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Abstract

Antibody responses to influenza viruses are critical for protection, but the ways in which repeated 

viral exposures shape antibody evolution and effectiveness over time remain controversial. Early 

observations demonstrated that the history of viral exposures has a profound effect on the 

specificity and magnitude of antibody responses to a new viral strain, a phenomenon called 

“original antigenic sin.” Although “sin” might suppress some aspects of the immune response, so 

far there is little indication that hosts with pre-existing immunity are more susceptible to viral 

infections compared to naïve hosts. However, the tendency of the immune response to focus on 

previously recognized conserved epitopes when encountering new viral strains can create an 

opportunity cost when mutations arise in these conserved epitopes. Hosts with different exposure 

histories may continue to experience distinct patterns of infection over time, which may influence 

influenza viruses’ continued antigenic evolution. Understanding the dynamics of B cell 

competition that underlie the development of antibody responses might help explain the low 

effectiveness of current influenza vaccines and lead to better vaccination strategies.

Introduction

Antibodies impose strong selection on influenza viruses and largely determine susceptibility 

to infection. Frequent mutations in viral surface glycoproteins hemagglutinin (HA) and 

neuraminidase (NA) allow influenza viruses to continuously evade antibodies and infect 

human hosts repeatedly during their lifetime. Despite nearly seventy years of research, a 

coherent picture of the induction of human antibody responses and how these antibodies 

shape viral evolution and vaccine effectiveness is still emerging.

In this review, we propose that immunological and epidemiological evidence is remarkably 

consistent with one of the oldest and most notorious theories in influenza virus literature. In 

a series of studies in the 1940s and 1950s, Thomas Francis and colleagues demonstrated that 

humans have high antibody titers to influenza virus strains that they likely encountered early 
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in life and that subsequent exposures with antigenically drifted viral strains boost antibody 

responses initiated by early childhood infections [1,2]. They also found that compared to 

primary exposures, antibodies generated during subsequent infections were more likely to 

cross-react with previous strains. Francis coined the phrase “original antigenic sin” to 

describe the preferential boosting of antibody responses to viral strains encountered early in 

life. Here, we review studies that led to the concept of original antigenic sin, and we describe 

more generally how prior viral exposures can have positive and negative effects on the 

generation of antibody responses. We present a working model of how prior exposures 

influence susceptibility to new influenza virus strains, which has important implications for 

viral evolution and vaccination strategies.

A short history of original antigenic sin

In 1947, a new antigenic variant of H1N1 influenza A viruses caused a severe epidemic. 

College students who had been vaccinated a few months earlier with the previously 

circulating viral strain (PR8) and naturally infected with the new viral strain developed 

higher acute antibody titers to PR8 upon infection than did unvaccinated students [3]. 

Infected students from both groups had higher acute and convalescent antibody titers to PR8 

than to the new viral strain, and antibody titers to the new strain did not differ between the 

two groups. A preliminary explanation for these phenomena would take several years to 

unfold.

Davenport et al. [4] soon found that humans of all ages have higher antibody titers to strains 

they likely encountered in childhood. Sera from 1,250 Michigan residents showed that 

children possessed a narrower range of antibodies specific to recent strains of influenza A 

and B viruses, whereas older cohorts had higher antibody titers to older strains and more 

cross-reactive responses against recent strains. A cross-sectional study in Sheffield, England, 

revealed similar trends [5]. For each age cohort, antibody titers were usually highest against 

viral strains circulating in childhood and declined steadily against more recent viral strains 

[6,7]. Nearly sixty years later, studies of H3N2 antibody responses also found higher titers to 

older viral strains, although titers were not necessarily highest to strains from childhood 

[8,9].

As early as 1953, it was suspected that preexisting antibody responses were boosted when 

new strains shared cross-reactive antigens [4], but the first confirmation appeared when 

Jensen et al. analyzed the composition of sera from immunized humans and sequentially 

infected ferrets [10]. Sera from secondary exposures contained a high fraction of antibodies 

that cross-reacted with early viral strains and relatively few antibodies specific to later viral 

strains. Ten years later, de St. Groth and Webster showed that the secondary response, in 

contrast to the primary, was highly cross-reactive and surprisingly uniform in its affinity 

[11]. These results provided preliminary support for Francis’s claim that the response to the 

“first dominant antigen” would be repeatedly stimulated over a person’s lifetime, even as the 

original antigen became a “secondary or lesser component” of subsequent strains [2,12].
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Is original antigenic sin detrimental?

