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Abstract

Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being 

able to chart a clear picture of their genetic architecture, given an inherent complexity involved in 

trait formation. A competing theory for studying such complex traits has emerged by viewing their 

phenotypic formation as a “system” in which a high-dimensional group of interconnected 

components act and interact across different levels of biological organization from molecules 

through cells to whole organisms. This system is initiated by a machinery of DNA sequences that 

regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble 

these endophenotypes toward the end-point phenotype in virtue of various developmental changes. 

This review focuses on a conceptual framework for genetic mapping of complex traits by which to 

delineate the underlying components, interactions and mechanisms that govern the system 

according to biological principles and understand how these components function synergistically 

under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is 

built by a system of differential equations that quantifies how alterations of different components 

lead to the global change of trait development and function, and provides a quantitative and 

testable platform for assessing the multiscale interplay between QTLs and development. The 

method will enable geneticists to shed light on the genetic complexity of any biological system 

and predict, alter or engineer its physiological and pathological states.
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1. Introduction

The past two decades have witnessed increasing applications of quantitative genetics to a 

wide spectrum of life sciences from plant and animal breeding to clinical medicine 

[16,101,118,142]. However, a considerable body of research has shown that quantitative 

traits are extremely difficult to study because their formation involves many unknown 
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physiological mechanisms that guide or are guided by the underlying genetic factors that 

operate in a complicated way [7,100]. By regressing phenotypic values of traits directly on 

molecular markers from the genome, Lander and Botstein [78] have pioneered an approach 

for mapping and identifying specific genetic loci, known as quantitative trait loci (QTLs), 

that contribute to trait variation. Depending on the type of segregating populations used, this 

approach is called linkage mapping for controlled crosses or association mapping for natural 

populations [110]. With the increasing availability of inexpensive DNA sequencing and 

genotyping techniques, it has become a routine tool to dissect the genetic architecture of 

complex traits, providing unprecedented promises to construct the genotype-phenotype 

predictive map [62]. However, thousands of thousands of significant QTLs identified so far 

in a variety of species by this approach have gained little mechanistic insight because a 

majority of these loci have not been translated into genes and pathways [20]. The translation 

of functional QTLs requires knowledge of how they act and interact through a series of 

biochemical pathways toward the end-point phenotype.

To understand the genetic control of QTLs over the process of trait formation, a dynamic 

model, called functional mapping, has been developed [98,174] and recognized as an 

important approach for genetic mapping [69,131,141,188]. By integrating the dynamic 

pathways underlying phenotypic formation using mathematical equations, this model is 

renovated to identify QTLs involved in rate-limiting processes and to quantify the dynamic 

effect pattern of these genes across a time and space scale [58,89]. More recently, functional 

mapping has been extended to systems mapping by viewing a phenotype as a dynamic 

system [46,47,176]. The key insight of systems mapping is that the dynamics of a complex 

system depends on how its elements causally influence each other by means of QTLs. By 

identifying QTLs that determine information flows between different elements, systems 

mapping can reconstruct a genotype-phenotype map from developmental pathways [12].

Many existing genetic approaches are built on a direct genotype-phenotype association. 

Although this is a simple strategy easy to be used, it neglects the biology inside the “black 

box” that links genotype and phenotype through causal networks of interacting genes and 

pathways. Several authors have recognized the essentiality of incorporating transcript, 

protein and metabolite abundance into genotype-phenotype prediction models and 

constructing transcriptional and regulatory networks affecting high-order phenotypes 

[20,101]. With these established networks, the causative and downstream effects of DNA 

sequences on phenotypic variation can be clearly understood by perturbing gene expression, 

proteins and metabolities that play a critical role in the connectivity of DNA variation 

through endophenotypes to the end-point phenotype.

Figure 1 illustrates a big picture of the formation process of a complex trait from DNA to a 

final phenotype through a cascade of regulatory pathways. This picture presents a general 

system of information flow applicable for any trait or disease, but its implementation into a 

practical genetic study is extremely difficult, if not impossible. At the current level of 

biotechnology, however, it is feasible to dissolve the whole process of trait formation into 

multiple continuous smaller-scale systems, in each of which the comprising elements can be 

readily identified from prior knowledge, and further connect these systems in tandem as a 

functional whole. A system is defined by the elements that it constitutes, the interactions 
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between these elements, and the natural rules of the system [113,147]. The system rules 

operate through individual or subsystem elements, but are effective only at the entire system 

level. How the function of a system is recognized and emphasized depends on the 

investigator or user’s perspective [5].

In this review, we present a general philosophy of mapping complex traits by broadly 

dissecting trait formation into its three interactive underlying systems, (1) a static system of 

genetic architecture composed of DNA-based variants, (2) a dynamic system of 

morphogenesis from early to adult phenotypes, and (3) a dynamic system of regulatory 

networks originated from DNA and ended at the molecules as precursors for synthesizing 

the phenotype. Phenotypic formation of one organism may not only be affected directly by 

its own genes, but also indirectly by genes of its conspecific in a community. We also 

discuss how a dynamic system of ecological interactions determines the phenotypic variation 

of a complex trait. We describe the basic principle of dissecting each of these systems and 

the computational framework of modeling the structure, organization and function of a 

system through differential equations. As an approach of genetic mapping, we pinpoint 

several commonly used types of mapping populations that accommodate to key 

characteristics of different species. To the end, this review provides a dynamic strategy for 

using the genotype of an organism to predict its phenotype across a range of environments. 

Our review does not simply provide literature documentation for results of genetic mapping, 

rather than attempts to provide a broad picture of mapping complex traits from a systematic 

standpoint, which is inevitably unbalanced in the coverage and references of the 

presentation. Despite their significant contributions to genetic mapping, we apologize in 

advance to those authors whose work is not cited in this review.

2. Modeling the genetic architecture of complex traits

There has been a wealth of seminal reviews on the status and opportunities of studies on 

genetic architecture by leading quantitative geneticists [7,61,63,99–101]. Hansen [55] 

discussed the pattern of how genetic architecture evolves and how it influences evolution. 

All the approaches for studying genetic architecture are to link individual DNA variants to 

the end-point phenotype (Fig. 1). Here, we define the genetic architecture of a complex trait 

from a systems perspective and review statistical methods for estimating the structure and 

organization of such a high-dimensional system.

2.1 A traditional strategy of mapping complex traits

The genetic theory for analyzing quantitative traits has well been established since the early 

twenty century [42]. This theory, equipped with statistical methods, such as the analysis of 

variance and path coefficients invented by Fisher [42] and Wright [170], enables geneticists 

to estimate the resemblance between relatives and partition phenotypic variation into its 

genetic (including additive, dominant and epistatic) and environmental components. By 

implementing the quantitative genetic theory into the design of experiment derived from 

various mating designs, Cockerham [21] translated the estimates of experimental variances 

into the estimates of additive and dominant variance components, largely expanding the 

practical application of the original theory to dissecting quantitative traits. Wu [173] further 

Sun and Wu Page 3

Phys Life Rev. Author manuscript; available in PMC 2017 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



integrated clonal replicates, which can be available for many species, such as forest trees, 

into Cockerham’s [21] analytical model to extract part of the epistatic genetic variance.

Pure quantitative genetic analysis cannot reveal the “black box” behind quantitative genetic 

variation that is believed to involve many loci with unknown actions and interactions 

[33,97,101] until the revolutionary emergence of DNA recombinant technologies in the 

1980s. Taking advantage of the rapid development of statistical and computational 

techniques, Lander and Botstein [78] pioneered an innovative approach for dissecting 

quantitative traits into their underlying genetic components, i.e., QTLs, at the DNA level. 

This so-called interval mapping has quickly demonstrated its widespread application in 

quantitative genetic studies for a wide range of species including microorganisms, plants, 

animals and humans (reviewed in 7,33,61,63,99–101) and has also received extensive 

modifications and reformations for different purposes 

[15,68,71,102,112,129,186,187,191,194,198]. While genetic mapping is usually based on a 

genetic linkage map constructed from molecular markers, which may not have a detailed 

coverage of the genome, a more in-depth genetic approach, genome-wide association studies 

(GWAS), has emerged as a powerful tool since high-throughput single nucleotide 

polymorphism (SNP) genotyping techniques have become available [57,62,82]. GWAS 

attempts to search for all possible genes that control a complex trait or disease in a way a 

fisherman fishes from a big pool of water by using a high-density web.

As shown in Fig. 1, a conventional analytical strategy of genetic mapping and GWAS is 

based on a simple regression model that directly associates individual markers with a 

phenotype without considering the intermediate process from DNA to the end-point 

phenotype. This analysis is conducted on a controlled cross of segregating individuals, such 

as the backcross or F2, initiated with two inbred lines, with the model expressed as

(1)

where yi is the phenotypic value of individual i; μ is the overall mean; aj and dj are the 

additive and dominant genetic effects of the jth QTL, respectively; ξi and ζi are the indicator 

variables that define the genotype of a QTL, expressed as

(2)

(3)

and ei is the residual error, assumed to be normally distributed with mean 0 and variance σ2.
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Statistical methods, such as maximum likelihood or regression analysis, have been 

implemented to estimate the genetic effects and other model parameters [78]. After these 

parameters are estimated, hypothesis tests are performed to test whether the genetic effects 

are significant singly or jointly. In genetic mapping, permutations tests are usually used to 

determine the genome-wide critical threshold for claiming the significance of the QTLs 

detected. For GWAS, each SNP is subject to statistical analysis by the regression model (1), 

obtaining a p-value from the significance test. Put together, the p-values are plotted against 

the genome locations of all SNPs to produce a Manhattan plot, from which a final set of 

significant SNPs are determined after the adjust for multiple comparisons using Bonferroni 

correction, false discovery rate or other approaches.

