
An Approximation of the Error Backpropagation Algorithm in a
Predictive Coding Network with Local Hebbian Synaptic
Plasticity

James C. R. Whittington and
MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, U.K., and FMRIB
Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe
Hospital, Oxford, OX3 9DU, U.K.

Rafal Bogacz
MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, U.K., and Nuffield
Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3
9DU, U.K.

Abstract

To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple

levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in

synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in

synaptic weights is a complex function of weights and activities of neurons not directly connected

with the synapse being modified, whereas the changes in biological synapses are determined only

by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that

approximate the backpropagation algorithm with local synaptic plasticity, but these models require

complex external control over the network or relatively complex plasticity rules. Here we show

that a network developed in the predictive coding framework can efficiently perform supervised

learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for

certain parameters, the weight change in the predictive coding model converges to that of the

backpropagation algorithm. This suggests that it is possible for cortical networks with simple

Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas

on multiple levels of hierarchy are modified to minimize the error on the output.

1 Introduction

Efficiently learning from feedback often requires changes in synaptic weights in many

cortical areas. For example, when a child learns sounds associated with letters, after

receiving feedback from a parent, the synaptic weights need to be modified not only in

auditory areas but also in associative and visual areas. An effective algorithm for supervised

learning of desired associations between inputs and outputs in networks with hierarchical

organization is the error backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986).

Artificial neural networks (ANNs) employing backpropagation have been used extensively

Published under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. (http://creativecommons.org/licenses/by/3.0/).

Europe PMC Funders Group
Author Manuscript
Neural Comput. Author manuscript; available in PMC 2017 June 12.

Published in final edited form as:
Neural Comput. 2017 May ; 29(5): 1229–1262. doi:10.1162/NECO_a_00949.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://creativecommons.org/licenses/by/3.0/

in machine learning (LeCun et al., 1989; Chauvin & Rumelhart, 1995; Bogacz, Markowska-

Kaczmar, & Kozik, 1999) and have become particularly popular recently, with the newer

deep networks having some spectacular results, now able to equal and outperform humans in

many tasks (Krizhevsky, Sutskever, & Hinton, 2012; Hinton et al., 2012). Furthermore,

models employing the backpropagation algorithm have been successfully used to describe

learning in the real brain during various cognitive tasks (Seidenberg & McClelland, 1989;

McClelland, McNaughton, & O’Reilly, 1995; Plaut, McClelland, Seidenberg, & Patterson,

1996).

However, it has not been known if natural neural networks could employ an algorithm

analogous to the backpropagation used in ANNs. In ANNs, the change in each synaptic

weight during learning is calculated by a computer as a complex, global function of

activities and weights of many neurons (often not connected with the synapse being

modified). In the brain, however, the network must perform its learning algorithm locally, on

its own without external influence, and the change in each synaptic weight must depend on

just the activity of presynaptic and postsynaptic neurons. This led to a common view of the

biological implausibility of this algorithm (Crick, 1989)—for example: “Despite the

apparent simplicity and elegance of the back-propagation learning rule, it seems quite

implausible that something like equations […] are computed in the cortex” (O’Reilly &

Munakata, 2000, p. 162).

Several researchers aimed at developing biologically plausible algorithms for supervised

learning in multilayer neural networks. However, the biological plausibility was understood

in different ways by different researchers. Thus, to help evaluate the existing models, we

define the criteria we wish a learning model to satisfy, and we consider the existing models

within these criteria:

1. Local computation. A neuron performs computation only on the basis of the

inputs it receives from other neurons weighted by the strengths of its synaptic

connections.

2. Local plasticity. The amount of synaptic weight modification is dependent on

only the activity of the two neurons the synapse connects (and possibly a

neuromodulator).

3. Minimal external control. The neurons perform the computation autonomously

with as little external control routing information in different ways at different

times as possible.

4. Plausible architecture. The connectivity patterns in the model should be

consistent with basic constraints of connectivity in neocortex.

