. 

Finally, sharing free-form textual descriptions of patients makes comparison complicated, as 

different clinicians (depending on their specialization) may collect and record different 

granularity of patient data, and may use different terminology to describe the same set of 

clinical features.

The recording of detailed and standardized phenotypes for patients displaying a broad 

variety of indications requires a rich vocabulary with clear semantic relationships between 

the terms, to allow for the identification of similar (yet not identical) indications. Although 

the London Dysmorphology Database presented one of the first efforts to organize 

phenotypes typically seen by a clinical geneticist, the Human Phenotype Ontology (HPO) 

[Köhler et al., 2014] is currently the most complete vocabulary available for recording 

patient phenotypes for genetic diseases [Winnenburg and Bodenreider, 2014]. However, the 

broad use of the HPO is hindered by its size and complexity: the HPO has over 11,000 

terms, and only a small fraction of these are relevant for a specific patient. Intuitive user 

interfaces, such as PhenoTips [Girdea et al., 2013], can help clinicians record precise 

descriptions of their patients and allow for the use of synonyms and variable granularity of 

presentations. Further, when clinical features are encoded using an ontology such as the 

HPO, cases can be compared not just based on the annotated features, but also the 

corresponding semantic annotations of these features. The HPO defines the terminology 

(and synonyms), as well as the relationship between terms (e.g., both “focal seizures” and 

“tonic/clonic seizure” are subtypes of “seizures,” which in turn is a subtype of “neurological 

abnormality”), allowing for computational reasoning about similarities between patient 

descriptions.

Many similarity measures exist for comparing terms, or sets of terms, from an ontology. 

Foundational methods, such as Resnik’s measure [Resnik, 1995] and Jiang’s and Conrath’s 

measure [Jiang and Conrath, 1997], were developed for lexical analysis and rose to 

prominence in the field of bioinformatics with their application to the gene ontology (GO) 

[Ashburner et al., 2000]. Additional measures, such as simGIC [Pesquita et al., 2007], were 

developed specifically for use with the GO. Pesquita et al. [2009] provides an excellent 

review of the most popular similarity measures and their performance on GO-related tasks. 

More recently, the HPO has enabled the use of semantic similarity measures to predict 

clinical diagnoses [Köhler et al., 2009; Bauer et al., 2012; Zemojtel et al., 2014], to find 

representative model organisms for gene prioritization [Smedley et al., 2013], and most 

recently, to identify similar patients [Gottlieb et al., 2015].

The HPO also maintains links between phenotypic terms and known rare diseases (including 

those in Orphanet and OMIM) and their associated genes [Köhler et al., 2014], which 

provides an effective bridge from phenotype to genotype within the rare disease domain. A 

number of recently published methods have focused on using HPO terms to improve the 

prioritization of candidate genes from exome sequence data, including PHIVE [Robinson et 

al., 2014], Phevor [Singleton et al., 2014], Phen-Gen [Javed et al., 2014], and PhenIX 
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[Zemojtel et al., 2014]. However, to our knowledge, no existing methods attempt to address 

these two problems simultaneously: finding similar patients and identifying associated genes 

for those matches.

Here, we present the PhenomeCentral Web portal, a restricted-access network for clinicians, 

researchers, and scientific consortia to share patient phenotype and genotype data and 

discover similar patients across the world. PhenomeCentral allows clinicians and researchers 

to enter deidentified patient phenotype and genotype data through a user-friendly Web 

interface, discover the existence of other similar patients along with potential shared genetic 

mechanisms, and contact the submitters of these cases to share case reports and foster 

worldwide collaborations. To enable the discovery of genetic mechanisms for a disease in a 

hypothesis-free manner, PhenomeCentral simultaneously identifies patients likely to have 

the same disease and predicts genes that are potentially responsible. PhenomeCentral serves 

as the data repository for several rare disease consortia, including the FORGE Canada and 

Care4Rare Canada projects, US NIH Undiagnosed Diseases Project, Neuromics, and 

ANDDIrare, and at the time of writing had 1,027 case reports and 391 users across five 

continents. PhenomeCentral is part of the Matchmaker Exchange (MME) [Philippakis et al., 

2015], and has implemented the MME API [Buske et al., 2015] to enable submitted cases to 

be matched with records at other MME sites.