As an example, Figure 2 shows the application of genetic mapping and GWAS in an F1 

family of interspecific hybrids in poplar. By scanning a linkage group based on the log-

likelihood ratio (LR) test, a peak, beyond the critical threshold at the 5% significance level 

determined from permutation tests, was identified between markers AG/CGC-235R and GT/

CAT-430RD, suggesting the existence of a significant QTL for stem diameter growth in this 

marker interval (Fig. 2A). The same hybrid population, genotyped for about 110,000 SNPs, 

was analyzed for the same trait by GWAS (R. Wu and M. Huang, unpublished data). From 

the Manhattan plot obtained, we identify several significant loci at the 5% significant level 

after Bonferroni correction (Fig. 2B). As like in genetic mapping, we need to estimate the 

proportion of total phenotypic variance explained by each significant locus. This proportion 

is called single-QTL heritability that contributes to the overall heritability of 11-year stem 

diameter.

Linkage mapping and association studies have provided a powerful tool to illustrate a trait’s 

genetic architecture by identifying the numbers and genome locations of genes that affect 

the trait, the magnitude of their unique effects and pleiotropic effects, and the relative 

contributions of additive, dominant, and epistatic genetic effects. The traditional single-

locus/single-phenotype analysis used, however, is not able to provide a precise picture of 

genetic architecture for complex traits because it is not implemented with the intrinsic 

complexity of genetic control. It has been widely recognized that complex traits are 

determined simultaneously by a number of genes, each acting singly or interacting with 

other genes and environmental factors to different degrees [33,97]. Such multifactorial 

nature of a complex trait has made the description of its underlying genetic architecture a 

difficult and challenging task.

2.2 Genetic actions and interactions

A gene exerts its effects on a complex trait in a complicated manner. It may act singly 

through main effects, or interact with other genes via epistasis, forming a network of actions 

and interactions. For a single gene, its main effect can be partitioned into additive and 

dominant components, whereas the epistasis of a given pair of genes includes additive × 

additive, additive × dominant, dominant × additive and dominant × dominant interactions 

[42]. By charting such a genetic network, we can comprehend the genetic control 

mechanisms of a complex trait and elucidate the rules for translating genetic variation to the 

phenotypic variation of the trait. We diagrammatize the genetic architecture of botanical 
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traits for a plant composed of all possible genes distributed on its total five chromosomes 

(Fig. 3). Some genes are collectively distributed on a small region (e.g., chromosome 2), 

whereas the others have a sporadic distribution throughout a wide region of the genome. 

Some interacts with many other genes (e.g., gene 1), some only have a few interactions (e.g., 

gene 2), and the others have no interactions (e.g., genes 24 and 25). Some genes tend to 

interact with those within the same region (e.g., genes on chromosome 5), whereas others 

only interact with those from different chromosomes (e.g., genes on chromosome 1).

Pleiotropy, believed to play an important role in the genotype-phenotype relationship, is the 

other main element in genetic architecture. A gene is thought of being pleiotropic if it affects 

two or more traits at the same time [146]. Of the genes that affect an above-ground trait of 

the plant, some also pleiotropically influence its below-ground trait (e.g., genes 2, 3, 15 

among others; Fig. 3). These genes are one of the causes for the genetic correlation between 

these two types of traits. Of course, the two traits are correlated partly because of the genetic 

linkage between two genes, each controlling a different trait (e.g., two adjacent genes 3 and 

4). Although the below-ground trait is highly related to the above-ground trait, they 

obviously present two different modules because of distinct discrepancy in their underlying 

genetic basis. As shown in Fig. 3, a large portion of genes that affect the below-ground trait 

are not involved in variation in the above-ground trait. On the other hand, the genes for the 

above-ground trait are generally also responsible for the below-ground trait. This difference 

suggests that this particular below-ground trait is more autonomous than the above-ground 

trait assumed.

Given that the complexity of a phenotypic trait arises from the highly interactive 

relationships of its underlying components, it is reasonable to hypothesize that the metabolic 

pathways for trait formation involve multiple interacting gene products and regulatory loci 

[106]. Three-way interactions among different QTLs were believed to be involved in 

metabolic pathways toward a complex trait [134]. A mathematical approach was derived to 

describe multi-way genetic interactions to study the genetic structure of fitness landscapes 

for Escherichia coli [9]. A genome-scale knockout design was framed to detect high-order 

epistatic relationships between components of large metabolic networks [66]. Hansen and 

Wagner [56] showed that higher-order genetic interactions play a pivotal role in trait 

phenotype if the total genomic mutation rate is large and the interaction density among loci 

is not too low.

2.3 Genetic imprinting and epigenetic actions

Many recent studies have unraveled the importance of genomic imprinting and epigenetic 

modification as a mechanism for genetic variation [19,90,92,148,149]. Genomic imprinting 

is a genetic phenomenon by which certain genes are expressed or repressed depending on 

their parental origin [79]. Violating the classical Mendelian inheritance, imprinted genes are 

either expressed only from the allele inherited from the mother, such as H19 or CDKN1C, or 

from the allele inherited from the father, such as IGF-2. From a quantitative genetic 

perspective, genomic imprinting may provide organisms with evolutionary merits by 

contributing additional genetic variation and conferring a fitness benefit in changing 

environments [120]. Nowadays, different forms of genomic imprinting have been detected in 
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a variety of species and thought to play an important role in regulating crucial aspects of 

embryonic growth and development as well as pathogenesis. Recent bioinformatic analyses 

suggest that the number of imprinted genes may be higher than we thought previously but 

this remains to be demonstrated experimentally [67].

One of the forces causing genetic imprinting is systematic or stochastic changes in 

chromatin states, such as DNA methylation, chromatin remodeling, histone modification and 

RNA interference [17,157]. These epigenetic modifications have also been thought to 

provide an additional driving force for phenotypic variation in complex traits and diseases 

[31,39,40,70,122,123]. Different chromatin states, called epialleles, that occur in the same 

sequence allele cannot be captured by an analysis based on DNA sequence alone (Johannes 

et al. 2008). With the increasing availability of epigenome technologies, there has been an 

unprecedented opportunity to understand the role of epiallelic variants in maintaining and 

inducing functional variation for organisms to better buffer against environmental 

perturbations. Like genetic imprinting, epigenetic variants should also been considered for 

elucidating the genotype-phenotype map.

Genetic mapping has been used as an appealing approach to discovering imprinted QTLs 

(iQTLs) based on particular mating designs. Basically, these designs include outcrossed 

families [29,74], sex-specific linkage analysis [19,25], reciprocal crosses [90,148,149,192], 

multigenerational pedigrees [92], open-pollinated populations [138] and case-control studies 

[87]. From these designs, significant imprinted QTLs were detected for body composition 

and body weight in pigs, chickens, sheep and canine, endosperm traits in maize, and stem 

growth in hickory tree. Computational models have also been developed to detect and map 

epiQTLs, i.e, those QTLs at which epigenetic marks are differentially expressed in response 

to environmental changes [137]. Wang et al. [155] proposed a model to estimate the relative 

contribution of epiQTLs to overall genetic variation in a natural population.

2.4 Genotype-environment interactions

In order to adapt to the new or fluctuating environment, the organism will often change its 

phenotypic expression, a phenomenon called phenotypic plasticity [126,144]. Differences in 

the capacity of phenotypic plasticity among individuals cause genotype-environment 

interactions. This explains a vast body of observations of why the genetic effect of a QTL 

detected on a phenotypic trait depends on the environmental and developmental context, 

such as temperature, irradiation, nutrition, or age [101,154]. Obviously, genotype-

environment interactions are a key factor that determines the pattern of the genetic 

architecture of a complex trait. The investigations of genotype-environment interactions will 

not only help to design an efficient breeding program as like a traditional consideration, but 

also are being integrated into conceptual model construction for evolutionary, climate 

change and clinical studies [8,32,108].

Special attention has been paid to study the genetic mechanisms of phenotypic plasticity 

[127]. More recently, El-Soda et al. [32] summarized five genetic models proposed to 

explain the genetic basis of phenotypic plasticity: (1) Overdominance: phenotypic plasticity 

is negatively correlated with the number of heterozygous loci; i.e., the more homozygous a 

genotype, the more plastic it is. (2) Allelic sensitivity or incomplete pleiotropy: the 
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magnitude of allelic effects at a gene varies among different environment; the gene has a 

pleiotropic but different effect on the same trait expressed in different environments. (3) 

Epistasis: loci causing plasticity regulate other genes through epistatic interactions to be 

switched on or off in a particular environment. (4) Linkage: alleles responsible for plasticity 

may be linked with alleles that produce either low or high fitness. (5) Epigenesis: an 

epiallele of a gene becomes sensitive to the environment due to chromatin modification and 

DNA methylation, while the standard allele is stable. All possible models implicate the 

mechanistic complexity of genotype-environment interactions, making it essential to chart 

genetic architecture from a systems perspective.