The models proposed for supervised learning in biological multilayer neural networks can

be divided in two classes. Models in the first class assume that neurons (Barto & Jordan,

1987; Mazzoni, Andersen, & Jordan, 1991; Williams, 1992) or synapses (Unnikrishnan &

Venugopal, 1994; Seung, 2003) behave stochastically and receive a global signal describing

the error on the output (e.g., via a neuromodulator). If the error is reduced, the weights are

modified to make the produced activity more likely. Many of these models satisfy the above

Whittington and Bogacz Page 2

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

criteria, but they do not directly approximate the backpropagation algorithm, and it has been

pointed out that under certain conditions, their learning is slow and scales poorly with

network size (Werfel, Xiew, & Seung, 2005). The models in the second class explicitly

approximate the backpropagation algorithm (O’Reilly, 1998; Lillicrap, Cownden, Tweed, &

Akerman, 2016; Balduzzi, Vanchinathan, & Buhmann, 2014; Bengio, 2014; Bengio, Lee,

Bornschein, & Lin, 2015; Scellier & Bengio, 2016), and we will compare them in detail in

section 4.

Here we show how the backpropagation algorithm can be closely approximated in a model

that uses a simple local Hebbian plasticity rule. The model we propose is inspired by the

predictive coding framework (Rao & Ballard, 1999; Friston, 2003, 2005). This framework is

related to the autoencoder framework (Ackley, Hinton, & Sejnowski, 1985; Hinton &

McClelland, 1988; Dayan, Hinton, Neal, & Zemel, 1995) in which the GeneRec model

(O’Reilly, 1998) and another approximation of backpropagation (Bengio, 2014; Bengio et

al., 2015) were developed. In both frameworks, the networks include feedforward and

feedback connections between nodes on different levels of hierarchy and learn to predict

activity on lower levels from the representation on the higher levels. The predictive coding

framework describes a network architecture in which such learning has a particularly simple

neural implementation. The distinguishing feature of the predictive coding models is that

they include additional nodes encoding the difference between the activity on a given level

and that predicted by the higher level, and that these prediction errors are propagated

through the network (Rao & Ballard, 1999; Friston, 2005). Patterns of neural activity similar

to such prediction errors have been observed during perceptual decision tasks (Summerfield

et al., 2006; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). In this letter, we

show that when the predictive coding model is used for supervised learning, the prediction

error nodes have activity very similar to the error terms in the backpropagation algorithm.

Therefore, the weight changes required by the backpropagation algorithm can be closely

approximated with simple Hebbian plasticity of connections in the predictive coding

networks.

In the next section, we review backpropagation in ANNs. Then we describe a network

inspired by the predictive coding model in which the weight update rules approximate those

of conventional backpropagation. We point out that for certain architectures and parameters,

learning in the proposed model converges to the backpropagation algorithm. We compare the

performance of the proposed model and the ANN. Furthermore, we characterize the

performance of the predictive coding model in supervised learning for other architectures

and parameters and highlight that it allows learning bidirectional associations between

inputs and outputs. Finally, we discuss the relationship of this model to previous work.

2 Models

While we introduce ANNs and predictive coding below, we use a slightly different notation

than in their original description to highlight the correspondence between the variables in the

two models. The notation will be introduced in detail as the models are described, but for

reference it is summarized in Table 1. To make dimensionality of variables explicit, we

Whittington and Bogacz Page 3

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

denote vectors with a bar (e.g.,). Matlab codes simulating an ANN and the predictive

coding network are freely available at the ModelDB repository with access code 218084.

2.1 Review of Error Backpropagation

ANNs (Rumelhart et al., 1986) are configured in layers, with multiple neuron-like nodes in

each layer as illustrated in Figure 1A. Each node gets input from a previous layer weighted

by the strengths of synaptic connection and performs a nonlinear transformation of this

input. To make the link with predictive coding more visible, we change the direction in

which layers are numbered and index the output layer by 0 and the input layer by lmax. We

denote by the input to the ith node in the lth layer, while the transformation of this by an

activation function is the output, Thus:

(2.1)

where is the weight from the jth node in the lth layer to the ith node in the (l − 1)th

layer, and n(l) is the number of nodes in layer l. For brevity, we refer to variable as the

activity of a node.