Results

The PhenomeCentral Web Portal

Portal overview—The PhenomeCentral Web portal enables clinicians and researchers to 

quickly and easily find similar patients submitted by other contributors. Users can enter 

deidentified patient data directly into PhenomeCentral through a user-friendly Web interface 

based on the PhenoTips software [Girdea et al., 2013], by pushing existing patient records 

from private PhenoTips installations, or by uploading them in bulk (Fig. 1A–C).

Rather than a traditional database that users query using a sophisticated language, users 

“query” the PhenomeCentral repository simply by contributing a patient record. The critical 

fields for match-making are “Clinical symptoms and physical findings,” which allows for 

the selection (presence or absence) of relevant phenotypic terms from the HPO, and 

“Genotype information,” where genetic variants can be entered and uploaded. The 

phenotype terms can be selected either using quick search functionality, or through a set of 

(expandable) check boxes. PhenomeCentral supports both entering a curated set of candidate 

genes and uploading a VCF file (with patient consent). The VCF file is automatically 

processed using the Exomiser software (http://www.sanger.ac.uk/resources/databases/

exomiser/) to identify an additional, computationally prioritized set of candidate genes. The 

set of selected phenotypic terms and candidate genes for each patient are compared with 

those in all other patient records in the repository, using algorithms described below. This 

“query by example” approach frees the users from the responsibility of composing the right 

interrogation, and gives them incentive to contribute data and participate in the growth of 

PhenomeCentral. The user can immediately see information about the most similar other 

patients in the database and contact those submitters, in a way that preserves the privacy of 

the patients (Fig. 1D–G).
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The PhenomeCentral user interface incorporates many other popular components of the 

PhenoTips software on which it is based, including support for entering case notes, relevant 

medical records, and measurements; automatic plotting of growth charts; and drawing of 

pedigrees. Combined, this functionality enables the recording of all relevant study data 

within a single portal, and allows research consortia to use PhenomeCentral as their primary 

data repository. The Clinical Genetics journal has also adopted PhenomeCentral as the 

preferred repository for depositing structured phenotype data associated with case reports 

published in the journal.

PhenomeCentral facilitates collaboration between clinicians—Each patient 

record in PhenomeCentral can be set to one of three different visibility settings:

- Private: the record is visible only to the submitter unless explicitly shared with 

other users or groups, and does not participate in any matchmaking activity.

- Matchable: the record is not directly visible unless explicitly shared, but similar 

patients are shown to the submitter, and other contributors with similar patients 

can discover the existence of the record. The matched phenotypes and genomic 

variants are obfuscated (phenotypes are made more general and only gene-level 

information is provided).

- Public: the record is visible to all registered users on PhenomeCentral and 

participates in matchmaking activity. Contributors of similar patients are shown 

the submitter’s contact details and the matched phenotypes and genomic 

variants. Whenever a whole exome is provided for a public case, only the top 10 

potential causal variants (ranked by the Exomiser) are shown to other users.

Private records are most useful when a consortium enforces a period of direct data sharing 

among its scientists before broader sharing is allowed (e.g., in the Neuromics consortium 

there is a 6-month waiting period before any sharing). Matchable records allow patients that 

are not yet published or consented for full sharing to participate in matchmaking activities 

with enhanced patient and submitter privacy. Contacting the submitter of a matchable case is 

simplified with a customizable message template, allowing the user to quickly and easily 

choose what patient information to include in the message and add a personal message (Fig. 

1G).

A rapidly growing repository of patients for matchmaking—Matches can also be 

found in other databases outside of PhenomeCentral through the MME API [Buske et al., 

2015]. To further increase the number of potential matches, contributors can opt to include 

their patient records in matchmaking across the MME [Philippakis et al., 2015], a federated 

network of patient databases of which PhenomeCentral is a core founding member. The 

contributor is then shown the most similar patients across partner sites including 

GeneMatcher [Sobreira et al., 2015] and DECIPHER [Chatzimichali et al., 2015], and users 

on these partner sites can discover the existence of this record if they have contributed a 

similar patient (additional details in the Methods). This enables clinicians to instantly find 

and compare similar patients, even across different patient databases. Supp. Fig. S1 shows 

this user interface for a promising match that is currently being validated.
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Submitting a patient record to PhenomeCentral enables high-quality matchmaking against a 

rapidly growing number of cases. PhenomeCentral has seen a consistent rise in the number 

of patient records and user accounts since the first collaborators started submitting data in 

June 2013, with the number of patients tripling since the official launch on Rare Disease 

Day, February 28, 2014 (Fig. 2A). As of April 19, 2015, PhenomeCentral contains data from 

1,027 clinically phenotyped patients with rare genetic diseases (1,243 records in total, 

including unaffected relatives) collectively entered by 391 user accounts spanning five 

continents (Fig. 2B).