While it is clear that antibody responses against childhood viral strains are efficiently 

boosted by antigenically novel strains, early reports conflicted about whether boosting 

comes at the expense of generating strong antibody responses against the new strain. The 

original study by Francis in 1947 found no difference in post-infection antibody titers to the 

new viral strain between recent recipients of the mismatched vaccine strain, whose titers 

were boosted, and non-recipients [3]. Similar results were found in animals sequentially 

infected with different influenza viruses [11]. The magnitude of the responses elicited by an 

antigenically distinct influenza virus in these studies was the same in animals with and 

without prior influenza exposure.

Other studies have suggested that prior exposures actively suppress the magnitude or quality 

of antibody responses to new viral strains. For example, Davenport & Hennessy [6] noted a 

“suppressive effect” on the antibody response to some viral strains in children, depending on 

the order in which they received monovalent vaccinations, and cited similar patterns of 

apparent suppression in other immunization studies [4,13]. Antibody responses tend to 

decline during repeated vaccinations [14]. de St. Groth & Webster [11] described the 

secondary response in immunized rabbits as “inadequate” because antibodies in the 

secondary response reacted better with the first antigen than the second. However, most 

studies that report inhibitory effects of prior exposures rely on the hemagglutination-

inhibition assay, which only measures antibodies that block viral attachment to sialic acid. It 

is possible that sequential vaccinations in these studies elicit cross-reactive antibodies 

against other epitopes (such as the HA stalk) that are not detected in classical 

hemagglutination-inhibition assays. Thus, these studies might indicate that prior exposures 

affect the specificity of antibody responses, but this change in specificity might not affect 

overall protection.

There is currently minimal evidence that hosts with preexisting, cross-reactive immunity to 

influenza viruses experience greater susceptibility or more severe infections compared to 

naïve hosts. Cross-reactive antibody responses to influenza viruses appear generally 

beneficial. Early studies speculated that antibodies elicited against older viral strains were 

partially protective and that these cross-reactive antibodies reduced susceptibility and the 

opportunity to develop immunity to new strains [4,5,13]. A robust relationship between pre-

existing antibody titers and reduced susceptibility has been repeatedly observed [15–17]. 

Cross-reactive antibodies elicited by initial infections limit virus replication during 

secondary viral exposures and reduce disease in experimental infections [18,19]. However, 

as discussed below, the direct benefits of preexisting responses against influenza viruses may 

be inevitably associated with opportunity costs. These costs can make some types of pre-

existing antibody responses appear less beneficial than others, but they do not demonstrate 

that original antigenic sin has a net cost.

A contemporary synthesis

Nearly seventy years of accumulated evidence suggests how pre-existing responses, coupled 

with repeated exposures to antigenically evolving influenza viruses, might generate the 
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immunological and epidemiological patterns associated with original antigenic sin. A central 

element is the competitive dominance of memory versus naïve B cells for antigen. The 

anamnestic basis of secondary responses to influenza viruses has been demonstrated by 

Jensen et al. [10], de St. Groth and Webster [11], and others [20–23]. Memory B cells 

targeting epitopes shared with the original strain are reactivated, and these cells dominate 

secondary immune responses because they presumably outcompete naïve B cells, which 

have a higher threshold of activation [24,25]. The recall of memory B cells can be 

advantageous because these cells can acquire additional somatic mutations that increase 

affinity to new viral strains [22]. The level of activation of naïve B cells in secondary 

immune responses is likely partially dependent on antigen dose. For example, naïve B cells 

can be activated and the antibody response broadened if high doses of secondary antigen are 

administered [11], the antigen is given with adjuvants [26], or repeated doses of antigen are 

given [7].

From these immune dynamics, complex patterns of serology and infection can arise as a 

function of hosts’ exposure histories. Due to influenza viruses’ rapid spread and fast 

antigenic evolution, these differences are partly recognizable as contrasting patterns by birth 

year (Figure 1A). Hosts infected for the first time develop antibodies that target multiple 

epitopes on the surface of influenza viruses’ HA, although antibodies with particular 

specificities may dominate due to differences in epitopes’ immunogenicity, chance, or host-

specific factors [27]. Hosts remain protected as long as circulating viral strains conserve at 

least one epitope to which hosts have high concentrations of neutralizing antibodies. If 

exposure induces mild infection (many influenza virus infections are mild [28,29]), then 

these responses are boosted, and additional cross-reactive antibodies may continue to evolve. 