The output the network produces for a given input depends on the values of the weight

parameters. This can be illustrated in an example of an ANN shown in Figure 1B. The

output node has a high activity as it receives an input from the active input node via

strong connections. By contrast, for the other output node there is no path leading to it

from the active input node via strong connections, so its activity is low.

The weight values are found during the following training procedure. At the start of each

iteration, the activities in the input layer are set to values from input training sample,

which we denote by The network first makes a prediction: the activities of nodes are

updated layer by layer according to equation 2.1. The predicted output in the last layer is

then compared to the output training sample We wish to minimize the difference

between the actual and desired output, so we define the following objective function:1

(2.2)

1As in previous work linking the backpropagation algorithm to probabilistic inference (Rumelhart, Durbin, Golden, & Chauvin,

1995), we consider the output from the network to be rather than as it simplifies the notation of the equivalent
probabilistic model. This corresponds to an architecture in which the nodes in the output layer are linear. A predictive coding network
approximating an ANN with nonlinear nodes in all layers was derived in a previous version of this letter (Whittington & Bogacz,
2015).

Whittington and Bogacz Page 4

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The training set contains many pairs of training vectors , which are iteratively

presented to the network, but for simplicity of notation, we consider just changes in weights

after the presentation of a single training pair. We wish to modify the weights to maximize

the objective function, so we update the weights proportionally to the gradient of the

objective function,

(2.3)

where α is a parameter describing the learning rate.

Since weight determines activity the derivative of the objective function over the

weight can be found by applying the chain rule:

(2.4)

The first partial derivative on the right-hand side of equation 2.4 expresses by how much the

objective function can be increased by increasing the activity of node b in layer a − 1, which

we denote by

(2.5)

The values of these error terms for the sample network in Figure 1B are indicated by the

darkness of the arrows labeled The error term is high because there is a mismatch

between the actual and desired network output, so by increasing the activity in the

corresponding node the objective function can be increased. By contrast, the error term

 is low because the corresponding node already produces the desired output, so

changing its activity will not increase the objective function. The error term is high

because the corresponding node projects strongly to the node producing output that

is too low, so increasing the value of can increase the objective function. For analogous

reasons, the error term is low.

Now let us calculate the error terms It is straightforward to evaluate them for the

output layer:

Whittington and Bogacz Page 5

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(2.6)

If we consider a node in an inner layer of the network, then we must consider all possible

routes through which the objective function is modified when the activity of the node

changes, that is, we must consider the total derivative:

(2.7)

Using the definition of equation 2.5 and evaluating the last derivative of equation 2.7 using

the chain rule, we obtain the recursive formula for the error terms:

(2.8)

The fact that the error terms in layer l > 0 can be computed on the basis of the error terms in

the next layer l − 1 gave the name “error backpropagation” to the algorithm.

Substituting the definition of error terms from equation 2.5 into equation 2.4 and evaluating

the second partial derivative on the right-hand side of equation 2.4, we obtain

(2.9)

According to equation 2.9, the change in weight is proportional to the product of the

output from the presynaptic node and the error term associated with the

postsynaptic node. Red upward-pointing arrows in Figure 1B indicate which weights would

be increased the most in this example, and it is evident that the increase in these weights will

indeed increase the objective function.

In summary, after presenting to the network a training sample, each weight is modified

proportionally to the gradient given in equation 2.9 with the error term given by equation

2.8. The expression for weight change (see equations 2.9 and 2.8) is a complex global

function of activities and weights of neurons not connected to the synapse being modified. In

order for real neurons to compute it, the architecture of the model could be extended to

include nodes computing the error terms, which could affect the weight changes. As we will

see, analogous nodes are present in the predictive coding model.