Finding matches and identifying causal genes—For a given query patient, 

PhenomeCentral seeks to identify similar patients for which there is a plausible common 

genetic mechanism. PhenomeCentral first calculates the phenotypic similarity between the 

query and every other patient in the database. Because clinical features are encoded using 

terms in an ontology (the HPO), distinct terms can be compared using semantic similarity 

measures that take into account the structure of the ontology and the specificity of each term. 

Similar patients can therefore be identified even when the two patients have no annotated 

terms in common. For the most similar patients, we identify genes with predicted harmful 

variants in both patients, and rank these genes based on their relevance to the observed 

phenotypes. Patients with overlapping manually curated candidate genes are considered 

similar even in the absence of phenotypic similarity.

Benchmarking PhenomeCentral’s Ability to Find Matches and Identify Causal Genes

Test data sets—We validated our approach to matchmaking using two data sets 

(additional details in the Methods). First, we created a synthetic test set of 1,000 patients, 

each with an OMIM diagnosis, an exome spiked with a pathogenic variant in a disease-

associated gene, and a set of HPO terms associated with the disease. Patients were sampled 

in pairs with the same OMIM diagnosis, so every synthetic patient had at least one match 

with the same disease. Second, we selected a subset of the real patient records in 

PhenomeCentral. As of April 20, 2015, PhenomeCentral contained 720 patient records with 

at least five observed clinical features. We considered two patients to match if they were 

submitted as part of the same cohort, diagnosed with the same disease, or annotated with the 

same gene as a likely candidate or confirmed cause. These criteria resulted in 225 real cases 

with at least one match in the database. To benchmark the gene prioritization methods, we 

selected the subset of deeply phenotyped records that also had WES data available and one 

or more known candidate or causal genes. This resulted in 112 real cases with detailed 

phenotype and genotype data with a human-curated strong candidate gene, which we used as 

our gold standard.

Phenotypic matching—Because PhenomeCentral uses the HPO to represent phenotypic 

features, we can measure the similarity between pairs of patients using well-established 

semantic similarity measures. We compared 13 measures from the literature (see Supp. 

Table S1). The two best-performing measures were the PhenoDigm score [Smedley et al., 

2013] and the simGIC score [Pesquita et al., 2007]. On simulated data, the PhenoDigm score 

outperformed all other measures and ranked the true match first for 69% of the patients after 

introducing random phenotypic noise and imprecision, and within the top five patients 90% 
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of the time. The performance was similar when the information content was computed using 

a smaller corpus and when it was computed using the topology of the HPO (Supp. Fig. S2). 

On real data, the PhenoDigm and simGIC scores performed comparably, ranking the true 

match first for 54%–60% of patients, and within the top five matches 70%–71% of the time 

(Fig. 3A). However, when phenotypic noise and imprecision were added to these real 

patients, the performance dropped considerably, with respective top one and top five recall 

rates of 11% and 29% for PhenoDigm, and only 3% and 9% for simGIC.

This suggests that PhenoDigm is more robust than simGIC to the type of phenotypic noise 

we introduce, potentially due to the two very different ways the scores operate. The 

PhenoDigm score is a normalized average of the best pairwise match for each phenotype in 

the patient, whereas the simGIC score assesses the overall shared information present across 

the clinical manifestations of the two patients. This makes PhenoDigm less sensitive to 

spurious phenotypes and changes in the number of terms. However, the PhenoDigm measure 

is also more complex to implement and slower to compute (10 min to perform all pair-wise 

comparisons of 1,000 simulated cases vs. 34 sec for simGIC in our implementations, as 

shown in Fig. 3C), so the relative utility of each score depends on the size of the data set and 

the amount of noise in the data.