This model is consistent with the gradual increase with age in concentrations of cross-

reactive anti-HA stalk antibodies [30], which are normally subdominant [21]. It also shares 

features with other models of immune dynamics that allow preexisting responses to 

outcompete new responses via resource limitation or suppression [31–33].

The focusing of antibody responses to epitopes conserved in older influenza virus strains can 

have dangerous consequences when viruses acquire mutations in these epitopes. An example 

of this was seen following the 2009 H1N1 pandemic. Most individuals infected with the 

2009 pandemic H1N1 virus mounted antibody responses against epitopes that were 

conserved in older seasonal H1N1 viruses [20,23,34,35]. Following exposure with the 2009 

H1N1 virus, humans produced antibodies of different specificities depending on the specific 

seasonal H1N1 virus that they were exposed to in childhood [20,35,36]. In some individuals, 

this led to a very focused antibody response. This focus became a problem during the 2013–

2014 influenza season when pandemic H1N1 viruses acquired a new mutation in an exposed 

region of HA that was targeted by antibodies present in many middle-aged individuals [20]. 

This region of HA was conserved between seasonal H1N1 viruses from the late 1970s and 

the 2009 pandemic H1N1 virus. Since antibodies failed to bind to the 2013–2014 H1N1 

strain that possessed a mutation in this epitope, middle-aged individuals were 

disproportionately affected by the new drifted H1N1 strain [37]. This season revealed the 

opportunity cost of preexisting immunity: because middle-aged humans were more 

protected than younger cohorts to the original 2009 strain, they missed opportunities to 

develop antibodies to other epitopes that would have protected them in 2013–2014.
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Immune history may shape patterns of infection not only with different strains within the 

same subtype but also with different subtypes. Several lines of evidence suggest that birth 

year, a proxy for early exposure to particular subtypes, affects susceptibility to others. In 

1953, Francis speculated that the peculiarly high incidence in young adults of a pandemic 

influenza-like illness in 1782 resulted from preexisting immunity [1]. Francis and others 

proposed that in 1918, primary exposures to previously circulating H1 subtypes lowered 

susceptibility in children and older adults [1,38]: although young adults had probably 

already been infected with other H1 viruses, their first exposure (presumably to an H3 virus 

that emerged in 1889–1890) may have precluded the development of a robust response to 

H1. Other evidence suggesting that the subtype of first exposure affects immunity to other 

subtypes in an original antigenic sin-like way comes from age-specific mortality patterns in 

2009 [39] and the age distribution of H5N1 and H7N9 cases [40]. Neutralizing cross-

reactive heterosubtypic antibodies appear uncommon [21], and thus a reduction in 

heterosubtypic antigen availability mediated by other cross-reactive immune responses, such 

as memory T cells, might explain this sin-like phenomenon. Repeated exposures may 

gradually erode this effect [41,42]. This erosion is consistent with the observation that 

subtype-specific stalk antibodies accumulate in proportion to total exposure to each subtype 

[30].

Implications for viral evolution and vaccination

Influenza virus populations evolve through competition for susceptible hosts, and the 

existence of host subpopulations targeting different epitopes suggests a mechanism for 

influenza viruses’ regular antigenic evolution. In theory, assuming mutations that change the 

antigenic phenotype do not otherwise affect viral fitness, mutated strains that have the most 

susceptible hosts should spread fastest. If antigenic mutations occur slowly relative to the 

timescale of transmission, then influenza viruses could evolve to escape immunity in one 

subpopulation after another [43,44].

The effects of immune history on susceptibility to influenza viruses have several 

consequences for current vaccination strategies. Antigenic distances are typically measured 

using sera isolated from ferrets recovering from influenza virus infections [45]. With 

epitope-specific immunity, the antigenic distance between two strains can differ among hosts 

with different immune histories (Figure 1B,C) [46,47]. Thus, strains that appear 

antigenically similar according to antibodies raised in ferrets (i.e., in animals without prior 

influenza virus exposures) might be distinct from antibodies in adults [36]. The World 

Health Organization has recognized this problem and recently updated the 2017 Southern 

Hemisphere H1N1 vaccine strain based on human serology (http://www.who.int/influenza/

vaccines/virus/recommendations/2017_south/en/). Antibodies elicited in ferrets do not 

antigenically distinguish the old and new H1N1 vaccine strains, but antibodies elicited in a 

subset of humans do differentially recognize these H1N1 strains. Due to the primacy of 

antibody titers in determining susceptibility and strain fitness, cross-sectional serologic 

testing could be useful not only for identifying the need for vaccine updates but also as a 

complementary—or even alternative—method to predict the evolution of seasonal viruses 

