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Abstract

Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) 

projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. 

Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk 

analysis of protein interaction networks, clinical relevance and cross-species phenotype 

comparisons, as well as a wide range of other computational filters for variant frequency, predicted 

pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to 

install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser 

requires ~3 GB of RAM and roughly 15–90 s of computing time on a standard desktop computer 

to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from 

http://www.sanger.ac.uk/science/tools/exomiser.
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INTRODUCTION

Whole-exome sequencing (WES) refers to massively parallel NGS of exonic sequences. 

WES has been enormously successful in the identification of novel Mendelian disease-

associated genes1,2, and it has recently begun to be used for clinical diagnostics3–6. WES 

uses hybridization methods to enrich (‘capture’) sequences of interest, representing mainly 

the exon sequences of nearly all protein-coding genes, but these sequences may additionally 

include miRNA sequences or other genomic regions of interest. Common linkers or adapters 

are used as primers to amplify the target sequences in a single PCR, and to subject the 

enriched fragments to NGS7. The underlying assumption of this strategy is that the great 

majority of mutations in Mendelian disease will be located in or near coding exon 

sequences.

WES has substantially accelerated the pace of discovery of disease-associated genes8,9. 

Nonetheless, the analysis of WES remains challenging. There are at least 7,000 Mendelian 

(monogenic) diseases, but to date only about half of the genes mutated in these disorders 

have been identified7. An individual exome typi-cally harbors over 30,000 variants 

compared with the genomic ref-erence sequence, and up to roughly 10,000 of them are 

predicted to lead to nonsynonymous amino acid substitutions, alterations of conserved splice 

site residues, or small insertions or deletions9. Even after filtering out common variants, 

additional methods are needed to predict the variants that may have serious functional con-

sequences and prioritize them for validation10–12. Many methods exist to predict which 

variants deleteriously affect the function of individual proteins on the basis of characteristics 

such as conservation, physicochemical properties of the wild-type and variant amino acids, 

and other protein features. However, each genome is thought to harbor ~100 genuine loss-of-

function vari-ants with ~20 genes completely inactivated13. This implies that merely ranking 

candidate genes on the basis of the rarity and predicted pathogenicity of variants found in 

them will not result in good identifications of disease-associated genes in WES data. 

Therefore, a number of different methods for computational disease-gene prioritization have 

been developed that aim to integrate complex and heterogeneous data sets, including 

expression data, genetic sequences, functional annotations, protein-protein interaction 

networks and information from the medical literature in order to derive a ranked list of genes 

that provide investigators clues about those genes that warrant closer investigation14. WES 

data analysis can combine the assessment of individual variants with the prioritization of 

affected genes.

Traditional rare-disease workups including clinical evaluation, chromosomal analysis, 

fluorescence in situ hybridization (FISH), array comparative genomic hybridization (CGH), 

single-gene Sanger sequencing, biochemical studies and gene panel analysis identify the 

molecular diagnosis in less than half of the patients seen in typical medical genetics 

settings15. Although WES is expected to substantially improve on this diagnostic yield, it is 

currently difficult to provide an estimate of the magnitude of the improvement to be 

expected in a general clinical environment. However, initial studies of clinical WES on large 

cohorts have reported diagnostic yields of 16–25% (refs. 3,4,16). We have addressed the 

question of what additional yield can be expected by WES for patients who have already had 

extensive clinical genetic evaluation (physical examination by medical geneticists, array 
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CGH, and often targeted Sanger gene sequencing) but remained without a diagnosis, and we 

have developed a phenotype-driven prioritization procedure that can be used with WES or 

with large gene panels comprising all currently known disease-associated genes. In this 

group of patients, the additional diagnostic yield was 28% (ref. 5).

Here we describe a protocol for the Exomiser suite that comprises several methods that use 

clinical data5, model organism phenotype data5,17–19, as well as random-walk analysis of 

protein interactome data20,21 to perform prioritization. The Exomiser has been used in a 

number of projects for disease-gene discovery and diagnostics22–24. The US National 

Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) has incorporated 

Exomiser into its WES analyses and used it to aid in the identification of novel disease-gene 

associations, as well as in the diagnosis of known disorders25. The PhenomeCentral portal 

(https://phenomecentral.org/) uses Exomiser to help clinicians find similar rare disease 

patients from deep phenotype and WES data, and it integrates Exomiser’s gene prioritization 

in its matchmaking algorithms.

Overview of analysis with Exomiser

The inputs to Exomiser are the called variants resulting from exome sequencing of a rare 

disease patient and, optionally, other affected and unaffected family members. These 

variants are stored using VCF, a tab-separated file format with columns for the chromosome, 

position, Single Nucleotide Polymorphism Database (dbSNP) ID, reference allele, 

alternative allele, variant quality, a filter column containing information on whether the 

variant has passed or failed various filters, a column containing extra annotations, and finally 

columns that define the genotype of the variant26.

The Exomiser analyzes these VCF files using a single command to first filter the variants 

and then to prioritize the remaining candidates to help researchers identify the causative 

variant or variants. The filtering step is critical in order to reduce the 30,000+ variants seen 

in a typical exome to a more manageable size. However, this still typically leaves more 

candidates (up to 1,000) than can be reasonably manually assessed, so some sort of ranking 

by a prioritization algorithm is necessary. Figure 1 summarizes the rationale behind 

Exomiser’s filtering and prioritization steps, and it illustrates the four prioritization 

algorithms that are incorporated in Exomiser.