Gene prioritization—PhenomeCentral currently incorporates the Exomiser for annotating 

and filtering exome sequence data, and for prioritizing genes by phenotypic relevance. The 

Exomiser was selected because the source code was readily available and because the 

PHIVE score [Robinson et al., 2014] uses model organism data instead of human data, 

decreasing the likelihood that disease-gene associations (e.g., those found in OMIM) 

published using PhenomeCentral patients were included in the training data for the 

algorithm. This means that the success rate we achieve on the real data set should be a 

reasonable estimate of our ability to identify novel genes associated with undiagnosed rare 

diseases, rather than overfitting to existing knowledge.

By leveraging the genomic data across multiple patients in the database to improve gene 

prioritization, PhenomeCentral is able to outperform a baseline method that only uses the 

data for a single patient. Our adaptive scoring method (described in more detail in the 

Methods) first selects a variant harmfulness threshold, and then discounts the average score 

for every other case with a variant above the threshold, weighted by the phenotypic 

similarity of the other case. This reduces the score of genes that are ubiquitously prioritized 

(such as HLA-A and TTN), while preserving high scores if a large cohort of phenotypically 

similar patients all have deleterious variants in the same gene. We evaluate the performance 

of this approach by identifying, for each patient, the most phenotypically similar patients 

(using the PhenoDigm measure, discussed above) and then combining the top genes for each 

of the top matches using several approaches, described in the Methods. We compare these 

genes to the top genes found with Exomiser’s PHIVE score based on the single patient. We 

find that an adaptive scoring method outperforms all other methods, increasing sevenfold the 

number of correctly identified causal genes in simulations with phenotypic noise and 

imprecision (8% vs. 63% rank the causal gene first), and doubling the number of real 

patients with correctly identified genes (8% vs. 15% of patients having a causal or candidate 
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gene ranked within the top five genes) over using the Exomiser separately on each patient 

(see Fig. 3B).

PhenomeCentral Identifies Unrelated Patients with Similar Phenotype and Genotype

Here, we describe two successful matches of undiagnosed patients with rare genetic diseases 

enabled by PhenomeCentral. The first match (Fig. 4A) involves an initially undiagnosed 

patient who was matched with a group of mandibulofacial dysostosis with microcephaly 

(MFDM) patients. A mutation identified in EFTUD2, the gene responsible for MFDM 

[Lines et al., 2012], confirmed the diagnosis. The patient record listed a few typical features 

of MFDM including microcephaly, micrognathia, and developmental delay; however, many 

other common features were absent, including most ear abnormalities: microtia/dysplastic 

pinna(e) (present in ~98% MFDM patients); malformations of the auditory canal, and/or 

middle ear with associated conductive hearing loss (~77% of MFDM patients) [Lines et al., 

2014]. Furthermore, the patient had abnormalities of the heart and hand, but the specific 

features were atypical compared with those commonly reported in MFDM patients, as well 

as subglottic stenosis and vocal cord paralysis, which are not characteristic of MFDM. 

Despite this atypical presentation, PhenomeCentral matched this patient with a patient 

previously diagnosed with MFDM, and correctly identified EFTUD2 as the causal gene for 

the pair of patients.

In the second match (Fig. 4B), a pair of patients were matched together based on various 

overlapping abnormal phenotypes in multiple organ systems including myopathy, 

thrombocytopenia, and peripheral nerve conduction abnormality. Although the patients had 

overlapping phenotypes, the phenotypes were not specific enough to confirm a diagnosis in 

either patient. The differential diagnoses included: thrombocytopenia, X-linked, with or 

without dysthropoietic anemia (MIM #300367), Quebec Platelet Disorder (MIM #601709), 

and platelet disorder, familial, with associated myeloid malignancy (MIM #601399). 

However, in addition to these over-lapping phenotypic findings, both patients had the same 

mutation in the STIM 1 gene, ranked as the top candidate for the pair of patients by 

PhenomeCentral. Follow-up studies were completed by the clinicians who contributed these 

patients into PhenomeCentral, and these patients were diagnosed with York platelet 

syndrome (MIM #185070), which is characterized by thrombocytopenia, striking 

ultrastructural platelet abnormalities, and deficiency of platelet Ca(2+) storage in delta 

granules [Markello et al., 2015; Bone et al., in preparation].

Discussion

PhenomeCentral addresses the increasing need for computational approaches to identify 

individuals affected by the same or overlapping phenotypes and mutations in the same gene, 

thereby enabling novel gene discovery. We compared the performance of a number of 

popular semantic similarity measures, and found that the PhenoDigm score is best able to 

accurately and robustly match patients based on their phenotypes in a diagnosis-free manner. 