Most studies of genotype-environment interactions focus on genetic variation in phenotypic 

plasticity between two discrete environments [32]. Such studies are not able to unravel 

phenotypic response, or reaction norms, to a gradient of environmental conditions [145]. 

Wang et al. [154] implemented a dynamic model to study the genetic architecture of the 

gradient expression of a complex trait across a range of environments. This model was 

framed on mathematical aspects of phenotypic plasticity, equipped with a capacity to unravel 

the quantitative attribute of trait response to the environment. By testing the curve 

parameters that specify reaction norm trajectories, the model enables geneticists to test a 

series of fundamental hypotheses a quantitative way about the interplay between genes and 

environmental sensitivity. The model can also make the dynamic prediction of genetic 

control over phenotypic plasticity within the context of changing environments.

2.5 Direct and indirect genetic effects from genome-genome interactions

Increased recognition has been given to the role of genetic interactions between QTLs from 

different genomes in both direct and indirect ways [75,77,168,196]. For example, in 

flowering plants that undergo a double-fertilization process leading to the differentiation of 

the embryo and endosperm in the seed, seed traits are controlled simultaneously by three 

genomes, diploid offspring (embryo), triploid offspring (endosperm), and the maternal plant 

which carries the seed. While offspring genomes confer direct genetic effects on the seed, 

the maternal genome provides an indirect genetic effect. Seed development is thus the result 

of a mosaic of different gene expression programs occurring in parallel in different 

compartments. Wu and group have developed a series of statistical models that can 

characterize the genetic effects on seed traits derived from the maternal genome, the 

offspring genome and material-offspring interactions [22–24,26,150,178,180]. Likewise, 

given that a tumor is supplied with nutrients from normal tissues, its growth should depend 

on an interactive effect of genes directly from the normal tissue and indirectly the tumor 

tissue [88].

When different organisms grow in the same environment, the phenotype of an organism may 

be determined not only by its own genome, but also by the genome of the other organisms 

around it and genetic interactions between different genomes. In a gene expression study of 

plant-pathogen interactions, Zhu et al. [196] identified the genetic architecture of plant 

resistant traits composed of genes from the host and pathogen. Kolenbrander et al. [75] 

reviewed evidence for intimate interactions between genomes of the human and 

microorganisms in dental plaque communities. Lambrechts [77] argued that the phenotype 
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of viral infection does not merely result from additive effects of host and pathogen 

genotypes, but also from a specific interaction between the two genomes. Wolf et al. [169] 

integrated genetic mapping and structural equation models to detect a QTL for flowering 

time in focal plants that pleiotropically affects the expression of developmental traits in the 

neighbor plants. Also, there has been a body of other literature that reports the detection of 

QTLs for phenotypic traits related to interspecific interactions, such as immune response 

[80], tolerance to herbivory [160], mate recognition [130], or predator-defense traits [96], by 

using conventional mapping approaches.

3.6 High-dimensional model of inferring a complete picture of genetic architecture

Despite the complexity of the underlying process from genes to phenotype, the vast majority 

of genetic analysis is built around a very simple model of associating genotype with 

phenotype. To overcome this simplicity of trait analysis, a more sophisticated statistical 

model based on high-dimensional variable selection has been developed, allowing a large 

number of SNPs to be analyzed simultaneously [83]. This model involves a two-stage 

procedure for multi-SNP modeling and analysis in GWAS, by first producing a 

“preconditioned” response variable using a supervised principle component analysis and 

then formulating Bayesian LASSO to select a subset of significant SNPs. This model has 

proven to be particularly powerful for selecting the most relevant SNPs for GWAS where the 

number of predictors exceeds the number of observations.

More recently, high-dimensional variable selection has been extended to an ultrahigh-

dimensional scale which enables the modeling and estimation of SNP-SNP interactions in 

GWAS [85]. The extended model incorporates a two-stage sure independence screening 

(TS-SIS) procedure [36]: first, to generate a pool of candidate SNPs and interactions served 

as predictors to explain and predict the phenotypes of a complex trait; and second, 

regularization regression methods, such as LASSO or smoothly clipped absolute deviation 

(SCAD) [34,35], are applied to further identify important genetic effects. A rates adjusted 

thresholding estimation (RATE) approach was used to control the false positive rate of the 

selected model by a general independent screening procedure.

Consider a GWAS in which a simple regression model (1) was extended to include all 

possible main effects (including the additive and dominant) and interaction effects, as well 

as all possible covariates. Thus, the phenotypic value of a particular individual i can be 

expressed as

(4)

where μ is the overall mean, xki is the kth covariate for individual i, which could be either 

discrete or continuous, αk is the effect of the kth covariate (k = 1, …, q), aj and dj are the 

additive effect and dominant effect of the jth SNP (j = 1, …, p), respectively, , , 
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and  are the additive × additive, additive × dominant, dominant × additive and dominant × 

dominant epistatic effects between SNP j and j′ (j < j′ = 1, …, p), respectively, and εi is the 

residual error assumed to follow an N(0; σ2) distribution. For individual i, ξji and ζji are the 

indicators of the additive and dominant effects of the jth SNP, respectively, as explained in 

equations (2) and (3).

Let Da and Dd denote a set of additive and dominant effect indices, respectively. The first 

round SIS is conducted on  and  for all SNPs. After the first 

stage SIS, a subset of SNPs with potential nonzero additive  and dominant effects 

 is selected. Note that each SNP in any subset may either have true nonzero main 

effects, or serve as a root in a two-way interaction. Let , ,  and 

denote a set of selected roots for additive × additive, additive × dominant, dominant × 

additive and dominant × dominant epistatic effects, respectively.

After two-stage sure independence screening, the dimensionality of GWAS model has 

greatly reduced. In order to precisely select important SNPs and epistatic interactions from a 

pool of candidate effects, penalized regressions widely used in main-effect analysis could be 

incorporated here. Specifically, we put penalties on the sizes of additive, dominant and all 

epistatic effects and minimize the following penalized least squares:

(5)

where the penalty function pλ(·) is implemented to shrink sufficiently small effects to zero 

and thus exclude the inactive predictors. The SCAD penalty least squares function, 

characterized by unbiasedness, continuity and sparsity properties [36], has been used to 

solve model (5), with the estimates of regression coefficients being estimated with the aid of 

local linear approximation. Note that the SCAD penalized least squares (5) can be easily 

minimized using L1 penalized regression.

Results from simulation studies show that the TS-SIS procedure is computationally efficient 

and has an outstanding finite sample performance in selecting potential SNPs as well as 

gene-gene interactions. The procedure was used to analyze an ultra-high dimensional GWAS 

dataset from the Framingham Heart Study [28], leading to the detection of 32 significant 

SNPs including 42 epistatic interactions for body mass index (BMI) (Fig. 4). We 

summarized the results as follows: (1) Epistasis appears to be distributed randomly 

throughout the genome, although a few SNPs, such as ss66142093 on chr 3, ss66249128 and 

ss66468842 on chr 7 tend to interact with many other SNPs. (2) Active epistasis may not be 

due to interactions between two SNPs both of which display active marginal effects. Of the 

42 selected pairs, there are five cases in which both SNPs have active marginal effects and 

there are 21 cases in which only one SNP has an active marginal effect whereas the 
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counterpart has not. There are as many as 16 pairs in which no SNP is active for its marginal 

effect. Notably, the DD interaction between SNP ss66249128 on chr 7 and SNP ss66451087 

on chr 12 can explain 2.32% of the BMI variation, although the latter is marginally 

uncorrelated with BMI. In the presence of SNP ss66451087, the D effect of SNP 

ss66249128 is dramatically impacted.

Since this ultrahigh-dimensional GWAS model can analyze a large number of SNPs and 

interactions simultaneously, the resulting discoveries should be statistically powerful to chart 

the genetic architecture of a complex trait than those from traditional single-SNP 

approaches. Genetic loci detected by this approach show high more biological relevance. For 

example, SNP ss66142093 on chromosome 3, detected to explain 2.97% single-locus 

heritability, is near a candidate gene ANAPC13 involved in pathways for bone and cartilage 

development that affects human height and stature through cell cycle regulation and mitosis 

[158]. Also, significant loci detected on chromosomes 3, 4, 6, 9 and 12 are within the genes 

responsible for type 2 diabetes, a disease highly correlated with BMI [44]. These results 

demonstrate the capability of the TS-SIS model to resolve the complexity of genetic control 

mechanisms.

3. Developmental dissection of complex traits

The formation of every trait undergoes a series of developmental changes in an organism’s 

ontogeny. For example, in the lifecycle of a soybean (Fig. 5), plant development includes a 

broad spectrum of processes, i.e., the formation of a complete embryo from a zygote, seed 

germination, the elaboration of a mature vegetative plant from the embryo, the formation of 

flowers, fruits, and seeds, and many of the plant’s responses to its environment. Each of 

these processes is fundamental to determine the size, shape and production of a higher plant. 

Knowledge of the genetic basis of the variation in each process is important for 

understanding adaptive evolution and deriving elite domestic crop varieties. Traditional 

approaches map a phenotype by measuring it at a fixed time point (Fig. 1), view the process 

of trait formation as a “black box” and, thus, fail to capture the dynamic structure and 

pattern of the process. A conceptual functional mapping model has been derived to address 

this issue by considering biological mechanisms and processes of phenotypic formation 

([98,174]; Fig. 1). By measuring a phenotypic trait repeatedly at a series of time points, a 

biologically meaningful curve, e.g., growth curve, can be used to fit to these observations. 