Filtering—The first step Exomiser performs is to annotate each variant relative to the 

University of California, Santa Cruz (UCSC) hg19 transcript set using the Jannovar software 

library27. This annotation describes the location within or between transcripts, the type of 

variant (missense, nonsense, intergenic and so on) and the predicted consequence of the 

variant on the protein-coding sequence. By default, Exomiser then removes any variants that 

are off target (intergenic, intronic, upstream, downstream or intronic) or synonymous, 

although this can be switched off (Box 1). As candidates for rare disease are being sought, 

users typically specify an upper threshold of minor allele frequency (MAF) for Exomiser’s 

frequency filter (under the assumption that a common variant cannot be the cause of a rare 

disease). Other optional filters allow the user to remove variants that are below a particular 
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quality in the QUAL column of the VCF file or to ignore those that are not in predefined set 

of genes or within a genomic interval (Box 1).

Another optional but frequently used filter is to remove variants that do not fit the expected 

inheritance pattern: autosomal dominant (AD), autosomal recessive (AR) or X-linked. For 

single sample VCF files, this simply restricts the output to genes containing the following: 

(i) one or more heterozygous variants for AD inheritance, (ii) X-chromosomal genes for X-

linked variants or (iii) a homozygous or two heterozygous variants for AR inheritance. For 

multisample, family-based analysis, the filtering is more sophisticated and powerful in terms 

of reducing the number of candidates. For AD inheritance, the filter demands that all 

affected persons and no unaffected person carry a specific variant in a heterozygous state. 

We note that although this filter can be used to search for de novo variants, to avoid false-

positive results, it is preferable to first analyze the alignment data using a tool (such as 

DeNovoGear28) that is designed to analyze de novo mutations from familial sequencing 

data, before ranking candidate genes with Exomiser. For AR diseases, the filter searches for 

a variant that is homozygous in all affected individuals, heterozygous in both parents of each 

affected person and heterozygous or not present in unaffected siblings. The filter 

additionally recognizes compound heterozygous mutations that are both present in all 

affected individuals and each present in only one parent, and of which at most one is present 

in unaffected siblings. The filters for X-chromosomal recessive and dominant inheritance 

function analogously. To analyze family data, users are required to input a PED file 

representing the family structure. There must be one entry for each family member being 

sequenced (Box 2). We note that the pedigree filtering capabilities of Exomiser are intended 

for use with the relatively small and simple family structures such as trios and nuclear 

families with multiple affected children that are typical of current WES experiments. For 

larger pedigrees, it may be useful to first examine the sequence data using formal linkage 

analysis in order to filter out regions that are incompatible with linkage before Exomiser 

analysis29.

Prioritization—The Exomiser suite contains a number of different methods for variant 

prioritization based on protein-protein interactions and/or phenotype comparisons between a 

patient and existing human disease databases and model organisms. Each of these is detailed 

below, and the decision tree for choosing which prioritization method to use is described in 

Figure 2.

Exomiser calculates variant-based and method-specific, gene-based scores and combines 

them using a logistical regression model to generate a final combined score that is used for 

ranking. The variant scores are a combination of how rare the variant is as observed in the 

1000 Genomes Project30 and Exome Server Project (ESP 6500) data sets, together with its 

predicted pathogenicity. How the gene score is calculated varies, depending on which 

prioritization method is chosen by the user.

Cross-species mouse-human phenotype comparisons: PHIVE: The original 

implementation of Exomiser used the PhenoDigm algorithm31 to calculate the phenotypic 

similarity between a patient’s clinical signs and symptoms and observed phenotypes in 

mouse mutants associated with each gene candidate in the exome. The rationale behind this 
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approach is that if a mouse model exists for the gene containing the disease-associated 

mutation, then it is likely to exhibit phenotypic similarity to the clinical phenotypes. These 

mouse data come from the Mouse Genome Database32 (MGD) and the International Mouse 

Phenotyping Consortium33 (IMPC). The current coverage of human protein-coding genes 

with mouse phenotype data is only ~33%, but the IMPC plans to achieve near-complete 

coverage by 2021.

Clinical diagnostics: PhenIX: In clinical diagnostics, it is not always possible or 

appropriate to follow up on interesting candidate genes for which today no known disease 

association has been proven. Therefore, we have developed a phenotypic prioritization 

procedure that analyzes only those genes that have been associated with a Mendelian 

disease5. This strategy may be desirable in certain clinical settings in which the search for 

novel disease genes in a research context is not possible or not desired by the affected 

families. The algorithm uses the semantic similarity approach to differential diagnostics that 

we previously implemented as the Phenomizer34. The PhenIX algorithm evaluates and ranks 

variants on the basis of pathogenicity and semantic similarity of patients’ phenotypes as 

described by Human Phenotype Ontology (HPO) terms to those of Mendelian diseases 

whose molecular etiology has been clarified (corresponding to 3,101 genes in the current 

HPO version). The approach achieved a high diagnostic yield of 97% as the top hit in 

simulations5. Users may want to consider first using PhenIX to search for known diseases 

that might explain the clinical manifestations of the patient being investigated, and then 

using the other prioritization methods in the Exomiser suite to search for novel disease-gene 

candidates if no diagnosis can be made with PhenIX.