However, for situations where speed and simplicity are important, the simGIC score is an 

easy-to-implement alternative that provides comparable performance on real data. We also 

show that combining genetic information across phenotypically similar patients dramatically 
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improves the prioritization of candidate genes. Although the performance of the best method 

is only 15%, this is an intentionally conservative estimate and reflects our performance on 

novel diseases using clinical exomes without using any human data for gene prioritization. 

Because in practice many of the cases submitted may be known disorders with a novel 

mutation or where the causative mutation was missed by the submitter, PhenomeCentral 

incorporates an improved scoring measure within the Exomiser [hiPHIVE; Bone et al., in 

preparation; Smedley et al., in preparation] that combines model organism information in the 

original PHIVE score with known human disease–gene associations and protein–protein 

interaction data. This version was not used for benchmarking in this manuscript as it would 

lead to overly optimistic results, but this functionality is included in PhenomeCentral and 

clinicians are able to immediately see the top genes associated with each matching patient.

We have tested PhenomeCentral’s ability to identify phenotypically related cases as well as 

prioritize known disease-causing and candidate genes using both real data available at 

PhenomeCentral and simulations. These results highlight our ability to identify similar 

patients and causal genes using only HPO terms and whole-exome VCF files, demonstrating 

the feasibility of hypothesis-free matchmaking of rare disease cases using computational 

tools. Simultaneously, hypothesis-driven queries, where a gene of interest is already known, 

remain a prominent use case, and are also enabled by PhenomeCentral by boosting the 

similarity score in cases where patients share manually curated candidate genes or 

diagnoses.

PhenomeCentral is based on the popular PhenoTips software, which makes its user interface 

familiar to many clinical geneticists, and also allows for the direct transfer of patient records 

from any other PhenoTips instance to PhenomeCentral. This enables institutional workflows 

(such as at the NIH Undiagnosed Diseases Program) in which clinicians use the PhenoTips 

software clinically, storing full patient records within the institutional firewall and then 

exporting the deidentified phenotypic records (HPO terms and additional needed 

demographics) to PhenomeCentral to enable matchmaking.

One important functionality, not available in PhenomeCentral but requested by several users 

and recently implemented in the GeneYenta system [Gottlieb et al., 2015], is the ability to 

indicate the importance of specific phenotypes for matching. In clinical practice, a specific 

phenotype may be extremely prominent or severe, and other patients with this phenotype are 

of especial interest. While PhenomeCentral takes the frequency of a phenotype (in the 

OMIM corpus) into account, allowing the user to additionally specify such constraints is 

likely to improve performance as the links between the HPO and OMIM, used in our 

computation of information content, are incomplete. We find our results to be similar across 

several different methods and corpora for computing information content, but this 

incompleteness in mappings can also affect the accuracy of our simulations, as well as 

simulations by previous authors who utilize these links to “sample” realistic patients. We are 

also currently exploring adjustments to the similarity score based on additional phenotypic 

metadata (such as age of onset and severity).

Since its release, PhenomeCentral has been rapidly growing and now contains more than 

1,100 deeply phenotyped patients with rare genetic disorders, with accounts for nearly 400 
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scientists and clinicians. Most of these patients are undiagnosed, and most have exome 

sequence data. The coordination with the MME also increases the number of potential 

matches, with the MME API enabling automated querying of GeneMatcher and DECIPHER 

for records with same candidate genes. With additional sites planning to implement the 

MME API in the near future, storing deep phenotype and genotype data for all patients in 

PhenomeCentral will help ensure the maximum potential for matchmaking for these rare 

disease patients.

Methods

Patient Entry Using the PhenoTips User Interface

PhenomeCentral records all phenotypic information as HPO terms, using the PhenoTips 

software for patient phenotyping. Two resources are available to help ensure users properly 

and completely enter the patient’s phenotype into PhenomeCentral. First, the Monarch 

Initiative and PhenomeCentral jointly developed a set of annotation guidelines and best 

practices for clinical phenotyping using PhenoTips and the HPO (https://

phenomecentral.org/annotation-guidelines). Second, a widget is included in PhenomeCentral 

that displays the Monarch Initiative’s annotation sufficiency metric [Washington et al., 2014] 

as a rating from one to five stars. This provides the user with real-time feedback on the 

specificity of the patient description and encourages the user to enter more terms and more 

specific terms to phenotype the patient.