Whittington and Bogacz Page 6

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

2.2 Predictive Coding for Supervised Learning

Due to the generality of the predictive coding framework, multiple network architectures

within this framework can perform supervised learning. In this section, we describe the

simplest model that can closely approximate the backpropagation; we consider other

architectures later. The description in this section closely follows that of unsupervised

predictive coding networks (Rao & Ballard, 1999; Friston, 2005) but is adapted for the

supervised setting. Also, we provide a succinct description of the model. For readers

interested in a gradual and more detailed introduction to the predictive coding framework,

we recommend reading sections 1 and 2 of a tutorial on this framework (Bogacz, 2017)

before reading this section.

We first propose a probabilistic model for supervised learning. Then we describe the

inference in the model, its neural implementation, and finally learning of model parameters.

2.2.1 Probabilistic Model—Figure 2A shows a structure of a probabilistic model that

parallels the architecture of the ANN shown in Figure 1A. It consists of lmax layers of

variables, such that the variables on level l depend on the variables on level l + 1. It is

important to emphasize that Figure 2A does not show the architecture of the predictive

coding network, only the structure of the underlying probabilistic model. As we will see, the

inference in this model can be implemented by a network with the architecture shown in

Figure 2B.

By analogy to ANNs, we assume that variables on the highest level are fixed to the

input sample and the inferred values of variables on level 0 are the output from the

network. Readers familiar with predictive coding models for sensory processing may be

surprised that the sensory input is provided to the highest level; traditionally in these models,

the input is provided to level 0. Indeed, when biological neural networks learn in a

supervised manner, both input and output are provided to sensory cortices. For example,

when a child learns the sounds of the letters, the input (i.e., the shape of a letter) is provided

to visual cortex, the output (i.e., the sound) is provided to the auditory cortex, and both of

these sensory cortices communicate with associative cortex. The model we consider in this

section corresponds to a part of this network: from associative areas to the sensory modality

to which the output is provided. So in the example, level 0 corresponds to the auditory

cortex, while the highest levels correspond to associative areas. Thus, the input presented

to this network corresponds not to the raw sensory input but, rather, to its representation

preprocessed by visual networks. We discuss how the sensory networks processing the input

modality can be introduced to the model in section 3.

Let be a vector of random variables on level l, and let us denote a sample from random

variable by . Let us assume the following relationship between the random variables

on adjacent levels (for brevity of notation, we write instead of):

Whittington and Bogacz Page 7

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(2.10)

In equation 2.10, (x; μ, Σ) is the probability density of a normal distribution with mean μ
and variance Σ. The mean of probability density on level l is a function of the values on the

higher-level analogous to the input to a node in ANN (see equation 2.1):

(2.11)

In equation 2.11, n(l) denotes the number of random variables on level l, and are the

parameters describing the dependence of random variables. For simplicity in this letter, we

do not consider how are learned (Friston, 2005; Bogacz, 2017), but treat them as fixed

parameters.

2.2.2 Inference—We now move to describing the inference in the model: finding the

most likely values of model variables, which will determine the activity of nodes in the

predictive coding network. We wish to find the most likely values of all unconstrained

random variables in the model that maximize the probability

(see Friston, 2005, and Bogacz, 2017, for the technical details, however we are only

considering the first moment of an approximate distribution for each random variable and

from now onwards we will use the same notation to describe the first moments). Since

the nodes on the highest levels are fixed to their values are not being changed

but, rather, provide a condition on other variables. To simplify calculations, we define the

objective function equal to the logarithm of the joint distribution (since the logarithm is a

monotonic operator, a logarithm of a function has the same maximum as the function itself):

(2.12)

Since we assumed that the variables on one level depend on variables of the level above, we

can write the objective function as

(2.13)

Substituting equation 2.10 and the expression for a normal distribution into the above

equation, we obtain:

Whittington and Bogacz Page 8

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(2.14)

Then, ignoring constant terms, we can write the objective function as

(2.15)

Recall that we wish to find the values that maximize the above objective function. This

can be achieved by modifying proportionally to the gradient of the objective function. To

calculate the derivative of F over we note that each influences F in two ways: it

occurs in equation 2.15 explicitly, but it also determines the values of Thus, the

derivative contains two terms:

(2.16)

In equation 2.16, there are terms that repeat, so we denote them by

(2.17)

These terms describe by how much the value of a random variable on a given level differs

from the mean predicted by a higher level, so we refer to them as prediction errors.