Protein-protein interactions: ExomeWalker: In genetically heterogeneous diseases such 

as Bardet-Biedl syndrome, mutations in different genes lead to a single disease with an 

identical or nearly identical spectrum of clinical manifestations. In addition, genetic diseases 

with lesser degrees of similarity to one another, such as type I congenital disorders of 

glycosylation, are often grouped into so-called disease-gene families35. In both cases, the 

genes involved are often part of the same pathway or interact closely, such that a mutation in 

any of them results in similar phenotypic manifestations. The ExomeWalker prioritization 

algorithm is designed to identify new causative genes by identifying which of the mutated 

genes in the exome interacts closely with previously implicated genes for the disease21. The 

user supplies the list of implicated or suspected seed genes, and a random walk with restart 

algorithm is used to score how close each candidate gene is to these in a protein-protein 

association network20. An overall score for how close each candidate is to each of the 

seeded genes is then used in the Exomiser ranking algorithm. Thus, Exome-Walker is 

suitable for cases in which the user can define a set of seed genes. Although we have tested 

the algorithm using disease-gene families based on phenotypic similarity, Exomiser can be 

run with any set of seed genes that the user deems to be relevant (encoded as a list of 

National Center for Biotechnology Information (NCBI) gene36 identifiers).

Integrated phenotypic and interactome analysis: hiPHIVE: Exomiser has been extended 

to use data sources from the previous three algorithms into an algorithm called human/

interactome-PHIVE, or hiPHIVE. The phenotypic similarity is calculated not only with 
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mouse data as in the original implementation of PHIVE, but also with zebrafish37 and 

human phenotype data38. The human data come from the disease-gene associations 

maintained by Online Mendelian Inheritance in Man (OMIM)39 and Orphanet40 and the 

phenotype annotations maintained by us and encoded as HPO terms38,41. The zebrafish data 

originate from the Zebrafish Model Organism database (ZFIN) using the Zebrafish 

Anatomical Ontology37, Gene Ontology42 and the Phenotype and Trait Ontology (PATO) 

ontology of qualities43, and they are subsequently converted to a combined zebrafish 

phenotype term. In hiPHIVE, the human comparisons allow known disease-gene 

associations to be detected with high specificity and sensitivity, and the mouse and zebrafish 

data allow novel candidate genes to be flagged as in the original PHIVE algorithm. Finally, 

for genes that have no phenotype data from any of these sources, we use a random walk with 

restart algorithm20 to score how close the candidate is in a protein-protein association 

network to genes with strong phenotypic similarity to the patient. The interaction network 

consists of high-confidence (>0.7) interactions from STRING44 version 9.05 and contains 

direct (physical) and indirect (func-tional) protein-protein interactions, as well as 

associations transferred by orthology from other species or obtained through text mining.

Simulations, run as in the original publication of Exomiser5 and based on spiking known 

disease mutations into unaffected exomes from the 1000 Genomes Project, demonstrated 

that the correct variant(s) can be detected as the top hit in 97% of samples. Further 

experiments in which the known disease-gene associations were masked from the database 

to represent discovery of a novel association revealed that the causative variant(s) could be 

detected as the top hit 87% of the time. Hence, the hiPHIVE prioritization method is the tool 

of choice for patients in whom the causative variant could be a known or novel 

association45.

Use of Exomiser as a stand-alone application or in larger analysis pipelines

The Exomiser can be run as a stand-alone application that will output an HTML page that 

summarizes the results of the analysis (Fig. 3). For low-volume or demonstration use of the 

hiPHIVE method, the online version at http://www.sanger.ac.uk/science/tools/exomiser can 

be used instead of the protocol detailed in this paper. If desired, Exomiser can also be used 

within larger analysis pipelines. For this purpose, Exomiser outputs tab-separated value 

(TSV) and VCF files containing details on the analysis results in a form that can be easily 

used as input for other software designed for visualization, for specialized analysis or for 

storage of the results in a database.

For example, The NIH UDP46 has incorporated Exomiser into its standard analysis pipeline. 

Before running Exomiser, family VCF files are annotated and filtered on the basis of allele 

frequencies in the UDP cohort and other available databases, basic transcript requirements 

and Mendelian modes of inheritance. The variants that pass these filters and the HPO terms 

of the proband are input into Exomiser for each mode of inheritance. The Exomiser VCF 

output is used to record the variant rankings and scores, and the Exomiser HTML output is 

used to evaluate the underlying reason for the rankings provided by Exomiser. Both of these 

output files are taken into account by the clinicians and researchers to prioritize candidate 

variants.
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PhenomeCentral (https://phenomecentral.org/) also uses Exomiser to help clinicians find 

additional patients with the same rare genetic disease. In addition to providing deep 

phenotype data encoded as HPO terms, clinicians can upload VCF files for patients, which 

are then automatically processed with Exomiser. The Exomiser is used to filter the variants 

by allele frequency and predicted pathogenicity, to annotate them with their effect and then 

to score the genes on the basis of their phenotypic relevance. PhenomeCentral displays the 

top results from the VCF output to the clinician, and it incorporates the gene and variant 

scores into its matchmaking algorithms.

Limitations of the protocol and the software

The Exomiser is designed only for the analysis of Mendelian disease—i.e., it searches for 

single genes with predicted pathogenic mutations that can best explain the clinical 

symptoms. The prioritization currently encompasses only those variants that affect the 

coding region of protein-coding genes, as well as the highly conserved splice consensus 

sequences at the exon-intron boundaries. The Exomiser integrates numerous data sources 

including dbSNP47; the 1000 Genomes Project30; the Exome Variant Server (NHLBI GO 

Exome Sequencing Project 2013, http://evs.gs.washington.edu/EVS/); OMIM39; 

Orphanet40; the HPO38; mouse phenotype data from the Mouse Genome Database32 at the 