In addition to facilitating the accurate recording of detailed phenotypic descriptions in a 

standardized terminology, the PhenoTips interface used by PhenomeCentral has been 

configured to record nonidentifiable demographic information such as month and year of 

birth, sex, ethnicity, family history, as well as any suspected genetic causes of the patient’s 

disease, expressed either as a list of genes or captured in detail in a VCF file. Currently, only 

whole-exome data are supported, as whole-genome VCF files are too large to reliably 

upload through a Web browser. When a VCF file is uploaded for a patient record, the 

Exomiser is automatically run to identify candidate genes. The Exomiser uses the VCF file, 

the HPO terms annotated in the patient record, and the mode of inheritance of the patient’s 

disease if specified, to score genes according to their phenotypic relevance and the estimated 

harmfulness of variants identified in exome sequencing. The highest-ranked genes are then 

shown to the user and incorporated in patient matchmaking, both internally and when 

matching in other databases through the MME.

PhenomeCentral as a Portal to the Matchmaker Exchange

After entering a patient record into PhenomeCentral, the user can opt to have their patient 

record participate in the MME, a federated network of rare disease patient repositories. This 

allows the case to be matched to and matched by similar cases in other repositories in the 

Exchange, currently GeneMatcher and DECIPHER. PhenomeCentral uses the MME API to 

identify similar patients within other patient repositories. The MME API uses a “query by 

example” philosophy, where a match request consists primarily of a set of HPO terms and 

several genetic features (candidate genes or variants). The match request is securely sent to 

other sites in the MME, and each site instantly responds with a description of the most 
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similar patients in their database and contact details to connect with the submitter of each 

match. After inspecting the phenotypic and genotypic evidence for each match, the user can 

follow up on promising matches directly.

At the same time, patient records in PhenomeCentral that participate in the MME can be 

discovered by users that submit cases into other sites in the MME when those sites send 

match requests to PhenomeCentral. In these situations, a summary of the phenotypic and 

genotypic profile of the similar record will be returned, allowing the user of the other site to 

evaluate the match and follow up if it is promising. To reduce the identifiability of the case, 

patient details are obfuscated before responding to the match request: phenotypes are 

replaced by their ancestors and only gene-level genetic data are returned (variant-level 

details are left out).

Creation of a Test Data Set from Synthetic Patients

To benchmark the performance of phenotypic matching and gene prioritization algorithms, 

we generated 500 pairs of synthetic patients with the same genetic disease, following the 

standard protocols used in the literature [Javed etal., 2014; Robinson et al., 2014; Zemojtel 

et al., 2014]. Each pair of patients was randomly assigned a disease gene and associated 

OMIM diagnosis, with 250 pairs assigned an autosomal-dominant disease and 250 pairs an 

autosomal-recessive disease.

The phenotype of each patient was sampled from the set of HPO terms associated with the 

disease in several ways (HPO version 2014-06-09, disease–phenotype mappings and 

inheritance mode from the “phenotype_annotation.tab” file released with the HPO). Initially, 

all phenotype terms were included. We then introduced noise to model the sources of 

variability and error in real patient records using three methods from Zemojtel et al. (2014). 

Clinicians frequently use less precise terms, so we artificially introduced imprecision by 

randomly replacing every term with a term drawn uniformly from the set of ancestors of that 

term (including the term, excluding the root: HP:0000118 [Phenotypic abnormality]). We 

modeled variability in clinical presentation and unrelated clinical features both by sampling 

a random subset of five terms, and by adding two random terms for every five terms in the 

patient description (sampled uniformly from the set of disease–phenotype associations).

For each patient, we synthesized a corresponding whole-exome VCF file by taking the 

exome of a healthy control from the 1000 Genomes Project [phase 1 integrated calls; The 

1000 Genomes Project Consortium, 2010] and spiking in random pathogenic variants from 

HGMD (v1.0.3) in the disease-associated gene (one heterozygous variant if the disease was 

dominant, one homozygous or two heterozygous variants if recessive). HGMD variants were 

filtered to only nonsynonymous variants overlapping RefSeq coding sequences, and variants 

explicitly labeled with “associated” or “susceptibility” were ignored. Disease–gene 

associations were taken from OMIM.org (accessed July 8, 2015). We only considered genes 

associated with a single OMIM disease, a single inheritance mode, and at least five HPO 

terms, resulting in 156 autosomal-dominant and 605 autosomal-recessive diseases.
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Creation of a Test Data Set from Real PhenomeCentral Cases

The phenotypic similarity benchmark data set was composed of the 720 patients from 

PhenomeCentral annotated with five or more observed HPO terms. Of these, 225 cases had 

at least one matching case in the database, where we considered two patients to match if 

they were submitted as part of the same cohort, diagnosed with the same disease, or 

annotated with the same gene as a likely candidate or confirmed cause (candidate genes 

were only used in this case if at most two were specified).