Substituting the definition of prediction errors into equation 2.16, we obtain the following

rule describing changes in over time:

(2.18)

2.2.3 Neural Implementation—The computations described by equations 2.17 and

2.18 could be performed by a simple network illustrated in Figure 2B with nodes

corresponding to prediction errors and values of random variables The prediction

errors are computed on the basis of excitation from corresponding variable nodes and

Whittington and Bogacz Page 9

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

inhibition from the nodes on the higher level weighted by strength of synaptic

connections Conversely, the nodes make computations on the basis of the

prediction error from the corresponding level and the prediction errors from the lower level

weighted by synaptic weights.

It is important to emphasize that for a linear function f (x) = x, the nonlinear terms in

equations 2.17 and 2.18 would disappear, and these equations could be fully implemented in

the simple network shown in Figure 2B. To implement equation 2.17, a prediction error node

would get excitation from the corresponding variable node and inhibition equal to synaptic

input from higher-level nodes; thus, it could compute the difference between them. Scaling

the activity of nodes encoding prediction error by a constant could be implemented by

self-inhibitory connections with weight (we do not consider them here for simplicity: for

details see Friston, 2005, and Bogacz, 2017). Analogous to implementing equation 2.18, a

variable node would need to change its activity proportionally to its inputs.

One can imagine several ways that the nonlinear terms can be implemented, and Figure 3

shows one of them (Bogacz, 2017). The prediction error nodes need to receive the input

from the higher-level nodes transformed through a nonlinear function, and this

transformation could be implemented by additional nodes (indicated by a hexagon labeled

 in Figure 3). Introducing additional nodes is also necessary to make the pattern of

connectivity in the model more consistent with that observed in the cortex. In particular, in

the original predictive coding architecture (see Figure 2B), the projections from the higher

levels are inhibitory, whereas connections between cortical areas are excitatory. Thus, to

make the predictive coding network in accordance with this, the sign of the top-down input

needs to be inverted by local inhibitory neurons (Spratling, 2008). Here we propose that

these local inhibitory neurons could additionally perform a nonlinear transformation. With

this arrangement, there are individual nodes encoding and and each node sends

only the value it encodes. According to equation 2.18, the input from the lower level to a

variable node needs to be scaled by a nonlinear function of the activity of variable node

itself. Such scaling could be implemented by either a separate node (indicated by a hexagon

labeled in Figure 3) or intrinsic mechanisms within the variable node that would

make it react to excitatory inputs differentially depending on its own activity level.

In the predictive coding model, after the input is provided, all nodes are updated according

to equations 2.17 and 2.18, until the network converges to a steady state. We label variables

in the steady state with an asterisk (e.g., or F*).

Figure 4A illustrates values to which a sample model converges when presented with a

sample pattern. The activity in this case propagates from node through the connections

with high weights, resulting in activation of nodes and (note that the double

inhibitory connection from higher to lower levels has overall excitatory effect). Initially the

Whittington and Bogacz Page 10

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

prediction error nodes would change their activity, but eventually their activity converges to

0 as their excitatory input becomes exactly balanced by inhibition.

2.2.4 Learning Parameters—During learning, the values of the nodes on the lowest

level are set to the output sample, , as illustrated in Figure 4B. Then the values of

all nodes on levels l ∈ {1,…, lmax − 1} are modified in the same way as described before

(see equation 2.18).

Figure 4B illustrates an example of operation of the model. The model is presented with the

desired output in which both nodes and are active. Node becomes active as it

receives both top-down and bottom-up input. There is no mismatch between these inputs, so

the corresponding prediction error nodes (and) are not active. By contrast, the node

 gets bottom-up but no top-down input, so its activity has intermediate value, and the

prediction error nodes connected with it (and) are active.