This procedure has been integrated into functional mapping which thus unifies the strengths 

of statistics, genetics, and developmental biology to facilitate the test of the interplay 

between genetic action and development and the characterization of physiological and 

developmental pathways involved in the function of genes [181]. Here we do not focus on 

the review of functional mapping because it has been described elsewhere [58,88].

3.1. From functional mapping to systems mapping

Although functional mapping is a big jump in exploring the developmental machineries of 

trait formation from Lander and Botstein’s [78] internal mapping model, it is still too simple 

to chart a complete dynamic picture of trait formation. In general, a phenotypic trait, such as 

biomass, is formed through complex interactions and coordination of the underlying 
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components expressed at different organizational levels. Given that biology is multifactorial, 

any analytical tools used to study biology should be sophisticated sufficiently to capture 

such complexity. By viewing a complex phenotype as a dynamic system, Wu et al. [176] 

extended functional mapping to the level of systems mapping. The central principle of 

systems mapping is to dissect a trait into its underlying components, coordinate the 

interactions of different components in terms of biological laws through mathematical 

equations, and map specific genes that mediate each component and its connection with 

other components. As a bottom-top model, systems approach can identify specific QTLs that 

govern the developmental interactions of various components giving rise to the function and 

behavior of the system. By estimating and testing mathematical parameters that specify the 

system, systems mapping enables the prediction or alteration of the physiological status of a 

phenotype based on the underlying genetic control mechanisms.

Biomass partitioning—Here, we use an example of biomass partitioning to explain 

systems mapping. To best adapt to a particular environment, a plant tends to allocate its 

biomass into living parts in an optimal way that channels a maximum amount of resources to 

the target of harvest (leaves, stem, roots, or fruits) (Fig. 6; [50]). Given its such an ecological 

interest [105], theoretical modeling of biomass allocation pattern has received considerable 

attention [18,50]. Modeling work has focused on the understanding of how different organs 

of a plant coordinate and interact to optimize the capture of nutrients, light, water, and 

carbon dioxide in a manner that maximizes plant growth rate through a specific 

developmental program. Chen and Reynolds [18] developed coordination theory to model 

the dynamic allocation of carbon to different organs during growth in relation to carbon and 

water/nitrogen supply by a group of differential equations. To maintain the growth of a plant, 

its organs, the leaf, stem, branch, coarse root and fine root, should coordinate as a cohesive 

whole. Wu et al. [176] integrated the coordination and optimization model to study the 

pattern of biomass partitioning by incorporating the allometric scaling theory [161–163] into 

a system of ordinary differential equations (ODE), expressed as

(6)

where MF, MS, MB, MR, and MH are the biomasses of the foliage (F), stem (S), branches 

(B), roots (R) and root hairs (H), respectively, with whole-plant biomass M = MF + MS + 

MB + MR + MH; α and β are the constant and exponent power of an organ biomass scaling 

as whole-plant biomass; and λ is the rate of eliminating ageing leaves or root hairs [177].

The complex interactions between different parts of a plant that underlie design principles of 

plant biomass growth can be modeled and studied by estimating and testing the ODE 

parameters (αF, βF, λF; αS, βS; αB, βB; αR, βR; αH, βH, λH). For example, plants are 

equipped with a capacity to optimize their fitness under low nutrient availability by shifting 
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the partitioning of carbohydrates to processes associated with nutrient uptake at a cost of 

carbon acquisition [59]. These parameters can be used to quantify and predict such 

regulation between different plant parts in response to environmental and developmental 

changes.

Model—Assume a plant’s mapping population composed of n RILs, initiated with two 

inbred lines. This population is genotyped by a panel of molecular markers from which a 

genetic linkage map is constructed. All RILs are phenotyped for biomass traits, separately 

for the foliage (F), stem (S), branches (B), roots (R) and root hairs (H), at a multitude of T 
time points on the ontogeny of the plants. Let 

denote the vector of time-dependent biomass traits of RIL i measured for five organs. 

Consider a QTL or a set of QTLs that affect the dynamic changes of five biomass traits at a 

time. Based on Lander and Botstein’s [78] theory, we formulate a mixture-based likelihood 

expressed as

(7)

where ωj|i (j = 1, …, J) is the conditional probability of the jth QTL genotype given the 

marker genotype of RIL i that are linked with the QTLs, and  is a high-

dimensional multivariate normal distribution density function of RIL i with mean vector for 

QTL genotype j expressed as

(8)

and covariance matrix, expressed as

(9)

Systems mapping uses ODE (6) to model the time-dependent mean vectors for each QTL 

genotype j using ODE parameters 

 (j = 1, …, J). A basic 

mathematical algorithm for ODE solving, the fourth Runge-Kutta, has been incorporated 

into mixture model to estimate these QTL genotype-specific ODE parameters [46,47,174]. 

Because the covariance matrix Σ contains longitudinal structure, it can be modeled by some 
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parsimonious approaches. Zhao et al.’s [195] multivariate structured antedependence (SAD) 

model can be implemented within systems mapping. The SAD is found to have an advantage 

in capturing the covariance structure with a few parameters.

The existence of significant QTLs involved in the ODE system can be detected by scanning 

the linkage group using a log-likelihood ratio profile, a method as shown in Fig. 2A. After a 

significant QTL is detected, systems mapping provide an elegant procedure to test 

mechanistic hypotheses of biological relevance [151]. They include:

1. Size-shape relationship: Given the ODE parameters for system (6), one can see 

how much biomass has been allocated to the leaves, stem, branches, roots and 

root hairs. It is possible that some plants have a dominant main stem, with less 

leaves, while some plants allocate more carbon to the roots than the leaves, stem 

and branches. Systems mapping can estimate specific effects of a QTL on a 

plant’s size and form or shape and, furthermore, quantify how the QTL governs 

the dynamic relationship between size and shape.

2. Structural-functional relationship: The structure of a system can determine its 

function. On other hand, function may also lead to the change of structure. In 

general, a plant in drought soil would allocate more energy into its root system in 

order to increase its survival rate and fitness. Systems mapping enables 

geneticists to predict the dynamical change of such structural-functional 

relationships and gain new insight into the genetic mechanisms involved in 

balancing vegetative and reproductive growth.

3. Cause-effect relationship: All organs contribute to the whole-plant biomass 

through a complex web of direct and indirect relationships. The foliage 

performing photosynthesis may not only make a direct contribution to the whole-

plant biomass by producing carbohydrates, but also affect the latter through an 

indirect relationship of other traits, such as roots and root hairs. Systems 

mapping can estimate the genetic effects on these direct and indirect 

relationships.

4. Sink-source relationship: In plants, leaves serve as main supply areas (sources) 

that produce and transport carbohydrates through the phloem to areas of growth 

or storage (sinks). Sinks can locate at many places including the stem and root 

system. The rate at which carbohydrates are transported is primarily dependent 

on the sink strength of plant organs. The specific QTLs that affect these sink-

sources relationships can be identified from systems mapping.

Example—We used systems mapping to analyze the dynamic changes of above-ground 

biomass composed of the stem and leaves (including foliage and branches) in a soybean RIL 

mapping population derived from two cultivars, Kefeng No.1 and Nannong1138-2. Systems 

mapping detects two QTLs, one on linkage group 3, named dynQ1, and the second on 

linkage group 24, named dynQ2 (Fig. 7). The two QTLs were found to determine the 

functional relationship between leaf and stem and whole-plant biomass. dynQ1 triggers its 

effect on organ biomass growth immediately when seeds germinate into seedlings, whereas 

dynQ2 is operational when the seedlings have grown into a certain size. At dynQ1, alleles 
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inherited from Kefeng No.1 contributes to the favorable allometric correlation of leaf and 

stem biomass with the whole-plant biomass. The alleles for dynQ2 that favorably affect this 

correlation are derived from Nannong1138-2. These findings suggest that specific QTLs are 

involved in the control of developmental timing and the structural-functional relationship of 

biomass allocation, with the pattern of action being taken to cope with genetic background.

3.2. The application of systems mapping in pharmacology

In clinical pharmacology for HIV/AIDS, the response of a patient to an antiviral drug or 

multiple drugs can be viewed as a system in which the body interacts with the drug through 

biochemical and biophysical principles to control or eliminate the expansion of virus. 

Because this process is under the joint control of genes derived from the host and pathogen 

[3], an understanding of the genetic architecture of drug response is important for designing 

personalized medicines to effectively combat HIV/AIDS. Systems mapping is shown to be 

particularly powerful for tackling the complexity of the genetic control mechanisms of virus-

host interactions [54,184]. The decline trend of viral load in the host after an antiviral 

therapy, followed by the possible emergence of drug resistant viruses in the therapy, can be 

described by a high-dimensional group of ordinary differential equations (ODE). By 

incorporating the difference of wild-type and mutant viruses, Bonhoeffer et al. [13] obtained 

the following ODE:

(10)

where there are five variables: uninfected cells, x, cells infected by wild-type virus, y1, cells 

infected by mutant virus, y2, free wild-type virus, v1, and free mutant virus, v2. These five 

types of cells interact with each other to determine the pharmacodynamic changes of drug 

resistant virus in a host’s body. The mutation rate between wild-type and mutant is given by 

μ (in both directions). For a small μ, the basic reproductive ratios of wild-type and mutant 

virus are R1 = β1λk1/(adu) and R2 = β2λk2/(adu). The system (7), defined by nine 

parameters (λ, d, β1, β1, μ, a, k1, k2, u), shows that the expected pretreatment frequency of 

resistant mutant depends on the number of point mutations between wild-type and resistant 

mutant, the mutation rate of virus replication, and the relative replication rates of wild-type 

virus, resistant mutant, and all intermediate mutants [13].

