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Abstract

The maintenance of tissue homeostasis is indispensable for health. In particular, removal of toxic 

compounds from cells and organs is a vital process for the organism. The lymphatic vasculature 

works in order to ensure the efficient removal of tissue waste. Forbidden over the last decade when 

more attention was paid to the blood vasculature, studies on the lymphatic vasculature have gained 

momentum during the last couple of years. The lymphatic vasculature naturally runs parallel to the 

blood vasculature and their synergistic work is critical for maintaining tissue homeostasis. 

Diminished lymphatic function results in accumulation of body fluids in tissues and gives rise to 

edema. Recently it became obvious that immune cells including myeloid cells and lymphocytes 

are able to interact with and control the development and function of the lymphatic vasculature. In 

this review, we will focus on the interaction between myeloid cells, including macrophages, 

monocytes and dendritic cells, with lymphatic vessels.
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Introduction

1. The lymphatic vasculature

The lymphatic system runs parallel to the blood circulatory system. The expression of 

specific markers such as prospero homeobox 1 (Prox1), vascular endothelial growth factor 

receptor 3 (Vegfr3) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1) allows 

for the identification of the lymphatic vasculature (6, 28, 72). Additionally, the membrane 

glycoprotein podoplanin is also expressed on lymphatic endothelial cells but is absent on 

blood endothelial cells (9). The lymphatic network begins in the periphery with vessels 
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characterized by a thin wall and a large luminal space (for review (54)). These vessels are 

the so-called blind-ended lymphatic capillaries with diameter broadly varying from 10–80 

μm, and their main function is the absorption of molecules from the surrounding tissue. The 

lymphatic capillaries do not possess independent contractile tone and rely on the movement 

from the extracellular matrix and cell-cell junction, in addition to the action of downstream 

contractile lymphatics, in order to maintain efficiently their function. Immune cells, almost 

exclusively CD4+ T cells and dendritic cells (DC), enter the lymphatic vasculature at the 

level of these capillaries. The basement membrane around the lymphatic capillaries is 

sparse, which facilitates the entry of DC because it limits physical barriers to cross (51). 

Indeed, DC entry into lymphatic capillaries under steady-state conditions does not require 

integrins (36). Blind-ended capillaries form a vast network and later coalesce into larger 

vessels known as lymphatic collectors. These larger conduits (50–200 μm in diameter) are 

composed of a single layer of lymphatic endothelial cells surrounded by spider-shaped 

smooth muscle cells. The presence of smooth muscle cells and local innervation confers 

autonomous contractile activity to lymphatic collectors. To maintain lymph flow, lymphatic 

valves are present along these vessels, designed to promote unidirectional flow. The distance 

between two consecutive lymphatic valves is defined as a lymphangion (Figure 1). 

Sometimes only a single afferent lymphatic collecting vessel enters the lymph node, where 

some lymph node receive many afferent inputs. Typically, there is a sole efferent lymphatic 

vessel that exit from the lymph node.

Lymphatic collectors were for a long time considered as simple highways allowing the 

transit of molecules and immune cells from peripheral tissues to the local draining lymph 

node. This view started to evolve recently but additional research on lymphatic collecting 

vessels remains needed. For instance, lymph nodes and lymphatic collecting vessels, in 

contrast to lymphatic capillaries, are inevitably covered by adipose tissue, named perinodal 

adipose tissue (PAT). The role of this adipose tissue depot remains unknown. It is interesting 

that adipose depots proximal to lymphatic collecting vessels and lymph nodes are beige, 

with the capacity to contain a preponderance of white or brown type of adipocytes, that store 

fat or generate heat respectively (Figure 1 and (7)).

2. Interaction between macrophages and lymphatic vessels

Macrophages are key players involved in the maintenance of tissue homeostasis, ingestion of 

apoptotic cells, and defense against infection (for review,(2, 43, 68). Initially described by 

Elie Metchnikoff in the end of 19th century for their role in pathogen elimination, 

macrophages are still a subject of intensive research. Recently, the Immgen project 

(Immgen.org) and BioGPS gene-annotation portal (biogps.gnf.org) greatly contributed to the 

expansion of our knowledge about the transcriptional signature of these cells. Indeed, thanks 

to the genomic libraries generated by Immgen and BioGPS, it became clear that 

macrophages residing in different organs possess a unique transcriptional footprint (19). 