Once the network has reached its steady state, the parameters of the model are updated,

so the model better predicts the desired output. This is achieved by modifying

proportionally to the gradient of the objective function over the parameters. To compute the

derivative of the objective function over we note that affects the value of function F

of equation 2.15 by influencing hence

(2.19)

According to equation 2.19, the change in a synaptic weight of connection between

levels a and a − 1 is proportional to the product of quantities encoded on these levels. For a

linear function f (x) = x, the nonlinearity

Algorithm 1: Pseudocode for Predictive Coding During Learning.

for all Data do

 repeat

 Inference: Equations 2.17, 2.18

 until convergence

 Update weights: Equation 2.19

Whittington and Bogacz Page 11

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

In the simulations presented, to make for faster simulation, first a prediction was made by

inputting s̄in alone and propagating through the network layer by layer, as we know that

all error nodes eventually would converge to zero in the prediction phase (see section 3).

Then the output s̄out is applied, after which inference took place.

in equation 2.19 would disappear, and the weight change would simply be equal to the

product of the activities of presynaptic and postsynaptic nodes (see Figure 2B). Even if the

nonlinearity is considered, as in Figure 3, the weight change is fully determined by the

activity of presynaptic and postsynaptic nodes. The learning rules of the top and bottom

weights must be slightly different. For the bottom connection labeled in Figure 3, the

change in a synaptic weight is simply equal to the product of the activity of nodes it

connects (round node and hexagonal node For the top connection, the change

in weights is equal to the product of activity of the presynaptic node and function f of

activity of the postsynaptic node (round node). This then maintains the symmetry of the

connections: the bottom and the top connections are modified by the same amount. We refer

to these changes as Hebbian in a sense that in both cases, the weight change is a product of

monotonically increasing functions of activity of presynaptic and postsynaptic neurons.

Figure 4B illustrates the resulting changes in the weights. In the example in Figure 4B, the

weights that increase the most are indicated by long red upward arrows. There would also be

an increase in the weight between and indicated by a shorter arrow, but it would be

not as large as node has lower activity. It is evident that after these weight changes, the

activity of prediction error nodes would be reduced indicating that the desired output is

better predicted by the network. In algorithm 1, we include pseudocode to clarify how the

network operates in training mode.

3 Results

3.1 Relationship between the Models

An ANN has two modes of operation: during prediction, it computes its output on the basis

of , while during learning, it updates its weights on the basis of and . The

predictive coding network can also operate in these modes. We next discuss the relationship

between computations of an ANN and a predictive coding network in these two modes.

3.1.1 Prediction—We show that the predictive coding network has a stable fixed point at

the state where all nodes have the same values as the corresponding nodes in the ANN

receiving the same input . Since all nodes change proportionally to the gradient of F, the

value of function F always increases. Since the network is constrained only by the input, the

maximum value that F can reach is 0; because F is a negative of sum of squares, this

maximum is achieved if all terms in the summation of equation 2.15 are equal to 0, that is,

when

Whittington and Bogacz Page 12

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(3.1)

Since is defined in analogous way as (cf. equations 2.1 and 2.11), the nodes in the

prediction mode have the same values at the fixed point as the corresponding nodes in the

ANN: .

The above property is illustrated in Figure 4A, in which weights are set to the same value as

for the ANN in Figure 1B, and the network is presented with the same input sample. The

network converges to the same pattern of activity on level l = 0 as for the ANN in Figure 1B.

3.1.2 Learning—The pattern of weight change in the predictive coding network shown

in Figure 4B is similar as in the backpropagation algorithm (see Figure 1B). We now analyze

under what conditions weight changes in the predictive coding model converge to that in the

backpropagation algorithm.

The weight update rules in the two models (see equations 2.9 and 2.19) have the same form;

however, the prediction error terms and were defined differently. To see the

relationship between these terms, we now derive the recursive formula for prediction errors

 analogous to that for in equation 2.8. We note that once the network reaches the

steady state in the learning mode, the change in activity of each node must be equal to zero.