Mouse Genome Informatics resource and from the IMPC33; zebrafish data from ZFIN using 

the Zebrafish Anatomical Ontology37, Gene Ontology42 and the PATO ontology of 

qualities43 (and subsequently converted to a combined zebrafish phenotype term); 

pathogenicity predictions by MutationTaster10,48, Polyphen2 (ref. 49) and SIFT50, as 

provided by dbNSFP51; variant annotations by Jannovar27; and gene and transcript 

definitions by UCSC Genome Browser database52. The data are collected as a consortial 

effort within the context of the Monarch Initiative (http://monarchinitiative.org/), where each 

source is versioned and integrated; however, the data sources may still contain inaccuracies 

or omissions that can change from release to release, and these would affect the performance 

of Exomiser. Finally, Exomiser does not yet support the analysis of copy-number variants or 

other large structural variants. The Exomiser will endeavor to include new relevant data 

sources in the future—for instance, the beta version of Exomiser has incorporated data from 

the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org/), which has 

aggregated WES data from over 60,000 unrelated individuals from a variety of large-scale 

sequencing projects, thereby providing a useful reference set of allele frequencies. In 

addition, support for the new gVCF format will be added to future versions of Exomiser.

Alternative analysis packages

The analysis of whole-exome data involves a pipeline of steps, including quality control53, 

the reference-guided alignment of NGS reads by programs such as BWA54, variant calling 

with tools such as GATK55, and the interpretation of the called variants. Exomiser is 

designed to aid in the interpretation of called variants, and we will not discuss any of the 

previous steps in the pipeline here, although practitioners need to be aware of the fact that 

different pipelines will call divergent sets of variants, with obvious consequences for 

downstream analysis56, and that the provenance of steps needs to be carefully considered 

and tracked. Analysis packages for VCF26 files can be divided into three categories: those 

that annotate and filter the sequence variants, packages that apply statistical algorithms for 
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rare disease association to identify candidate genes and packages that use one of a number of 

algorithms to prioritize genes and variants in order to place the most likely disease gene near 

the top of the list of candidates. Annotation packages, such as ANNOVAR57, Ensembl’s 

Variant Effect Predictor58 and Jannovar27 transform the chromosomal coordinates that result 

from aligning WES reads to the reference genome (e.g., chr14:g.88401213T>C) to the 

corresponding coordinates for affected transcripts, as well as the category of variant (e.g., c.

1843A>G; p.T615A, a missense variant in exon 17 of the GALC gene (encoding 

galactosylceramidase)). Such applications are not intended to be used as stand-alone 

programs for the interpretation of WES data, as their output, a list of tens of thousands of 

annotated variants, does not attempt to pinpoint likely candidate genes or mutations. A 

number of applications combine annotation, filtering by allelic frequency and predicted 

pathogenicity, and segregation analysis or intersection of multiple unrelated affected 

individuals59–63.

A second category of tools comprise those that have been developed to rank genes and 

variants in rare disease studies on the basis of different probabilistic frameworks that analyze 

the background variation in genes, as well as the nature and frequency of variants in affected 

individuals64–66. These tools are especially useful for cohort studies with multiple affected 

families or individuals. A third category of tools, to which Exomiser belongs, makes use of 

phenotypic data to prioritize candidate genes using one of a number of algorithms6,67–70. All 

of these tools use the HPO and deep phenotyping71,72 (Box 3) to power the phenotypic 

analysis.

A main advantage of the version of Exomiser, as presented here, is that it can be downloaded 

and run within hospital firewalls, thereby avoiding data security issues involved in sending 

patient data to a web server. Exomiser runs quickly (~15–90 s on a typical desktop computer 

depending on the algorithm chosen), and it can produce output files in HTML format for 

human consumption or as VCF or tab-separated files that can be incorporated into larger 

bioinformatics pipelines.

MATERIALS

EQUIPMENT

• Data: A VCF file and clinical data (phenotype, pedigree), as described in the text

• Exomiser software (the FTP site is accessible through the main Exomiser 

website http://www.sanger.ac.uk/science/tools/exomiser or directly at ftp://

ftp.sanger.ac.uk/pub/resources/software/exomiser/downloads/exomiser/)

• Java runtime environment. The Exomiser is written in Java and requires at least 

version 7 (available at www.oracle.com/java for a wide variety of operating 

systems)

• Free disk space of 25 GB (to store the Exomiser program code and the integrated 

database)

• Hardware (64-bit computer with at least 3 GB free RAM (8 GB preferred); see 

Equipment Setup
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EQUIPMENT SETUP

▲ CRITICAL Most of the commands described in this protocol are meant to be run from 

the shell prompt (‘command line’) and have been tested under Linux, Mac OS X (10.7 Lion 

or later) and Windows. Commands to be executed from the shell prompt are prefixed with a 

dollar sign (‘$’).

Required data—The Exomiser protocol is illustrated using several different example 

exome VCF files that are provided as part of the installation. For this protocol, we use VCF 

files obtained from sequencing of an unaffected individual and family73 into which we have 

inserted published disease-causing mutations.

Hardware setup—The Exomiser does not require unusual hardware resources, and it 

should run on any computer with a 64-bit architecture.

Downloading and installing software—Download Exomiser from the FTP site (see 

Equipment). At the time of this writing, the version is 6.0.0 and the file is called ‘exomiser-

cli-6.0.0-distribution.zip’. This file is ~1.2 GB in size. Once the download is completed, 

extract the files using the unzip command

$ unzip exomiser-cli-6.0.0-distribution.zip

Alternatively, use any decompression program supplied by your operating system. This 

command will cause a directory to be created with most of the files needed to run Exomiser.