Mathematical models of pharmacodynamics reactions (10) have proved very powerful for 

characterizing complex three-way interactions among the host, pathogen and drug to provide 

quantitative insights into the biochemical mechanisms that leads to drug sensitivity and 

resistance. Now, these models have been integrated into systems mapping, gleaning an 

additional dimension of how genes participate in drug response [54,184]. The basic 

condition of this integration is to genotype a panel of patients for molecular markers who are 

measured for those five variables that constitute ODE (7) repeatedly at a series of time. 

Founded on mixture (7), this integration is implemented with linkage disequilibria between 
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markers and QTLs since the mapping population is derived from a natural population. Guo 

et al. [54] gave a procedure for the pattern of genetic control over the dynamic change of 

uninfected cells, cells infected by wild-type virus, cells infected by mutant virus, free wild-

type virus and free mutant virus after the patients are administered. This procedure can 

particularly test whether and how genetic pleiotropy impacts on the correlated change of 

these different cell and virus types. Such genetic information is helpful for clinical 

professionals to design and deliver the drug in an effective way based on a patient’s genetic 

blueprint [152].

3.3. Systems mapping meets stochastic biology

There are fundamental physical reasons why biochemical processes might be subject to 

noise and stochastic fluctuations [125]. A stochastic modeling approach based on the 

probabilistic description of the transition rates of different stages has been shown to be 

useful for predicting the dynamic behavior of a system. It is thought to produce more 

accurate results than the deterministic approach. One interesting application of the stochastic 

model is to study the degree of increase of disease risk with age. For example, based on the 

mutation accumulation hypothesis stating that cancer arises through the sequential 

accumulation of mutations within cell lineages, Frank [43] proposed a system of differential 

equations to describe how the mutations increase with age to lead to cancer, expressed as

(11)

where ym (m = 0, …, M) is the number of cell lineages with m mutations at age t; and um is 

the rate at which lineages progress from having m mutations to having m + 1 mutations. It is 

assumed that an individual has cancer once she has a single lineage with M mutations. The 

simplest deterministic model assumes that the um values are constant over age. But a 

realistic model is based on a system of stochastic differential equations (SDE), which views 

these values as changing with age. The advantage of SDEs is that they allow the 

decomposition of the noise affecting the system into a system noise term representing 

unknown or incorrectly specified dynamics and a measurement noise term accounting for 

uncorrelated errors. This advantage will help to increase the flexibility of the models for 

describing the system.

To reflect that cancer arises as uncontrolled clonal growth of cancerous cells following 

several mutations, Frank [43] implemented clonal expansion into the model (11). A new 

model is written as

(12)
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where ub−1yb−1 is the influx of cells with b − 1 mutations at time s, 

 is the decay or outflux of these cells over the remaining period 

from s to t, with Z being the number of cells in the clone. Clonal expansion y follows a 

logistic equation, expressed as

(13)

where Kb is the carrying capacity and rb is the intrinsic rate of increase of the clone with b 

mutations [43]. It is possible that clones with different numbers of mutations have different 

carrying capacities and rates of increase. Let v denote the mutation rate per cell, which, 

multiplied by the clone size, is the total mutational capacity of a cell lineage. Thus, we have

The total transition rate from cells with b mutations to cells with b + 1mutations is the 

mutation rate per cell, vb, multiplied by the average size of clones with b mutations, which 

leads ultimately to

(14)

Being more sophisticated than SDE (11), SDE (12) integrates mutation accumulation and 

clonal expansion to model age-specific accelerations of cancer via two types of parameters 

(vb, rb, Kb), allowing the estimation of any number of rounds of clonal expansion. If these 

two types of SDE are incorporated into systems mapping, we can construct a predictive 

model for the occurrence of cancer from an individual’s genetic structure based on prior 

knowledge obtained from a genetic mapping study. Assume that such a study is launched, 

which contains a set of genotyped individuals whose number of cell lineages with different 

numbers of mutations is measured at different ages. By analyzing the marker and phenotypic 

data, systems mapping enables the characterization of specific QTLs involved in age-

specific acceleration of cancer.

Suppose that, from the above-mentioned study, a significant QTL has been detected by 

implementing equations (12). For each of three possible genotypes of this QTL, a different 

set of SDE parameters was estimated, with which the curves of acceleration were drawn 

(Fig. 8). The patterns of age-specific acceleration were found to be very different, depending 

on QTL genotypes. QTL genotype qq, with three rounds of clonal expansion, display a 

pronounced peak in the acceleration curve of cancer at age 60 years, which is much higher 

and more delayed than the other genotype Qq and QQ with two and one round of clonal 

expansion. From this hypothesized example, it is shown that systems mapping has great 

power to predict the pattern and time of cancer occurrence based on patient’s genotypes at 

significant loci.
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3.4. Systems mapping of phenotypic landscapes

The development of complex traits is the consequence of interactions among a multitude of 

genetic and environmental factors that each trigger an impact on every step of trait 

development. This process is inherently complicated, but can be illustrated by a landscape of 

phenotype formed by genetic and environmental variables [121,168]. The surface of such a 

phenotype landscape defines the phenotype determined by a particular combination of 

underlying genetic (such as additive, dominant or epistatic) and environmental factors (such 

as temperature, light or moisture) that interact with each other through developmental 

pathways. The number of underlying factors contributing to phenotypic variation defines the 

number of dimensions of the landscape space. In theory, the number of underlying factors 

can be unlimited, implying that a landscape can exist in a very high dimensional space (i.e., 

hyperspace) [168]. By characterizing the topographical features of such a landscape, 

typically including slope, curvature, peak-valley and ridge [168], a fundamental question of 

how each underlying factor contributes to phenotypic expression individually or through an 

interactive web can be addressed.

The topography of a phenotypic landscape can be determined by the degree and pattern of 

phenotypic changes in response to different environmental factors. For example, 

photosynthesis as the primary process in plant growth is determined by many biotic or 

abiotic environmental factors, such as leaf age, CO2 concentration, temperature, irradiance, 

nutrient, and water potential. The responsiveness of photosynthetic rate to each of these 

factors follows different physiological mechanisms during a multi-step of development, 

leading to a particular phenotypic landscape of photosynthesis. Wu et al. [171] integrated 

functional mapping to determine the genetic machinery of the reaction norms of 

photosynthetic rate simultaneously to these factors by using mechanistic or empirical models 

for describing the relationship of various biotic or abiotic factors, separately or jointly, with 

photosynthetic rate [139,172].

Systems mapping can play a central role in illustrating an overall picture of the genetic 

control of phenotypic sensitivity to multiple environmental factors and discerning the 

differences of genetic control over response to each environmental factor. This can be done 

by integrating a system of partial differential equations (PDE) that can deal with functions of 

multiple variables, beyond ordinary differential equations describing functions of a single 

variable. Consider plant height growth as a phenotypic landscape. It is determined by many 

factors, but two of which, temperature (f1) and nutritional concentration (f2), are considered. 

The PDE that specifies the topography of plant height growth (H) is expressed as

(14)

where r is the plant’s intrinsic rate of growth, K is the carrying capacity, and D1 and D2 are 

the diffusion coefficients that measures the rates of change per temperature and nutritional 

concentration, respectively. By estimating a set of PDE parameters (r, K, D1, D2), we can 

visualize the phenotypic landscape of plant height growth.
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Systems mapping allows QTL genotype-specific PDE parameter sets to be estimated and 

tested and, therefore, is empowered with a capacity to test how a specific QTL affects the 

slope, curvature, peak-valley and ridge of the growth landscape. This test enables geneticists 

to understand the mechanistic formation of the landscape. More interestingly, it can also test 

whether there is the common genetic basis for different environmental responses and how 

the QTL affects a web of interactions between different environmental responses toward 

plant height growth curves. Mathematically, SDE (14) is fairly flexible to accommodate to 

multiple developmentally related phenotypic traits, such as plant height and diameter 

growth. The integration of these high-dimensional SDE into systems mapping can enhance 

the level of addressing biological questions, such as physiological pleiotropy of different 

traits [93], ecological pleiotropy of phenotypic plasticity to different environmental factors 

[135], and developmental pleiotropy of the same trait varying over time [117]. Because SDE 

has not been popular to geneticists, a heavy involvement of applied mathematicians is 

essential for the implementation of SDE into systems mapping and the mechanistic 

underpinnings and interpretation of SDE models in a biologically intuitive way.

4. Ecological dissection of complex traits

There has been increasing recognition that the traits of an individual are not only influenced 

by its own genes but also strongly by the genotypes of its neighbors [75,77]. For example, 

the feather condition of a laying hen is controlled both by its own genes and the genes of its 

partners through some serotonin pathway [11]. Using integrated genetic mapping and 

structural equation models, a QTL was detected for flowering time in focal plants that 

pleiotropically affects the expression of developmental traits in the neighbor plants [169]. 