Setting the left-hand side of equation 2.18 to 0, we obtain

(3.2)

We can now write a recursive formula for the prediction errors:

(3.3)

We first consider the case when all variance parameters are set to (this corresponds to

the original model of Rao & Ballard, 1999, where the prediction errors were not

normalized). Then the formula has exactly the same form as for the backpropagation

algorithm, equation 2.8. Therefore, it may seem that the weight change in the two models is

identical. However, for the weight change to be identical, the values of the corresponding

nodes must be equal: (it is sufficient for this condition to hold for l > 0, because

 do not directly influence weight changes). Although we have shown in that in

Whittington and Bogacz Page 13

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

the prediction mode, it may not be the case in the learning mode, because the nodes are

fixed (to), and thus function F may not reach the maximum of 0, so equation 3.1 may

not be satisfied.

We now consider under what conditions is equal or close to First, when the

networks are trained such that they correctly predict the output training samples, then

objective function F can reach 0 during the relaxation and hence and the two

models have exactly the same weight changes. In particular, the change in weights is then

equal to 0; thus, the weights resulting in perfect prediction are a fixed point for both models.

Second, when the networks are trained such that their predictions are close to the output

training samples, then fixing will only slightly change the activity of other nodes in the

predictive coding model, so the weight change will be similar.

To illustrate this property, we compare the weight changes in predictive coding models and

ANN with the very simple architecture shown in Figure 5A. This network consists of just

three layers (lmax = 2) and one node in each layer (n(0) = n(1) = n(2) = 1). Such a network has

only two weight parameters (and), so the objective function of the ANN can be

easily visualized. The network was trained on a set in which input training samples were

generated randomly from uniform distribution ∈ [−5, 5], and output training samples

were generated as where W(1) = W(2) = 1 (see Figure

5B). Figure 5C shows the objective function of the ANN for this training set. Thus, an ANN

with weights equal to perfectly predicts all samples in the training set, so the

objective function is equal to 0. There are also other combinations of weights resulting in

good prediction, which create a ridge of the objective function.

Figure 5E shows the angle between the direction of weight change in backpropagation and

the predictive coding model. The directions of the gradient for the two models are very

similar except for the regions where the objective functions E and F* are misaligned (see

Figures 5C and 5D). Nevertheless, close to the maximum of the objective function (indicated

by a red dot), the directions of weight change become similar and the angle decreases toward

0.

There is also a third condition under which the predictive coding network approximates the

backpropagation algorithm. When the value of parameters is increased relative to other

 the impact of fixing on the activity of other nodes is reduced, because becomes

smaller (see equation 2.17) and its influence on activity of other nodes is reduced. Thus

is closer to (for l > 0), and the weight change in the predictive coding model becomes

closer to that in the backpropagation algorithm (recall that the weight changes are the same

when for l > 0).

Whittington and Bogacz Page 14

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Multiplying by a constant will also reduce all by the same constant (see equation

3.3); consequently, all weight changes will be reduced by this constant. This can be

compensated by multiplying the learning rate α by the same constant, so the magnitude of

the weight change remains constant. In this case, the weight updates of the predictive coding

network will become asymptotically similar to the ANN, regardless of prediction accuracy.

Figures 5F and 5G show that as increases, the angle between weight changes in the two

models decreases toward 0. Thus, as the parameters are increased, the weight changes in

the predictive coding model converge to those in the backpropagation algorithm.

Figure 4C illustrates the impact of increasing It reduces which in turn reduces

and This decreases all weight changes, particularly the change of the weight between

nodes and (indicated by a short red arrow) because both of these nodes have reduced

activity. After compensating for the learning rate, these weight changes become more similar

to those in the backpropagation algorithm (compare Figures 4B, 4C, and 1B). However, we

note that learning driven by very small values of the error nodes is less biologically

plausible. In Figure 6, we will show that a high value of is not required for good

learning with these networks.

3.2 Performance on More Complex Learning Tasks

To efficiently learn in more complex tasks, ANNs include a “bias term,” or an additional

node in each layer that does not receive any input but has activity equal to 1. We define this

node as the node with index 0 in each layer, so With such a node, the definition of

synaptic input (see equation 2.1) is extended to include one additional term which is

referred to as the bias term. The weight corresponding to the bias term is updated during

learning according to the same rule as all other weights (see equation 2.9).