[48–52].
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Immune history also matters for the development of new vaccination strategies. In 1957, 

Davenport and colleagues immunized differently aged individuals with a polyvalent vaccine 

containing four antigenic variants of H1N1 [7]. Broad antibody titers arose after repeated 

immunizations, and more recent studies confirm that multiple immunizations can elicit 

antibodies that target conserved epitopes [23,53]. An important consideration is whether 

such responses are protective, because it is possible that sequential exposures might elicit 

antibody responses toward conserved epitopes that are non-neutralizing. It will also be 

important to determine how to maintain levels of specific types of antibodies via 

vaccination. For example, in 2009 many individuals mounted antibodies that recognize the 

conserved HA stalk of the pandemic H1N1 virus [23]. However, these HA stalk-specific 

antibody responses dissipated after repeated vaccinations [21]. Understanding interactions 

between preexisting and new responses might also illuminate seemingly low vaccine 

effectiveness among repeat vaccinees [54–58].

Future directions

The majority of this manuscript has focused on neutralizing HA antibodies, but it is clear 

that other types of antibodies can limit influenza virus replication and spread. For example, 

some anti-HA antibodies limit virus replication in vivo through mechanisms involving 

ADCC [59,60]. These antibodies are not accounted for in most influenza virus serological 

assays. Similarly, NA antibodies can limit influenza virus spread and disease severity [61], 

and there is evidence that NAs of human influenza viruses undergo antigenic drift [62]. It 

will be important to continue to identify new correlates of protection against influenza virus 

infection and determine how prior exposures influence these processes.

We propose that quantitative, predictive models that relate previous exposures to 

susceptibility to different strains are within reach. The main hurdle is to understand 

fundamental dynamics of the immune system. There is evidence that “antigenic sin” occurs 

in humans, but the mechanisms involved in this process remain underdeveloped. What 

determines which viral epitopes are targeted by antibodies in primary infections, what 

determines variation between individuals, and how do immune repertoires evolve over time? 

New sequencing methods to examine B cell receptors, combined with animal experiments 

and longitudinal studies in humans, have the potential to provide fine-scale observations of 

the development of immunity to influenza viruses and related pathogens [21,63–65]. These 

large data sets can be used to evaluate mathematical models that capture the complex 

immune dynamics involved in secondary responses to influenza viruses [31,32,66]. 

Understanding the interactions that shape immunity over time will aid in our understanding 

of the selective pressures that shape the fitness of circulating influenza virus strains, and 

could potentially reveal strategies to increase vaccine effectiveness.
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Highlights

• Early viral infections shape B cell response recalled against future viral 

strains

• Competition between memory and naïve B cells occurs in secondary viral 

exposures

• Antibodies become focused on epitopes conserved in past influenza virus 

strains

• Focused antibody responses fail to protect against mutated viral strains
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Figure 1. The development of antibody response to drifted influenza virus strains
(A) The population begins completely susceptible to strain 1, which has two epitopes in this 

example. Upon infection, individuals in cohort A generate antibodies against the red and 

purple epitopes. The strain then acquires a mutation in the purple epitope (and becomes 

strain 2). New susceptible hosts (cohort B) that become infected with strain 2 develop 

antibodies to the red and green epitopes. In contrast, older individuals (cohort A) that are 

exposed to strain 2 develop an antibody response focused primarily on the red epitope that 

was conserved in strain 1. Older individuals likely experience mild infections with strain 2 

since these individuals possess cross-reactive antibodies against the red epitope. Eventually, 

immune pressure at the red epitope selects for a virus (strain 3) that possesses a red→blue 

mutation. Older individuals (cohort A) regain susceptibility since they have an antibody 

response focused on the former red epitope, and younger individuals (cohort B) are 

protected against this strain because they possess antibodies against the green epitope 

conserved in strain 2. (B–C) After exposure to strain 2, antigenic cartography based on the 

sera from cohort A (B) and cohort B (C) reveals different patterns. Antibodies from 

individuals in cohort B recognize the red and green epitopes and perceive all strains as 

identical, whereas antibodies from individuals in cohort A recognize the red epitope and 

perceive strain 3 to be distinct from strains 1 and 2.
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