Given these findings, phenotypic formation can be viewed as a system of cooperative or 

competing interactions between biological entities. Game theory can be integrated to 

quantify the extent of individual-individual interactions [107,114] and reveal the genetic 

machineries for cooperation and competition that take place in a community.

4.1. Dynamic game theory

Game theory, originally developed to study conflict and cooperation between decision 

makers, has found its implications in biology because of the pioneering work of evolutionary 

game theory by John Maynard-Smith and George R. Price [104]. On a dynamic scale, the 

evolutionary game theory can be mathematically formulated to describe the growth of two 

individuals in the shared environment by using a coupled group of ODE, expressed as

(15)

which characterize the rate of change of sizes of the two individuals, x and y. The first two 

terms of equations (15) on the right-hand side describe neighbor-independent growth in 

terms of a Gompertz model, where αx and αy are thought of as an intrinsic growth rate due 

to the uptake of resources, and βxx and βyy are a metabolic loss proportional to the size of 

the individuals. The last term on the right-hand side couples the growth of the neighboring 
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individual by means of a kernel function F(x,y), which in general depends at least on the size 

of the target individual and the size of the neighbor, with the extent characterized by γx←y 

(quantifying how individual y affects individual x) and γy←x (quantifying how individual x 
affects individual y). Many studies have discussed the choice of the kernel function although 

more work is needed to obtain an optimal function [128].

We can cast this formulation in a game theoretic context in the following way. Given 

equations (15), we may assume that a rest point for the ODE is an energy minimizing 

(payoff maximizing) point for the two individuals engaged in competition. In this case, we 

can write

(16)

as the two payoff functions (energy-cost functions) of the individual. A first order necessary 

condition for a Nash equilibrium is [111,124]:

(17)

when we assume that

(18)

Thus, Nash equilibrium in the two-player continuous strategy game implies a fixed point in 

the differential system (16). Following Antoniadis et al. [4], if we assume an evolutionary 

rule given by a better response function (i.e., Jacobi iteration) as opposed to the traditional 

replicator dynamics of evolutionary game theory [159], then we recover exactly the 

dynamics in equations (15) as a result of co-evolution.

After a proper kernel function is chosen, the test of parameters γx←y, γy←x can provide 

information about how the growth of one individual is affected by the second individual. If 

γx←y, γy←x = 0, the two individuals are independent. If γx←y, γy←x < 0, this suggests that 

the two individuals are of conflict, while if γx←y, γy←x > 0 they are thought to be 

cooperative. Such mathematical formulation of conflict and cooperation allows game theory 

to be quantified and further used for the ecological dissection of trait expression. By 

embedding it into systems mapping, this theory helps to characterize the genetic components 

that contribute to the formation and progression of complex traits driven by ecological 

interactions.
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4.2. Game theory meets system mapping

Are there specific genes that control the strengths and patterns of interactions between 

different species in a dynamic community and ecosystem? This question has been raised 

intensively because of the recent emergence of community and ecosystem genetics as a new 

discipline aimed to study how genetic variation in one species influences the composition of 

associated communities and the functioning of ecosystems [1,6,10,60,164–166]. The 

integration of systems mapping and evolutionary game theory can address this question, 

enabling the genetic mapping of genes involved in a network of interspecific interactions. It 

is likely that this integration can facilitate the movement of community genetics research 

from its first generation focusing on intra- and interspecific genetic variation to its second 

generation seeking for a mechanistic understanding of genes that structure communities and 

ecosystems [2].

While broad-scale empirical and theoretical efforts have addressed the relative importance of 

inter- and intra-specific effects and variation on community processes, it is now a time to 

initiate fine-scale genetic mechanistic approaches through systems mapping. The confluence 

of two traditionally separated areas, statistical genetics and game theory, helps to build a 

cohesive and predictive framework between community ecology, evolutionary biology, 

genetics and genomics.

5. Regulatory dissection of complex traits

The development of any trait can be modeled as a dynamic system consisting of various 

biological parts which coordinate to determine a final phenotype through genetic regulation 

(Fig. 1). In this section, we focus on regulatory pathways from DNA to cellular physiology 

through transcript, protein and metabolic expression. We do not review specific examples of 

how to construct genotype-phenotype maps with regulatory data (see [20]), rather than 

provide a general procedure of integrating this information flow into systems mapping.

5.1. Network mapping

To measure a cellular system, an understanding of how gene, protein, metabolic and 

physiological events are expressed in time course is crucial. Attempts to correlate gene 

expression data with proteomic and metabolomic data have been made by using classic 

correlation methods or multivariate statistics. However, they have often proved to be 

unsatisfactory in large part because the timescales of various biological control functions are 

either very different or simply unknown. Figure 9, modified from Nicholson et al. [113], 

shows such a problem, in which two pairs of gene-protein couples are expressed in time 

course. It can be seen that the levels of mRNA transcripts are not consistent with protein 

levels on timescales. If the action of the stimulus, such as environmental intervention, is at 

the genetic level, it will take a finite amount of time in a cell for the associated protein 

synthesis (or post-translational modification) to occur. Also, the duration of the gene events 

(tg) and protein events (tp) may be very different. All this will lead to the consequence that 

the observed covariance of the gene and protein events is highly dependent on sampling time 

point and frequency. In some instances, a single sampling point (say τ3) might result in the 

incorrect assumption that gene 2 co-varied with protein 1. The times of maximal activity or 
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expression for protein may not be constant; for example, the tp values and related turnover 

times are larger for protein 2 than protein 1. A problem also exists when attempting to 

correlate proteomic with metabolomic data. Currently proteomic data sets contain no 

information on the activity of specific proteins, which is dependent on their location in the 

cell and the presence of cofactors or inhibitors.

To understand true quantitative relationships between thousands of gene-protein couples or 

protein-metabolite couples in a cellular system, a series of high-dimensional systems of 

differential equations have been established by considering several critical factors, such as 

the time displacement of the genetic and protein synthetic and post-translational events, their 

different timescales and their half-lives [14,72,81,113]. These mathematical equations are 

integrated with systems mapping, leading to the birth of a new mapping model, called 

network mapping, which can map interactive eQTLs, pQTLs, and mQTLs underlying 

transcriptional, proteomic, and metabolomic profiles and interaction networks among these 

different profiles [155]. The model has power to test what are the most important pathways 

that cause final phenotypes and how QTLs control these pathways.

5.2. Dissecting rhythmic biology

The molecular bases of circadian rhythms have been clarified during the past decade by 

experimental advances, first in Drosophila and Neurospora, and more recently in 

cyanobacteria, plants and mammals [30,52,193]. In view of the large number of variables 

involved and of the complexity of feedback processes that generate oscillations, 

mathematical models are necessary to comprehend the transition from simple to complex 

oscillatory behavior and to delineate the conditions under which they arise [52].

Based on the negative control exerted by the PER protein on the expression of per, a 

molecular model governed by a set of five ordinary differential equations was derived [51]. 

In the model (Fig. 10a), the per gene is first expressed in the nucleus and transcribed into per 

mRNA. The latter is transported into the cytosol, where it is translated into the PER protein, 

P0, and degraded. The PER protein undergoes multiple phosphorylation, from P0 into P1 and 

from P1 into P2. These modifications, catalyzed by a protein kinase, are reverted by a 

phosphatase. The fully phosphorylated form of the protein is marked up for degradation and 

transported into the nucleus in a reversible manner. The nuclear form of the protein (PN) 

represses the transcription of the gene.

In the model, the temporal variation of the concen- trations of mRNA (M) and of the various 

forms of the regulatory protein–cytosolic (P0,P1,P2) or nuclear (PN)–is governed by the 

following system of ODE:

(19)
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where per mRNA (M) is synthesized in the nucleus and transfers to the cytosol (where it 

accumulates at a maximum rate vd) and it is degraded by an enzyme of maximum rate vm 

and Michaelis constant Km, and the rate of synthesis of the PER protein, proportional to M, 

is characterized by an apparent first-order rate constant ks. Parameters V1, …, V4 and K1, 

…,K4 denote the maximum rate and Michaelis constant of the kinase(s) and phosphatase(s) 

involved in the reversible phosphorylation of P0 into P1 and P3 into P2, respectively. The 

fully phosphorylated form (P2) is degraded by an enzyme of maximum rate vd and Michaelis 

constant Kd, and transported into the nucleus at a rate characterized by the apparent first-

order rate constant k1. Transport of the nuclear, bisphosphorylated form of PER (PN) into the 

cytosol is characterized by the apparent first-order rate constant k2. The negative feedback 

exerted by nuclear PER on per transcription is described by an equation of the Hill type, in 

which n denotes the degree of cooperativity, and KI denotes the threshold constant for 

repression. A more sophisticated set of differential equations can be derived when the 

pathways in Fig. 10b or 10c are considered.

We integrate five-variable ODE (19) into network mapping to identify QTLs for circadian 

rhythms and test how these QTLs have sustained oscillations of the system. Figure 11 

illustrates the rhythmic curves of three genotypes at a QTL assumed to be detected by 

network mapping. When plotting the time evolution of per mRNA (M) as a function of the 

total amount of PER protein (Ptot), these oscillations evolve toward a limit cycle (i.e., a 

closed curve) (Fig. 11). It is interesting to see that the shapes and periods of rhythmic curves 

are very sensitive to different combinations of the parameters that determine the rhythms. A 

small change will lead to marked differences in rhythmic curves (Fig. 11), suggesting that 

testing genetic differences in parameter combinations is an effective way for understanding 

the genetic mechanisms for biological rhythms.