The gene prioritization benchmark data set was composed of the 112 patients from 

PhenomeCentral annotated with five or more observed HPO terms, for which exome 

sequence data were available, and annotated with between one and five candidate or causal 

genes. Whole-exome sequence data were present for 692 of the 1,027 cases in 

PhenomeCentral. Of these, 20 were filtered out in quality control: 15 exomes were removed 

because only SNP calls (and not indel calls) were available; five samples were removed due 

to abnormally high numbers of exonic variants (four of these were the only samples in the 

data set sequenced using the AB SOLiD platform, and the other sample was processed using 

a deprecated pipeline on the NCBI36 assembly).

Semantic Similarity for Finding Phenotypically Similar Patients

We compared the performance of 13 different semantic similarity measures (two topological 

measures and 11 information content measures) by their ability to match patients with the 

same disease based on their annotated HPO terms. See Supp. Table S1 for the definitions of 

these terms and Figure 3A for additional description of the benchmarking method and a 

summary of the results. The Resnik, Lin, JC, and Jaccard measures score the semantic 

similarity between pairs of terms. To extend these measures to compare two sets of terms, P 
and Q, we employed two methods commonly found in the literature [Pesquita et al., 2009]: 

(1) simavg,avg: averaging the score across all pairs of terms; and (2) simavg,best: averaging the 

score of the best match for each term in P (it is worth noting that the latter produces an 

asymmetrical similarity measure). In contrast, the PhenoDigm, UI, and simGIC measures 

directly score the similarity between two sets of terms.

To assess the sensitivity of the information-content-based measures to the particular corpus 

used to compute it, we evaluated each measure using three different methods for calculating 

information content (two different corpora and a topological method). The primary method 

used the disease–phenotype associations from the HPO, the same corpus used to simulate 

patients. We compared this with information content computed from the corpus of disease–

phenotype associations provided by OMIM, as well as directly from the topology of the 

graph using the same method as GeneYenta.

Prioritization of Candidate Genes for Patient Matches

We used the PHIVE algorithm within the Exomiser to score genes within whole-exome 

sequence data using Exomiser version 7.0.0beta (built from commit a25c26c3) and the 

following options:
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We then compared this baseline method, which scores genes for a single patient individually, 

to five other methods that combine these gene scores across patients.

In the first method, mean-score, wetookthemean of the PHIVE score for each gene 

appearing in the filtered Exomiser output of both cases. For mean-quantile, we instead 

averaged the quantile score of each gene, where the lowest-scoring gene has a quantile score 

of 0.0, and the highest-scoring gene has a quantile score of 1.0. For each mean measure, we 

also implemented a corresponding relative measure that scales the mean score by the mean 

value across all other cases in the database. For example, the relative-quantile score for a 

gene g and a pair of cases P and Q is defined as:

If the gene is not in the filtered Exomiser output for the other patient, R, a score/quantile of 

0.0 is used. An adaptive measure, adaptive-score, was also compared, in which a per-gene 

variant harmfulness threshold is calculated, and the score is adjusted by the phenotypic 

similarity of any other patients with as or more harmful variants in the same gene. Formally:

where sim(P, Q) is the phenotypic similarity between cases P and Q, var(P, g) is the variant 

harmfulness score of gene g for patient P, and I (P, Q, R, g) is an indicator variable that is 1 

if R’s variant harmfulness in gene g is at least that of P or Q and 0 otherwise.