This led to the identification of key transcription factors specific for each population of 

tissue macrophages. For example, GATA6 (GATA Binding Protein 6) was predicted to be the 

master regulator of peritoneal macrophages, and this was further confirmed by 3 

independent studies (18, 49, 56). Red pulp splenic macrophages are dependent on the 

transcription factor SpiC (32), which is highly specific for this population. Thanks to the 
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Immgen project, new and more specific strategies were developed, allowing the separation 

of macrophages from dendritic cells, two populations of myeloid cells sharing a multitude of 

overlapping cell surface markers (19, 45). Recently, it became clear that immune cells not 

only use the lymphatic vasculature for their transit but also actively interact with the vessels 

and influence their development and functions. In this review we will focus on the 

interaction between myeloid cells, and in particular macrophages and DCs, with the 

lymphatic endothelium.

2.1 Lessons learned from genetic models—Genetic models were generated to 

investigate the role of tissue resident macrophages during steady state and disease. The first, 

and probably most studied, mouse model lacking tissue resident macrophages is the op/op 
mouse. The use of osteopetrotic op/op mice (11), bearing a null mutation in the Csf-1 gene 

encoding M-CSF and thus lacking multiple populations of tissue resident macrophages (74), 

provides data suggesting that there is an important interactive relationship between the 

lymphatic vasculature and M-CSF-dependent cells of the myeloid lineage (34). Interestingly, 

M-CSF deficiency does not affect the maintenance of the lymphatic vessels in adults but 

rather influences the developmental establishment of the lymphatic network, in locations 

other than the diaphragm, where loss of macrophages increased lymphatics (47). That is, 

op/op mice lack resident diaphragm macrophages and this is correlated with an increased 

density of the local lymphatic network. Thus, one may argue that the relationship between 

macrophages and lymphatics is tissue specific. Macrophages residing in different tissues 

have diverse origins, in addition to transcriptional signatures (13, 19, 21, 37, 49). Thus, it 

seems logical that these cells also have selective and differential ability to produce factors 

involved in the control of the lymphatic system.

Additionally, a second layer of complexity comes from the observation that lymphatics in 

different organs might require specific growth factors for their development and 

maintenance (52). Recently, a second ligand for M-CSF1R (Colony stimulating factor 1 

receptor) was identified. This cytokine is named interleukin-34 (IL-34) and plays a critical 

role for the maintenance of skin Langerhans cells and microglia in brain (22, 70). 

Langerhans cells are almost completely absent in IL-34-deficient mice and microglia are 

half reduced. A recent report shows the presence of lymphatic vessels in the meninges of the 

brain (40). However, it remains unknown whether microglia and brain lymphatic endothelial 

cells interact. To address this question, IL-34 deficient mice might be informative. 

Interestingly, mice deficient for the transcription factor PU.1 and lacking cells of the 

myeloid lineage have lymphatic hyperplasia in the skin (20). This surprising observation has 

been confirmed in two different genetic backgrounds bearing PU.1 deficiency, 

demonstrating that the different genetic background of the mouse strain does not account 

predominantly for the phenotype. Additionally, Csf1r−/− mice also display increased 

lymphatic vasculature in skin (20). Lymphatic endothelial cells are highly proliferative in 

PU.1−/− mice, providing a potential explanation for the increased density of the lymphatic 

vasculature. However, how and why macrophages might quell this proliferation is unknown.

Monocytes use the chemokine receptor CCR2 to egress from the bone marrow and to enter 

peripheral tissues from the blood circulation. However, most tissue resident macrophages are 

not decreased in CCR2−/− mice, though some specific populations of macrophages derived 
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from monocytes are (25, 31, 35, 65). Interestingly, mice deficient for CCR2 are 

characterized by decreased lymphatic vasculature density (38). Additionally, absence of the 

decoy receptor ACKR2, binding the CCR2 ligand CCL2, leads to augmented lymphatic 

network in the skin (38). These data suggests that monocytes and/or monocyte-derived 

macrophages in the skin promote the development of the lymphatic vasculature. Using 

various genetic models, the data taken as a whole are consistent with a model in which tissue 

resident macrophages repress the growth of the lymphatic network whereas monocyte-

derived macrophages, such as inflammatory macrophages, promote lymphatic expansion.