In several studies of drug response, the so-called clock genes were found to affect patients’ 

circadian rhythms through clock-controlled transcription factors, holding a promise for the 

determination of an individualized optimal body time for drug administration based on a 

patient’s genes. It has been suggested that drug administration at the appropriate body time 

can improve the outcome of pharmacotherapy by maximizing potency and minimizing the 

toxicity of the drug, whereas drug administration at an inappropriate body time can induce 

severe side effects [116]. In practice, body time-dependent therapy, termed “chronotherapy” 

[53,76], can be optimized by implementing the patient’s genes that control expression levels 

of his/her physiological variables during the course of a day.

Network mapping has great power to unravel the genetic control of different aspects of 

biological rhythms and determine the best time for “chronotherapy” based on individual 

patient’s genetic background. Also, some fundamental questions will be addressed from 

these tests: (1) How do QTLs determine periodic motions in a biological system? (2) How 

can the synchronization of different variables be achieved in a rhythmic system through 

genetic regulation? (3) How can mathematical equations be integrated into genetic mapping 

models for circadian rhythms related to clock-and-wavefront, reaction- diffusion, and cell-

cycle processes?
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6. Genetic and statistical considerations

In the preceding sections, we have described and reviewed basic principles of dissecting 

complex traits in terms of their underlying genetic, developmental and regulatory 

underpinnings using genetic mapping approaches. Genetic mapping relies on two issues, 

mapping population and statistical approach. Lander and Botstein’s [78] original mapping 

population is based on an experimental cross. Other types of mapping populations can also 

be used, depending on the organism. We will describe those commonly used mapping 

populations. Although there have been numerous statistical approaches developed for 

genetic mapping, we will briefly review the mathematical and statistical methods that are 

critically used in systems mapping and network mapping.

6.1. Genetic designs

Experimental crosses—Advanced generations, like the backcross, F2 or recombinant 

inbred lines (RILs), produced through continuous controlled crosses initiated with two 

inbred strain, form a segregating population suitable for genetic mapping. In many non-

model outcrossing species, such as forest trees, the F1 generation from two heterozygous 

parents, called the full-sib family, can produce the segregation of marker genes. However, 

unlike the advanced-generation populations, the full-sib family contains inconsistent patterns 

of marker segregation. The algorithm has been developed to simultaneously analyze all these 

different marker types [94,133,182]. Genetic mapping with experimental crosses is founded 

on linkage analysis of the recombination fraction between different loci.

Multigenerational families—In humans, neither adequate numbers of progeny can be 

generated from a single family nor can any controlled cross be made possible. A nuclear 

family with multiple successive generations in humans is often used in order to accumulate a 

sufficient number of progeny for genetic mapping. The recombination fraction and identical 

by decent (IBD) coefficient are the key determinants of genetic mapping with 

multigenerational families.

Unrelated individuals randomly sampled from natural populations—The genetic 

mapping of complex traits can be conducted by sampling a collection of unrelated 

individuals at random from a natural population. In a population, different loci are 

genetically associated, with the extent described by a parameter called the linkage 

disequilibrium (LD). By making use of recombinants accumulated over a long history of 

generations, LD-based mapping is meritorious in terms of high-resolution dissection of a 

target QTL into a narrow genomic region [132].

Unrelated families randomly sampled from natural populations—Although LD 

mapping has tremendous potential to fine map functional genes for a complex trait, it may 

provide a spurious estimate of LD in practice when the association between genetic loci is 

due to evolutionary forces, such as mutation, drift, selection, population structure, and 

admixture. A mapping strategy that samples unrelated families (composed of parents and 

offspring) from a natural population is helpful for overcoming the limitation of LD mapping 

by simultaneously estimating the linkage and linkage disequilibrium [64,84,175,179]. This 
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design can also estimate the genetic imprinting effect of QTLs by discerning the difference 

of maternal- and paternal-inherited alleles [138].

Natural populations with related families—Genetic studies of some particular 

complex traits require a mapping population to be derived from multiple related families. 

For such a genetic design, the recombination fraction, IBD, and linkage disequilibrium will 

be needed to be estimated at a time, tracing the co-transmission of alleles from parents to 

their offspring. This design is powerful for studying the evolution of genes that control 

human traits, such as drug response.

6.2. Mathematical and statistical solutions

The methodological challenge of systems mapping and network mapping are that we need to 

implement and develop rigorous mathematical and statistical approaches for resolving 

differential equations. The recent years have seen tremendous developments in addressing 

these challenges. Our review is focused on those which have been used or have a direct 

application to the problems described in this article. Interested readers are referred to the 

relevant mathematical or statistical literature [95,119,185].

How to solve high-dimensional ordinary differential equations (HiODE)—As the 

dimension of a system increases, it is crucial to better handle HiODE. Convergence rates and 

estimation consistency are important for the parameter estimation of HiODE. Mathematical 

analysis and computer simulation have been heavily used to investigate the mechanistic 

underpinnings of HiODE and the behavior of dynamic systems described by these equations 

[95].

How to solve delay differential equations (DDEs)—While modeling the oscillation 

behavior of mRNA and protein concentrations, we often encounter time delays of a system. 

Feng and Navaratna [41] and Verdugo and Rand [143] developed mathematical approaches 

for manipulating linear or nonlinear relationships between the dependent variables and time 

delays. When a DDE contains multiple time delays, the following questions should be 

addressed: (1) in which range of each of differential parameters, does Hopf bifurcation 

occur, i.e., there are sustained oscillations? (2) how do different time delays determine 

periodic motions in a biological system? (3) how can the synchronization of different 

variables be achieved in a rhythmic system? (4) how can mathematical equations be 

integrated into biological models for circadian rhythms, such as the clock-and-wavefront 

model, the reaction-diffusion model, and the cell-cycle model?

How to solving stochastic differential equations (SDE)—Numerical solution of 

SDE is a relatively young field. Almost all algorithms used for the solution of ODE may 

work poorly for SDEs. A few basic algorithms, such as Euler’s method and Itō’s method, 

have been proposed for solving SDE (incorporating white noise) [73]. These algorithms can 

provide the condition under which a given a given SDE has a solution, and determine 

whether or not the solution is unique.
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How to solve partial differential equations (PDE)—PDE and their solutions exhibit 

rich and complex structures. The finite element discretization method has been implemented 

for solving SDEs. This numerical approach can easily handle geometrically complicated 

domains and construct high-order interactions. No prior knowledge is needed for this 

method [140].

6.3. Modeling covariance structure

Robust modeling of longitudinal covariance structure (9) is a prerequisite for appropriate 

statistical inference of genetic effects on longitudinal traits. Several different approaches are 

available for covariance modeling, including parametric, nonparametric, and 

semiparametric.

Parametric modeling—The advantage of parametric approaches includes the existence of 

closed forms for the determinant and inverse of a longitudinal matrix. This will greatly help 

to enhance computational efficiency. The following is a list of existing parametric 

approaches used to model functional mapping: stationary parametric model – assuming the 

stationarity of variance and correlation (e.g., autoregressive (AR) model) [98], non-

stationary parametric model – variance and correlation may not be stationary (e.g., 

structured antedependence (SAD) model) [195,197], and general parametric model 

(autoregressive moving average model ARMA(p,q)) [86]. For each model above, it is 

important to determine its optimal order for covariance structure modeling in the most 

parsimonious way by a model selection criterion.

Nonparametric modeling—In many cases, the covariance structure may not follow a 

parametric structure, which can be better modelled by a nonparametric approach. There is a 

nonparametric estimator derived to model the covariance structure without assuming 

stationarity using kernel-weighted local linear regression smoothing of sample variograms 

ordinates and of squared residuals [197]. Das et al. [27] implemented a B-spline approach 

for modeling time-varying covariances and covariances for longitudinal traits.

Semiparametric modeling—More recently, Fan et al. [38] proposed a semiparametric 

model for the covariance structure of irregular longitudinal data, in which they approached 

the time-dependent correlation by a parametric function and the time-dependent variance by 

a nonparametric kernel function. The Fan et al. model’s advantage lies in the combination 

between the flexibility of nonparametric modeling and parsimony of parametric modeling. 

The establishment of a robust estimation procedure and asymptotic properties of the 

estimators will make this semiparametric model useful in the practical estimation of the 

covariance function [190].

In many longitudinal trials, data are often collected at irregularly spaced time points and 

with measurement schedules specific to different subjects. The efficient estimation of 

covariance structure in this situation will be a significant concern for detecting the QTLs that 

control dynamic traits. Although there are many challenges in modeling the covariance 

structure of subject-specific irregular longitudinal data, many workers have considered this 

issue using different approaches. These include nonparametric analysis derived from a two-
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step estimation procedure [37,183], a semiparametric approach [35], a penalized likelihood 

approach [65], and functional data analysis [189].