Exomiser makes use of a relational database to store information about variant frequency 

and predicted pathogenicity, gene-to-disease associations and model organism phenotype 

data. The download version of Exomiser uses an H2 database (http://www.h2database.com/), 

which supports disk-based tables so that users do not need to install a relational database 

management system such as MySQL or postgreSQL. To download the database, go to the 

Exomiser FTP site to the directory called ‘h2_db_dumps’ and download the 

‘exomiser-6.0.0.h2.db.gz’ file (the version number should match or be higher than the 

version number of the Exomiser software you have downloaded). The database file is 

currently 5.5 GB in size. Uncompress the file in the exomiser-cli-6.0.0/data directory as 

follows:

$ gunzip exomiser-6.0.0.h2.db.gz

$ mv exomiser-6.0.0.h2.db exomiser.h2.db

Ensure that the file is called ‘exomiser.h2.db’ and that it is located in the ‘data/’ directory in 

which ‘exomiser-cli-6.0.0-distribution.zip’ was unpacked (also see the 

TROUBLESHOOTING section).

To test whether the installation was successful, run the command below; if the installation 

was successful, you will see a help message.
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$ java -jar exomiser-cli-6.0.0.jar

Alternative procedure to use Exomiser with a local PostgreSQL database—The 

Exomiser can be run with a file-based H2 database as described above, or alternatively with 

a local postgreSQL database version. In this case, download the ‘exomiser_dump.pg.gz’ file 

from the FTP server and load into your database.

$ gunzip -c exomiser-6.0.0.pg.gz | pg_restore -d

<database> -U <user> -W

This will generate a schema Exomiser and all the tables that are stored under it. Edit the 

‘application properties’ file (Box 4) if the data directory is on a different location or if you 

want to use postgreSQL for Exomiser.

PROCEDURE

Data preparation ● TIMING ~5–10 min

1| Prepare a VCF file with the variants called from an exome-sequencing experiment.

Analysis of the exome data and ranking of genes

2| Select and run an Exomiser program using one of the following options (options 

A–D). See Figure 2 for an overview of how to choose the method(s) best suited to the 

analysis goals.

Option Method Description

A PHIVE/hiPHIVE Performs phenotype comparisons with human, mouse and fish genes 
and their neighbors in the interactome (hiPHIVE) or only to mouse 
(PHIVE)

B PhenIX Performs phenotype comparisons with existing clinical data

C ExomeWalker Allows network analysis against previously implicated genes

D No phenotype prioritization Runs Exomiser without phenotype prioritization

▲ CRITICAL STEP Box 1 gives advice on how to modify the behavior of each Exomiser 

program. If applicable, collect additional information regarding a linkage interval, the family 

structure (in form of a PED file, Box 2), an inheritance model or other optional parameters. 

The –out-format and –out-file options can be adjusted to rename the output files and only 

create some of the formats. Alternatively, they can be removed and a single HTML file will 

be generated with a filename consisting of the original VCF file name appended with -

exomiser-6.0.0-results.html.

A. PHIVE/hiPHIVE: phenotype comparisons with human, mouse and fish 
genes and their neighbors in the interactome ● TIMING ~90 s

i. Prepare a list of HPO terms representing the phenotypic abnormalities 

observed in the patient (see Box 3 for more information). The following 
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terms have been selected here as an example: HP:0001156 

(brachydactyly syndrome), HP:0001363 (craniosynostosis) and HP:

0011304 (broad thumb).

ii. Run Exomiser using the hiPHIVE prioritizer with the following 

command:

$ java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --

prioritiser=hiphive

--max-freq 1 --hpo-ids HP:0001156, HP:0001363, HP:0011304, 

HP:0010055 --vcf

data/Pfeiffer.vcf --out-format=TSV-GENE, TSV-

VARIANT,VCF,HTML --out-

file=results/Pfeiffer-hiphive

▲ CRITICAL STEP This query analyzes Pfeiffer.vcf containing a 

causative FGFR2 (encoding fibroblast growth factor receptor 2) variant 

for Pfeiffer syndrome. The file ‘Pfeiffer.vcf’ is provided with the 

Exomiser distribution, and it is located in the data subdirectory, as 

shown. To perform the analysis using the original PHIVE algorithm, 

merely substitute ‘--prioritiser=hiphive’ with ‘ --prioritiser=phive’ in 

the command shown above.

? TROUBLESHOOTING

B. PhenIX: phenotype comparisons with existing clinical data ● TIMING ~15 
s

i. As with Step 2A(i), select a number of HPO terms to represent the 

phenotypic abnormalities observed in the patient (see Box 3).

ii. Run Exomiser using the PhenIX prioritization algorithm.

$ java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --

prioritiser=phenix

--max-freq 1 --hpo-ids HP:0001156, HP:0001363, HP:0011304, 

HP:0010055 --vcf data/

Pfeiffer.vcf --out-format=TSV-GENE, TSV-VARIANT, VCF, HTML 

--out-

file=results/Pfeiffer-phenix

▲ CRITICAL STEP This query is equivalent to the one in Step 

2A(ii), except that PhenIX is used instead of hiPHIVE.

? TROUBLESHOOTING
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C. ExomeWalker: network analysis against previously implicated genes ● 
TIMING ~90 s

i. Select a list of seed genes for analysis with the ExomeWalker. 

EntrezGene IDs for seed genes are entered here as an example: FGFR1 
(2260), FGF1 (2246) and FGF8 (2253). This simulates a scenario in 

which FGFR1, FGF1 and FGF8 have previously been associated with 

Pfeiffer syndrome, and a patient with a novel FGFR2 causative variant 

is being analyzed.

ii. Run Exomiser using the following ExomeWalker prioritization 

algorithm:

$ java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --

prioritiser exomewalker

--seed-genes 2260, 2246, 2253 --max-freq 1 --vcf data/

Pfeiffer.vcf --out-

format=TSV-GENE, TSV-VARIANT, VCF, HTML --out-file=results/

Pfeiffer-walker

▲ CRITICAL STEP This query is equivalent the one in Step 2A(ii), 

except that ExomeWalker is used instead of hiPHIVE, and phenotype 

terms are not entered.