2.2 Macrophage interaction with the lymphatic vasculature during 
inflammation—In the following paragraphs, we will focus our attention on the interaction 

between macrophage and lymphatic vessels in the context of inflammation, and we will 

illustrate the significance of this dynamic interaction through several examples.

High salt diet: The maintenance of tissue homeostasis is critical for the organism. The use 

of high salt diet in mice surprisingly revealed that sodium homeostasis could be 

accompanied by the accumulation of this ion in the skin. This storage was associated with 

increased lymphatic density in the skin compared to animals that received control diet. 

Macrophages were found to be key players that regulated lymphatic vessel hyperplasia 

during high salt diet (HSD)(41). At the cellular level, the osmoprotective transcription factor 

tonicity-responsive enhancer-binding protein (TonEBP) becomes activated and induces the 

production and release of large amounts of pro-angiogenic factors such as VEGF-C (73). 

Although TonEBP expression is not solely limited to myeloid cells, macrophage-selective 

deletion of TonEBP blunts VEGF-C expression and abolishes the lymphatic hyperplasia 

induced by high salt diet. Skin macrophages are heterogeneous population containing 

multiple subsets (65), and it is also possible that lymph node dendritic cells are the central 

culprit of the TonEPB deletion (48). It will be of great interest to define the specific 

contribution of each of these subsets of myeloid cells and their ability to secrete pro-

lymphangiogenic factors.

Bacterial Infection: Inflammatory scenarios including bacterial infections are associated 

with increased lymphatic vessel density. Cutaneous infection with Leishmania major induces 

lymphatic remodeling in skin. Inhibition of VEGFR-2 signaling aggravates disease 

pathology by affecting lymphatic endothelial cells but not blood endothelial cells (71). 

Peritoneal administration of lipopolysaccharide (LPS) extracted from Gram− bacteria 

induces increased density of the lymphatic vasculature (30). Interestingly, LPS-induced 

inflammation induces a close physical association between lymphatic endothelial cells and 

CD11b+ macrophages. These macrophages secrete VEGF-C and -D among other angiogenic 

factors. Their depletion with clodronate-loaded liposomes partially abolishes the density of 

the lymphatic vasculature. The same observation is also reported in skin (29). Skin 

inflammation induced by administration of compounds extracted from Gram− (LPS) or 

Gram+ (lipoteichoic acid, LTA) bacteria induced lymphangiogenesis. This 

lymphangiogenesis requires the presence and activation of macrophages residing in the skin. 

However, it remains currently unknown whether tissue resident or monocyte-derived 

macrophages are involved in this process. In a mouse model of airway infection with 
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Mycoplasma pulmonis, a spectacular remodeling of the lymphatic vasculature was reported 

(5). This was associated with production of VEGF-C by F4/80+ cells. However, whether 

these cells are in fact macrophages and their relative contribution to inflammatory 

lymphangiogenesis remains to be elucidated. Interestingly, in a mouse model of virus 

infection with Herpes simplex virus 1, the inflammatory lymphangiogenesis is not affected 

by macrophage depletion with clodronate-loaded liposomes (75).

Cancer: Cancer is often associated with an inflammatory state and secretion of pro-

lymphangiogenic factors, and therefore many cancers are characterized by intratumoral or 

peritumoral lymphangiogenesis. Macrophages support inflammatory lymphangiogenesis, as 

their depletion inhibits generation of new vessels (12). Some cancers use lymphatic vessels 

to exit the primary cancer and give rise to metastasis in the local lymph node or distant 

tissues (53, 55). Lymphatic vessel density correlates with local draining lymph nodes and 

organ metastasis (53, 55). In a mouse model of overexpression of VEGF-C, characterized by 

augmented lymphatic vessel density, lymphatic metastasis is increased and in patients high 

plasma concentration of VEGF-C correlates with increased lymph node metastasis (42, 61, 

77). Tumor-associated macrophages, through the production of lymphangiogenic factors 

VEGF-C and -D, stimulate the expansion of lymphatic vessels. The importance of this 

mechanism was demonstrated when depletion of macrophages with clodronate-loaded 

liposomes abolished cancer-induced lymphangiogenesis in multiple tumor models (14, 76). 