7. Discussion and prospects

The genetic mapping of complex traits has developed to a point at which current sequencing 

technologies can allow trait phenotypes to be partitioned into their underlying components at 

the DNA, regulatory, cellular and developmental levels [20,48,115]. As shown in a diagram 

of genetic mapping that links DNA variants with final phenotypes at different levels (Fig. 1), 

genetic mapping can be performed by five approaches. First, genetic mapping, originally 

proposed by Lander and Botstein [78], is a fundamental approach for linking DNA 

polymorphisms with end-point phenotypes measured at a static point. Second, beyond the 

original mapping approach, functional mapping has been derived for mapping QTLs that 

govern the developmental process of trait development through mathematical equations 

[98,174]. Third, functional mapping has been extended to systems mapping in which a 

phenotype is mapped by treating it as a dynamic system composed of interacting 

components linked through a system of differential equations [12,176]. Fourth, to identify 

the pathway mediating the genetic effect on the physiological phenotype, network mapping 

has been developed [155]. This approach is grounded on the regulatory process of genes that 

govern mRNA and protein expression toward phenotypic formation through cellular 

metabolism, a process characterized as a dynamic system by a group of differential 

equations [81]. All these mapping approaches have afforded an unprecedented 

understanding of how the control of trait formation is triggered by the interplay between 

genetic, epigenetic, and environmental factors, facilitating the construction of a precise 

genotype-phenotype map. Especially, functional mapping can identify developmental genes, 

supporting evolutionary developmental biology (evo-devo) theory concerned with the 

discovery and understanding of the changes in developmental mechanisms and their role in 

the evolutionary origin of aspects of the phenotype [109].

The biological process of trait formation is extremely complex from an ecological view. One 

cause of this ecological complexity is, as Strauss et al. [136] articulated in their review 

article, “…species exhibit traits shaped by collections of other species that co-occur with 

them,” leading to “… every effect of a species on a community will loop back to influence 

the species itself, either positively or negatively” [167]. Thus, to chart a complete picture of 

quantitative genetic architecture, we need to study how the traits of one organism are 

affected by the genes from its own genome and by those from the genome of its partner in 

the community. It is also possible that epistasis takes place not only among genetic loci in 

the same genome, but also across genomes [45]. All this growing recognition of the role of 

ecological interactions in shaping complex traits [1, 6,10,60, 136,164–166] appeals the 

emergence of the fifth approach for genetic mapping, ecosystem mapping of complex traits.

A biological system, even a cellular system, involved in phenotypic formation, can be 

dissected into countless continuous subsystems in tandem spanning from DNA variants 

through regulatory pathways to cellular and developmental processes toward the end-point 

phenotype. Each subsystem is affected in a complex, usually nonlinear, manner, by biotic 

and abiotic factors. Todays’ sequencing, genotyping and phenotyping technologies have 
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made available large stores of expression data from different levels of organization. The 

challenge will never be how these data are collected, rather than how the experiment is 

designed to maximize the use and interpretation of the data, from which biological rules for 

the formation and control of every part of a living system can be extracted. The use of 

genetic mapping from a systematic perspective can facilitate our understanding of how 

different parts are coordinated and organized into a whole system and what are the genetic 

roots of the function of these parts. To the end, by altering the pathways of one or more 

parts, the behavior and outcome of this system can be changed toward what we expect.
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Highlights

• Phenotypic formation is dissolved into several parts, each modeled as a 

system.

• We review a conceptual framework for genetic mapping of each of these 

systems.

• This framework is equipped by differential equations to map a system’s 

structure.

• Systems mapping identifies QTLs useful to construct genotype-phenotype 

map.
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Figure 1. 
Genetic mapping of complex phenotypes toward constructing a genotype-phenotype map of 

plant growth. Traditional direct DNA-phenotype associations to find the underling QTLs are 

reformed by functional mapping that considers the developmental process of phenotypic 

traits, systems mapping that treats phenotypic formation as a dynamic system composed of 

many interactive, functional elements at different levels of organization, and network 

mapping that integrates the regulatory pathways from DNA sequences to endophenotypes 

providing essential materials for the physiological function of cells.
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Figure 2. 
Graphic presentation of the results by linkage mapping and GWAS for 11-year stem 

diameter growth in a full-sib family of interspecific hybridization between different Populus 
species. (A) Plot of log-likelihood ratio (LR) test statistics for testing the existence of a 

significant QTL on a linkage group, with the names and genetic distances (in cM) of 

molecular markers given beneath. The horizontal line denotes the genome-wide threshold at 

the 5% significance level determined from permutation tests. (B) Manhattan plot of minus 

log(p) values against the genome locations of SNPs distributed throughout the genome. The 
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horizontal dash line indicates the 5% significance level after the adjustment for multiple 

testing from Bonferroni correction. Several significant loci are shown. Data was supplied by 

Prof. Minren Huang at Nanjing Forestry University with permission.
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Figure 3. 
A network of genetic actions and interactions among genes distributed on different 

chromosomes that affect leaf trait and root traits of a plant. The plant in the diagram contains 

five chromosomes (I – V) on which the locations of genes, labelled by 1 – 26, are indicated. 

The direct effects of genes are indicated by green lines for leaf traits and brown lines for root 

traits. The epistatic interactions of different genes are indicated by blue lines.
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Figure 4. 
A picture of significant genetic interactions between different SNPs that determine BMI in 

the Framingham Heart Study. The numbers beside SNPs are chromosome numbers. The 

SNPs that display significant main additive (A) and dominant (D) genetic effects are 

indicated by arrows. AA, AD, DA and DD represent four corresponding types of epistasis. 

Modified from Li et al. [85].
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Figure 5. 
Lifecycle of a typical flowering plant – soybean, which experiences many distinct stages of 

vegetative and reproductive growth. Key organs of the plants are shown.
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Figure 6. 
Biological design principles that build the system of ordinary differential equations (6). 

Left: Botanical architecture of a living plant and the pathways of absorbing water and 

nutrients from root hairs and transporting carbohydrates from leaves that perform 

photosynthesis with CO2 and sunlight. Right: A fractal model that is used to explain 

universal allometric scaling laws that constrain the relationship of physiology and body size 

in living systems.
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Figure 7. 
Dynamic pattern of biomass allocated to the leaves and stem for two different genotypes 

(dark curves) at each of the two QTLs, dynQ1 and dynQ2, detected on LG3 and LG24, 

respectively, detected from a recombinant inbred line population of soybean. Curves in 

yellow each represent the biomass growth trajectory of a progeny in soybean. The system of 

ODEs (1) is reduced to a two-dimensional system, expressed as

where W = ML + MS is the sum of the foliage (M) and stem biomass (S). Data was supplied 

by Prof. Junyi Gai at Nanjing Agricultural University with permission.
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Figure 8. 
Patterns of age-specific acceleration for different genotypes at a hypothesized QTL. Three 

genotypes show different forms of acceleration curves, indicating the role of the QTL in 

cancer pathogenesis. The first genotype QQ is denoted by a blue curve, for which clonal 

expansion occurs only in the last round before cancer, so KM − 2 = KM − 3 = 1; the second 

genotype is denoted by a green curve, whose clonal expansion occurs in the last two rounds 

before cancer, with KM − 2 = 106 and KM − 3 = 1; and the third genotype is denoted by a red 

curve, where clonal expansion occurs in the last three rounds before cancer, with KM − 2 = 

KM − 3 = 106. The mutation rates for these three genotypes are vm = 5.8 × 10−4, 9.3 × 10−5, 

and 1.55 × 10−6 for m mutations to keep the total incidence of cancer at 10%, respectively. 

Basic parameters are M = 4, x0(0) = 104, rm = 0.5 for all m, K0 = 1, and K M − 1 = 106. This 

example was made up from Frank’s [43] analysis.
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Figure 9. 
Dynamic changes of two hypothesized gene-protein couples (relating transcription activity 

to protein level) that are expressed in response to an environmental stimuli at time zero. 

g1(0), g2 (↑); p1(0), p2(↑) describe the relative condition for the expression of each gene and 

protein at a given time-point (e.g. τ1, τ2, etc.), where (0) indicates baseline level and (↑) 

indicates expression. It can be seen that the post intervention observation of relative state is 

dependent on sampling time-point, which can be considered by differential equations. 

Adapted from Nicholson et al. [113].
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Figure 10. 
Molecular models for explaining circadian oscillations. (a) Model for circadian oscillations 

in Drosophila based on negative autoregulation of the per gene by its protein product PER. 

(b) Model for circadian oscillations in Drosophila incorporating the formation of a complex 

between the PER and TIM proteins. (c) Model for circadian oscillations in mammals 

incorporating indirect, negative autoregulation of the Per and Cry genes through binding of 

the PER–CRY dimer to the complex formed between the two activating proteins CLOCK 

and BMAL1. Adapted from Goldbeter [52].
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Figure 11. 
Sustained oscillations of per mRNA and the total amount of PER protein and limit cycle 

generated by ODE (19). Rhythmic curves for three genotypes. j = 0 for qq, 1 for Qq, and 2 

for QQ, at a hypothesized QTL are determined by a combination of parameters, i.e., 

(vs,vm,Ks,vd,k1,k2,Kl,Kd,K1,K2,K3,K4, n,v1,v2,v3,v4,Km) = (0.76, 

0.65,0.38,0.95,1.9,1.3,1,0.2, 2,2,2,2,4, 3.2,1.58,5,2.5,0.5) for curve genotype j = 0, 

(0.82,0.5,0.28,0.6,2.3,1,1.6, 0.5,2.2,2.2,2.2,2.2,6,2.2,1.38, 8,1.5,0.7) for curve genotype j = 

1, and (0.30,0.48,0.75,1.5,0.8,0.6,0.7,2.5,2.5, 2.5,2.5,9.9,4.2,1.8,1.2,9,0.5, 1.5) curve 

genotype j = 2.
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