? TROUBLESHOOTING

D. Prioritization using allele frequency and pathogenicity only ● TIMING ~20 
s

i. Run Exomiser without phenotype prioritization.

$ java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --

prioritiser=hiphive

--max-freq 1 --vcf data/Pfeiffer.vcf --out-format=TSV-GENE, 

TSV

-VARIANT, VCF, HTML --out-file=results/Pfeiffer-no-patient-

data

▲ CRITICAL STEP This query is equivalent to the one in Step 

2A(ii), except that no HPO terms are entered for phenotypic ranking.

? TROUBLESHOOTING

? TROUBLESHOOTING—Troubleshooting advice can be found in Table 1.

● TIMING

Step 1, data preparation: ~5–10 min
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Step 2A, PHIVE/hiPHIVE: ~90 s

Step 2B, PhenIX: ~15 s

Step 2C, ExomeWalker: ~90 s

Step 2D, prioritization using allele frequency and pathogenicity only: ~20 s

ANTICIPATED RESULTS

While running the analysis, the output should include the number of variants removed 

through the filters:

Filtering removed 36528 variants. Returning 1181 filtered variants from 

initial list of 37709

For Step 2A, the output settings create Pfeiffer-phive.genes.tsv, Pfeiffer-phive.variants.tsv, 

Pfeiffer-phive.vcf and Pfeiffer-phive.html in the results directory. Pfeiffer-phive.genes.tsv 

has a row for each of the 892 postfiltered genes containing one of these 1,181 variants, 

sorted by the Exomiser combined score and then alphabetically by gene symbol for ties. 

Each row contains the gene symbol, EntrezGene ID, gene score from the prioritization, 

variant score based on allele frequency and pathogenicity, and the Exomiser combined score 

(the remaining columns contain intermediate, internal scores that can be ignored). Note that 

the variant score is that of the rarest and most pathogenic variant for each gene, or, in the 

case of a compound heterozygous scoring, the average of the top two scores.

The known causative gene (FGFR2) is the top hit in the output having a phenotype score of 

0.8764 and a variant with a maximum predicted pathogenicity of 1 and a combined score of 

0.9933. Exomiser outputs a TSV file with the variant score, the phenotype scores for human, 

mouse and fish comparison, the ExomeWalker score, as well as the combined hiPHIVE 

score, and other information. The header of the file specifies the meaning of the fields, and 

explanations of the algorithms can be found in the original publications5,21.

The Pfeiffer-phive.vcf file is equivalent to the original Pfeiffer.vcf input file but ordered by 

the best gene candidates and their variants. Extra information in the filter column to indicate 

which variants passed or failed particular filters and the Exomiser annotation and scoring in 

the INFO column is also included. For example, for the causative FGFR2 variant 

chr10:123256215T>G, Exomiser will add the following information to the INFO column of 

the output VCF file:

GENE=FGFR2; INHERITANCE=AD; MIM=101600; EXOMISER_GENE=FGFR2; 

EXOMISER_VARIANT_SCORE=1.0; EXOMISER_GENE_PHENO_SCORE=0.87642866; 

EXOMISER_GENE_VARIANT_SCORE=1.0; EXOMISER_GENE_COMBINED_SCORE=0.99334514

The Pfeiffer-phive.variants.tsv file contains every variant with its annotations in a tab-

separated format. This format can easily be used to integrate Exomiser in pipelines. Printed 
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annotations of variants are the Human Genome Variation Society (HGVS) annotation, the 

pathogenicity scores, frequencies in the population databases, genotype, functional class of 

the variant and if the variant passed the filter settings. The Pfeiffer-phive.html file can be 

opened in a browser for a visual representation of the analysis that is largely equivalent to 

that seen on the Exomiser website (Fig. 3). In particular, the evidence for the variant scoring 

based on allele frequency and predicted pathogenicity and the gene score based on the 

phenotype matching can be explored.

Step 2B produces equivalent results and files to those in Step 2A, but here the patient 

phenotypes have only been compared with human phenotype data using a different 

algorithm (Phenomizer). Again, in Pfeiffer-phenix.genes.tsv, the causative mutation in 

FGFR2 is the top hit, but this time the phenotype score is the maximum of 1, and the 

combined score is 0.9979.

Step 2C produces equivalent results and files to those in Step 2A, but here, instead of 

ranking the candidates based partially on phenotypic similarity, proximity in the interactome 

to FGFR1, FGF1 and FGF8 is used to assess candidacy. FGFR2 is the top hit in the TSV 

output file with an ExomeWalker gene score of 0.0210 and a combined score of 0.9887.

In Step 2D, no phenotype information has been entered, none of the genes get scored and 

therefore ranking is purely based on the variant scores. Hence, in Pfeiffer-no-patient-data.tsv 

the known causative gene (FGFR2) is on row 31, and it is one of 95 top-ranked candidates, 

with a variant with a maximum predicted pathogenicity of 1.
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Box 1

Modifying the behavior of Exomiser

The behavior of the prioritizers described in Step 2A–D can be modified by adding the 

following arguments to the command.

(A) Inheritance model

If you know the suspected inheritance pattern for the patient being analyzed, this can be 

specified in Step 2A–D by supplying the extra option ‘--inheritance-mode <arg>’ or ‘-I 

<arg>’ where <arg> is one of AR, AD or X for autosomal recessive, autosomal dominant 

or X-linked inheritance.