Taking into account that clodronate-loaded liposome induces macrophage loss wherever it 

acts, it would be of great interest to revisit this question using newly described tools that 

allow for tissue-selective depletion of resident macrophages without affecting other cells or 

organs. For example, Clec4f is a Kupffer cell specific gene and Clec4f-DTR mice allow for 

transient and specific depletion of liver-resident macrophages (60). Tissue-specific deletion 

of liver macrophages will provide an exciting model to study the interaction between 

macrophages and lymphatic endothelial cells under homeostatic conditions or during 

diseases such as cancer in the liver.

3. Dendritic cells and lymphatic vessels

Dendritic cells (DCs) were discovered in the early 1970s by Ralph Steinman and his 

colleagues (62–64). They were traditionally known for their ability to capture antigens in 

peripheral tissues and then, following maturation and migration to local draining lymph 

nodes (LNs). The unique structural organization of the LN facilitates the encounter of 

antigen-bearing DC and T cells and this leads to the activation of T cells and the 

development of an organized and efficient immune response. Two types of dendritic cells 

have been previously described and respectively named conventional DC (cDC) and 

plasmacytoid DC (pDC)(for review (44, 46)). Furthermore, according to the expression of 

the cell surface markers CD11b and CD103 the population of cDC has been shown to 

contain two major subsets in peripheral tissues. The transcriptional master regulators for 

each of these populations were identified and the transcription factor BATF3 (Basic Leucine 

Zipper ATF-Like Transcription Factor 3) is indispensable for the development of CD103+ 

DC (26). Mice deficient for BATF3 completely lack the subset of CD103+ DCs but 

exogenous IL-12 administration restores, at least partially, the normal number of these cells 

(66). The second major subset of DC expresses high levels of the integrin CD11b but lacks 
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CD103. The transcription factor IRF4 (Interferon Regulatory Factor 4) was predicted to 

control the development of these cells but selective deletion of IRF4 in DC resulted in only 

partial deletion of CD11b+ DC in a tissue-specific manner (50, 58, 67). Indeed, in CD11ccre 

x IRF4fl/fl pulmonary and mediastinal lymph node CD11b+ DCs are reduced in comparison 

to control mice (58). The remaining pulmonary CD11b+ DCs have an apoptotic appearance 

suggesting a pro-survival role of IRF4 in pulmonary DCs. Interestingly, CD11b+ DCs in 

liver and dermis are unaffected in CD11ccre x IRF4fl/fl mice.

3.1 Interaction of DCs with lymphatic capillaries—Immature DCs are present in 

peripheral tissues. Upon encounter with a foreign antigen they engage in a process of 

maturation characterized by increased expression of the major histocompatibility complex 

class II (MHC II), co-stimulatory molecules such as CD40, CD80 and CD86 and the 

chemokine receptor CCR7. The ultimate purpose of this biological process is to ensure 

efficient migration to the local draining lymph node and the initiation of a T cell response. 

The chemokine receptor CCR7 plays a critical role in the migration of DC from the 

periphery to lymph nodes through the lymphatic vasculature. This chemokine receptor was 

initially identified in a series of papers between1993–1995 (8, 10, 59) and then knocked out 

in mice in 1999 by Martin Lipp, Reinhold Förster, and colleagues (16). At the same time, it 

became evident that the interaction between CCR7 and its two ligands (CCL19 and CCL21) 

governs the migration of DCs and T cells from peripheral tissues to the lymph node (23). 

Indeed, CCR7-deficient DCs completely fail to migrate to LNs (16). Lymphatic endothelial 

cells constitutively express the chemokine CCL21 (24). In the mouse model, duplication of 

the CCL21 gene is responsible for the appearance of two genes encoding for two functional 

forms of CCL21. These cytokines differ in one amino acid in position 65. Of interest, 

CCL21-leucine and CCL21-serine are located in separate tissues. CCL21-leu is generally 

found in non-lymphoid organs (lung, stomach, gut) and CCL21-ser is found in lymphoid 

tissues (thymus, lymph nodes). In mice, the transition from CCL21-leu to CCL21-ser occurs 

at the point where lymphatic capillaries in nonlymphoid tissues transition to collecting 

lymphatic vessels (33). In humans, only the form of CCL21-leu is found and the form 

CCL21-ser is undetectable (69).