These methods were compared on 1,000 simulated cases, and 112 real cases from 

PhenomeCentral in which exome data were available, causal or candidate genes were 

known, and at least five HPO terms were annotated as present. Performance was measured 

as the fraction of these cases in which a target gene was listed in the top one or top five 

exome wide. For the Exomiser method, genes were prioritized for each case in isolation. For 

the five pair-wise measures described above, the most phenotypically similar patients were 

first found using the PhenoDigm measure. Gene prioritization was then performed by 

selecting either the top gene from the top match or the combination of the top gene from the 

top four matches and the top gene directly from the Exomiser (see Fig. 3B for further 

details).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Finding similar patients in PhenomeCentral. Patient data can be contributed to 

PhenomeCentral through the PhenoTips user interface, including the phenotype quick search 

box that enables rapid entry of phenotype terms from the HPO (A), or selected records can 

be automatically deidentified and transferred from any PhenoTips instance automatically. 

The patient record can contain both present and absent phenotypic features (B) as well as 

genetic information, including candidate genes and VCF files (C). The patient’s features are 

then immediately compared with all other patients in PhenomeCentral (D), and the best 

matches are shown to the user. A detailed breakdown of the phenotypic (E) and genotypic 

(F) similarity is shown for each match, enabling the user to see the underlying reasons for 

the match and determine whether or not the match is worth following up. A customizable 

email template (G) facilitates contacting the (potentially undisclosed) submitter of another 

patient record.
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Figure 2. 
A: The number of patient records (red solid line) and user accounts (blue dashed line) on 

PhenomeCentral overtime. B: The locations of PhenomeCentral users, estimated from the 

domain name of institutional email addresses associated with user accounts. The 

approximate region was identified by querying freegeoip.net with the IP address associated 

with the domain name of each email address. One point is plotted per domain name, with the 

color corresponding to the number of users with that domain (the darker the color, the more 

users with email addresses on that domain).
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Figure 3. 
A: Comparison of the performance of 13 semantic similarity measures at finding similar 

patients in real PhenomeCentral cases (N = 720; panels 1 and 2) and simulated cases (N = 

1,000; panels 3–6). For simulated patients, either all disease-associated phenotype terms 

were selected (panels 3 and 4), or five terms were randomly selected (panels 5 and 6). Noise 

(40% additional random phenotype terms) and imprecision (replacing terms with a random 

ancestor) were then introduced (panels 2, 4, 6). Cases were considered similar if they were 

sampled from the same OMIM disease in simulated cases, and if they shared a candidate 
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gene, shared a diagnosis, or were submitted as part of the same cohort for real cases. To 

control for variable cohort size (2–12 for simulated cases, 2–14 for real cases), two cases 

were randomly selected from each cohort for each of 10 iterations. The performance of each 

measure is the fraction of cases for which the matching case was ranked within the top one 

(red/dark) or five (blue/light) most similar cases. The box extends from the first to third data 

quartile, with whiskers extending to the most extreme data point at most 1.5 times the 

interquartile range away from the box. Measures were ordered by mean top-five 

performance across all experiments. B: Comparison of the performance of six methods at 

prioritizing causal and candidate genes in 112 cases from PhenomeCentral (top; panel 7) and 

1,000 simulated cases with noise and imprecision introduced (bottom; panel 8; same 

parameters as panel 4). As a baseline method, the Exomiser was run on each case 

individually and genes ordered by their PHIVE score. This was compared with five methods 

that first identify the most phenotypically similar patents (using the PhenoDigm score), and 

then score genes separately for each match. The performance of each method was measured 

in two ways: the fraction of cases where one of the causal or candidate genes was ranked as 

the top gene for the most similar patient (red/dark) or among the top five genes (blue/light; 

either the top gene for one of the four most similar patients or the top gene from the 

Exomiser directly). C: Execution time of each class of similarity measure on the 1,000 

simulated cases (N = 499,500 pairwise comparisons). Measures were implemented in 

Python using memoization and executed on a single thread of a 32-core Intel Xeon 2.70GHz 

CPU.
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Figure 4. 
Two validated PhenomeCentral matches, each showing a breakdown of the phenotypic 

similarity between the two patients on the left, and the genotypic similarity between the two 

patients on the right. The phenotypes are grouped via a greedy iterative process. In each 

iteration, the most informative common ancestor is found and all descendants of that term in 

each patient are removed and displayed as a group. A: The match between two patients with 

EFTUD2 mutations, where only one was classified as having mandibulofacial MFDM at the 

outset (the other was described as “CHARGE-like”). B: The match between two patients 

with STIM1 mutations, subsequently diagnosed with York Platelet syndrome.
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