(B) Family-based analysis

If your VCF file is a multisample exome file containing data from affected and unaffected 

related people, then these relationships should be specified in a pedigree file (Box 2) in 

Step 2A–D by supplying the extra option ‘--ped <file>’ or ‘-p <file>’ where <file> is the 

full path to your PED file. The mode of inheritance should additionally be specified. An 

example multisample VCF (Pfeiffer-quartet. vcf) and a PED file (Pfeiffer-quartet.ped) are 

provided in the installation directory, and they can be analyzed with the following 

command:

java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --prioritiser=hiphive --

max-freq 1 --hpo-ids

HP:0001156, HP:0001363, HP:0011304, HP:0010055 --vcf data/Pfeiffer-

quartet.vcf --ped

data/Pfeiffer-quartet.ped -I AD --out-format=TSV-GENE,TSV-

VARIANT,VCF,HTML --out-

file=results/Pfeiffer-quartet

(C) Specifying a disease instead of a list of phenotype terms

If the specific phenotypes exhibited by the patient are not to hand, but the suspected or 

diagnosed disease is, then this can be specified by replacing the ‘--hpo-ids <arg>’ option 

in Step 2A,B with ‘--disease-id <arg>’ or ‘-D <arg>’ where <arg> is an OMIM, Orphanet 

or DECIPHER disease identifier, e.g., OMIM:101200. This enables Exomiser to use the 

generic HPO annotations for the disease (available at http://www.human-phenotype-

ontology.org). Therefore, the disease must be present in that resource.

(D) Retaining off-target and synonymous variants

By default, off-target (intergenic, intronic, upstream, downstream or intronic noncoding 

RNA) and synonymous variants are removed by Exomiser before any other user-defined 

filtering and prioritization steps. To be more conservative and to detect possible 

noncoding or synonymous causative variants, the ‘–keep-off-target –keep-non-

pathogenic’ options should be added to Step 2A–D.

(E) Restricting to a defined set of genes
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If you are only interested in identifying causative variants in a defined set of the genes, 

then this can be specified by adding the ‘–genes-to-keep <arg>‘ option to Step 2A–D 

where <arg> is a comma-separated list of EntrezGene identifiers.
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Box 2

Generating a PED file

PED files use a tab-separated file format and require the following columns:

• Family ID

• Individual ID

• Paternal ID (0=unknown)

• Maternal ID (0=unknown)

• Sex (1=male; 2=female; other=unknown)

• Phenotype (1=unaffected; 2=affected)

An example PED file (Pfeiffer-quartet.ped) is provided in the data directory of the 

installation:

FAM1 ISDBM322016 0 0 1 1

FAM1 ISDBM322018 0 0 2 1

FAM1 ISDBM322015 ISDBM322016 ISDBM322018 1 1

FAM1 ISDBM322017 ISDBM322016 ISDBM322018 2 2

This represents a family with unaffected father (ISDBM322016), mother 

(ISDBM322018) and son (ISDBM322015), and an affected daughter (ISDBM322017). 

These individual IDs refer to the sample columns used in the multisample VCF (Pfeiffer-

quartet.vcf) that store the genotype for each patient per variant. Currently, Exomiser 

supports only PED files that represent a single family.
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Box 3

Selecting HPO terms

The HPO (http://www.human-phenotype-ontology.org) provides a structured, 

comprehensive and well-defined set of more than 11,000 terms describing human 

phenotypic abnormalities, and it provides annotations of nearly 7,300 human hereditary 

syndromes that yield computable representations of the diseases, associated disease 

genes, as well as the signs, symptoms, laboratory findings and other phenotypic 

abnormalities that characterize the diseases38. The HPO is widely used in the rare disease 

community, having been adopted by the Sanger Institute’s DECIPHER and DDD 

projects74, the rare disease section of the UK 100,000 Genomes Project, the NIH 

Undiagnosed Diseases Program and Network, the Matchmaker Exchange and many 

others. HPO is designed to be interoperable with model organism vocabularies and the 

gene ontology, in support of cross-species bioinformatics analyses.

Users should enter clinical data into the Exomiser software in the form of a list of HPO 

terms that describe the clinical features of the patient being analyzed. Terms of the HPO 

describe individual phenotypic abnormalities, such as ‘Hypoglycemia’ or 

‘Macrocephaly’. The HPO website offers a browser (http://www.human-phenotype-

ontology.org) with which users can explore the HPO to find appropriate terms17,41. 

Alternatively, the HPO can be explored in a number of other websites including the 

Ontology Lookup Service7,75 of the European Bioinformatics Institute (EBI) and the 

BioPortal of the National Center for Bio-Ontologies76. Terms can also be entered in the 

clinic using PhenoTips77 and exported.