Recently, it was demonstrated that DCs use an amoeboid, integrin-independent mechanism 

as they home to lymphatic capillaries and migrate to LNs (17, 36). Indeed, pan-integrin 

deficient DC migrated as well as wild-type controls to the LNs when adoptively transferred 

(36). For amoeboid mobility, the actin-binding protein Eps8 in DCs plays a critical role to 

ensure the efficient migration to the local draining LN (17). The expression of the 

podoplanin receptor Clec2 (encoded in mice by the gene clec1b) was recently reported to be 

expressed by DCs (1). Clec2-deficient DC display compromised migration to the LNs. 

Interestingly, the Clec2-podoplanin interaction affected not only the entry of DCs in the 

lymphatic capillaries but also their crossing of the subcapsular sinus in the LN (1).

3.2 Dendritic cells interaction with the lymphatic collector vessels—Lymphatic 

collecting vessels are typically surrounded by adipose tissue. This specific adipose tissue 

contains a large diversity of cell types including macrophages and dendritic cells. Perinodal 

adipose tissue DCs and macrophages have permanent access to the lymph content that leaks 
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out due to the basal permeability of the lymphatic collecting vessel (33). Furthermore, some 

of these myeloid cells directly interact with the lymphatic collecting vessel and sample the 

lymph. However, the reason why this interaction occurs and the physiological relevance of 

these finding remains unclear. Currently, very little is known about the mechanisms 

controlling lymphatic vessel permeability. Infection with Yersinia pseudotuberculosis leads 

to very leaky mesenteric lymphatic collectors (15). As a consequence of the infection, 

migratory DCs fail to traffic to the local draining LN and this is correlated with subsequent 

profound defects in the immune response and chronic inflammation. This suggests that 

lymphatic collecting vessel permeability plays a critical role in the maintenance of cell 

migration and tissue homeostasis. Interestingly, perinodal adipose tissue IRF4-dependent 

DCs interact with the lymphatic collecting vessel in a CCR7-dependent manner and 

maintain basal permeability. The interruption of this interaction leads to collecting vessel 

leakiness and collagen deposition (27). Morphological changes and increased lymphatic 

collecting vessel permeability were recently reported in numerous pathologies including 

hypercholesterolemia and diabetes (39, 57). In the latter, a key molecular player involved is 

the nitric oxide (NO). NO is produced by endothelial cells via the key enzyme eNOS, by 

immune cells via iNOS, or by neuronal cells via nNOS. Although the contribution of eNOS 

in the control of lymphatic collecting vessel permeability was addressed, the relative 

contributions of iNOS and nNOS remain unknown. How hypercholesterolemia and diabetes 

affect the distribution and function of perinodal adipose tissue dendritic cells needs further 

investigation. Additionally, hypercholesteremic ApoE−/− mice, CCR7−/− and IRF4−/− mice 

all show a clear defect in DC migration (3, 4). The hypothesis that migratory DCs interact 

with lymphatic collecting vessels during their journey to the LN in order to ensure the 

maintenance of the integrity and function of the lymphatic vasculature remains an interesting 

and open question.

4. Concluding remarks

The interaction between immune cells and the lymphatic vasculature is reported in numerous 

pathological situations including infection, obesity and inflammation. Although significant 

progress was achieved during the last decade, we only recently shed light on the molecular 

mechanism involved in this interaction and how both partners are affected when the normal 

dialogue between myeloid cells and lymphatic endothelial cells is interrupted. Hopefully, an 

even better understanding of the regulation of this interaction will be obtained soon and this 

might give us the opportunity to identify new therapeutical targets and develop better 

strategies to fight and prevent diseases.

Abbreviations

BATF3 Basic Leucine Zipper ATF-Like Transcription Factor 3

Csf1r Colony stimulating factor 1 receptor

DC Dendritic cells

GATA6 GATA Binding Protein 6

IRF4 Interferon Regulatory Factor 4
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IL Interleukin

LN Lymph node

LPS Lipopolysaccharide

LTA Lipoteichoic acid

Lyve1 Lymphatic vessel endothelial hyaluronan receptor 1

M-CSF Macrophage colony-stimulating factor

PAT Perinodal adipose tissue

Prox1 Prospero homeobox 1

TonEBP Tonicity-responsive enhancer-binding protein

Vegfr3 Vascular endothelial growth factor receptor 3
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Figure 1. 
Lymphatic collector vessels are inevitably surrounded by adipocytes. This adipose tissue 

contains multiple immune cells including among others dendritic cells and macrophages. 

Dendritic cells enter in lymphatic capillaries and migrate to local draining lymph node via 

the afferent lymphatic collector vessel.
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