For each phenotypic feature found in the individual being examined, choose the most 

specific term possible. Features should be entered to cover all of the important 

phenotypic abnormalities seen in the patient. However, some medical judgment may be 

required to decide whether a particular term should be used or not. For instance, in a 

patient with a disease that is otherwise not related to the eyes, it may not be appropriate 

to enter the HPO term for ‘Myopia’ (HP:0000545) if the patient has mild short-

sightedness of −0.75 diopters with no other eye problems, as this is commonly found in 

the general population. However, severe myopia of −8 diopters might be related to an 

underlying genetic defect. In addition, some diseases are associated with large numbers 

of phenotypic abnormalities (currently, 942 diseases have over 30 HPO annotations in the 

current version of the HPO). We have found that it often suffices to enter up to 5–10 

abnormalities to obtain high-quality search results, but it is difficult to provide a general 

rule. If no plausible candidate genes are revealed using a particular set of HPO terms, it 

may be useful to restrict the terms to a smaller set of terms with balanced coverage of all 

affected organ systems. We have posted guidelines for best practices for HPO annotation, 

and we also supply a metric to assist the sufficiency of the phenotype profile against the 

corpus of all known disease-gene and model-gene associations78.
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Box 4

Running Exomiser from a settings file and in batch mode

Instead of typing all the options specified in Step 2A–D each time, they can be defined in 

a settings file to save time. For example, a file called step1.settings can be created using 

example. settings from the Exomiser installation directory as a template and changing the 

following fields:

vcf=data/Pfeiffer.vcf

prioritiser=hiphive

max-freq=1.0

hpo-ids=HP:0001156, HP:0001363, HP:0011304, HP:0010055

out-file=results/Pfeiffer-phive

out-format=TSV-GENE,TSV-VARIANT,VCF,HTML

and Step 2A(ii) can be run instead as:

java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --settings-file 

step1.settings

Command-line parameters override the settings file, so to analyze another VCF file the 

following command can be used:

java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --settings-file 

step1.settings

--vcf=AnotherVCFFile.vcf

Exomiser can also be run in batch mode. This can give much faster performance as the 

software caches large objects such as the protein-protein interaction matrix in memory, so 

subsequent runs take a fraction of the time of the first run. To run in batch mode, generate 

a settings file for every analysis you wish to perform, and then create a file such as 

exomiser_batch.txt that contains the paths to all these settings files. Exomiser is then run 

in batch mode by the following command:

java -Xms2g -Xmx3g -jar exomiser-cli-6.0.0.jar --batch-file 

exomiser_batch.txt

The memory caching behavior can be configured by editing the cache option in the 

application.properties file in the installation directory. Setting it to ‘mem’ will cache 

variants already analyzed; alternatively, the ‘ehcache’ parameter can be used for finer 

tuning via the ehcache.xml file.
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Figure 1. 
Overview of the processing steps of Exomiser. The Exomiser comprises a suite of four 

algorithms for the analysis of NGS data for diagnostics or novel disease-gene discovery in 

the field of rare disease. As input, Exomiser requires a VCF file containing the called 

variants. If the VCF file comprises samples from multiple family members, then a PED file 

is additionally required. The Exomiser initially annotates variants using Jannovar27, and then 

it removes variants that are off the exomic target or that are more common than a user-

supplied threshold; it then ranks the remaining variants according to their predicted 

pathogenicity. Finally, the clinical relevance of the genes harboring these variants is assessed 

using one of three phenotype-driven algorithms (PHIVE, PhenIX or hiPHIVE) or by a 

random-walk algorithm that assesses the vicinity of the genes to members of disease-gene 

family on the protein-protein interactome. Users are required to supply HPO terms for the 

phenotype-driven algorithms or a list of seed genes representing the disease-gene family for 

ExomeWalker.
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Figure 2. 
Choice of Exomiser prioritization method. Exomiser can be run using a set of seed genes if a 

disease-gene family can be identified. For instance, numerous genes mutated in retinitis 

pigmentosa (RP) have been identified. If it is suspected that a patient may have a mutation in 

a novel gene for RP, then Exomiser can be run with the ExomeWalker prioritization method 

together with a list of NCBI Entrez gene IDs for genes already known to be involved in RP 

(e.g., 6121 for RPE65, 130557 for ZNF513 and so on). Alternatively, Exomiser can be run 

using phenotypic similarity–based algorithms (PHIVE, PhenIX or hiPHIVE). Here the user 

needs to enter a list of HPO terms representing the clinical manifestations observed in the 

individual being investigated (Box 3). The choice of the prioritization method and 

parameters will depend on the clinical or research goal. PhenIX will interrogate only known 

Mendelian disease genes, and it will use only human phenotypic data to calculate 

phenotypic similarities. PHIVE will use mouse phenotypic data to identify candidates. 

Finally, hiPHIVE can use mouse, zebrafish and human clinical data, and it can additionally 

integrate further candidates on the basis of an analysis of the protein-protein interaction 

network. All of the analyses can be combined with additional filters (Box 1).
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Figure 3. 
Screenshot of Exomiser output. The Exomiser outputs the results of its analysis as an HTML 

page that can be opened in any web browser. Equivalent but more detailed results can be 

output as a text file if desired. The results are shown for a single gene, and include a list of 

diseases that are known to be caused by mutations in that gene, phenotypic similarity 

matches to human and model organisms, and indications of proximity in the protein 

interaction network to further phenotypically similar genes. A list of affected transcripts and 
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the predicted pathogenicity of the variant are shown. The full output has a ranked list of 

genes, each of which are provided with this information.
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TABLE 1

Troubleshooting table.

Step Problem Possible reason Solution

Equipment Setup The H2 database is not found (error 
message states ‘h2Path variable 
from application.properties not 
found’)

The H2 database was not placed in the 
correct directory

Unpack the file in exomiser-cli-6.0.0/
data directory and rename it as 
‘exomiser.h2.db’

2A–D Java Out Of Memory Error The VCF file is too large Increase the memory from the 3GB 
specified by the ‘-Xmx3g’ flag on the 
command line

2D The expected candidate gene was 
not found, although the variant is 
known to be present

Inappropriate parameter settings Reconsider the parameters. For 
instance, a frequency threshold of 0.1% 
may be too low for autosomal recessive 
diseases with a higher prevalence of 
heterozygote carriers
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