An equivalent bias term can be easily introduced to the predictive coding models. This

would be just a node with a constant output of which projects to the next layer

but does have an associated error node. The activity of such a node would not change after

the training inputs are provided, and corresponding weights would be modified like all

other weights (see equation 2.19).

To assess the performance of the predictive coding model on more complex learning tasks,

we tested it on the MNIST data set. This is a data set of 28 by 28 images of handwritten

digits, each associated with one of the 10 corresponding classes of digits. We performed the

analysis for an ANN of size 784-600-600-10 (lmax = 3), with predictive coding networks of

the corresponding size. We use the logistic sigmoid as the activation function. We ran the

simulations for both the case and the case. Figure 6 shows the learning

curves for these different models. Each curve is the mean from 10 simulations, with the

standard error shown as the shaded regions.

Whittington and Bogacz Page 15

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

We see that the predictive coding models perform similarly to the ANN. For a large value of

parameter the performance of the predictive coding model was very similar to the

backpropagation algorithm, in agreement with an earlier analysis showing that the weight

changes in the predictive coding model then converge to those in the backpropagation

algorithm. Should we have had more than 20 steps in each inference stage (i.e., allowed the

network to converge in inference), the ANN and the predictive coding network with

 would have had an even more similar trajectory.

We see that all the networks eventually obtain a training error of 0.00% and a validation

error of 1.7% to 1.8%. We did not optimize the learning rate for validation error as we are

solely highlighting the similarity between ANNs and predictive coding.

3.3 Effects of the Architecture of the Predictive Coding Model

Since the networks we have considered so far corresponded to the associative areas and

sensory area to which the output sample was provided, the input samples were provided

to the nodes at the highest level of hierarchy, so we assumed that sensory inputs are already

preprocessed by sensory areas. The sensory areas can be added to the model by considering

an architecture in which there are two separate lower-level areas receiving and

which are both connected with higher areas (de Sa & Ballard, 1998; Hyvarinen, 1999;

O’Reilly & Munakata, 2000; Larochelle & Bengio, 2008; Bengio, 2014; Srivastava &

Salakhutdinov, 2012; Hinton, Osindero, & Teh, 2006). For example, in case of learning

associations between visual stimuli (e.g., shapes of letters) and auditory stimuli (e.g., their

sounds), and could be provided to primary visual and primary auditory cortices,

respectively. Both of these primary areas project through a hierarchy of sensory areas to a

common higher associative cortex.

To understand the potential benefit of such an architecture over the standard

backpropagation, we analyze a simple example of learning the association between one-

dimensional samples shown in Figure 7A. Since there is a simple linear relationship (with

noise) between the samples in Figure 7A, we will consider predictions generated by a very

simple network derived from a probabilistic model shown in Figure 7B. During the training

of this network, the samples are provided to the nodes on the lowest level (and

).

For simplicity, we assume a linear dependence of variables on the higher level:

(3.4)

Since the node on the highest level is no longer constrained, we need to specify its prior

probability, but for simplicity, we assume an uninformative flat prior where c is a

constant. Since the node on the highest level is unconstrained, the objective function we

wish to maximize is the logarithm of the joint probability of all nodes:

Whittington and Bogacz Page 16

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(3.5)

Ignoring constant terms, this function has an analogous form as in equation 2.15:

(3.6)

During training, the nodes on the lowest level are fixed, and the node on the top level is

updated proportionally to the derivative of F, analogous to the models discussed previously:

(3.7)

As before, such computation can be implemented in the simple network shown in Figure 7C.

After the nodes converge, the weights are modified to maximize F, which here is simply

During testing, we only set and let both nodes and to be updated to

maximize F—the node on the top level evolves according to equation 3.7, while at the

bottom level,

This simple linear dependence could be captured by using a predictive coding network

without a hidden layer and just by learning the means and covariance matrix, that is,

, where is the mean and Σ the covariance matrix. However, we use a

hidden layer to show the more general network that could learn more complicated

relationships if nonlinear activation functions are used.

The solid lines in Figure 7A show the values predicted by the model (i.e., after

providing different inputs (i.e.,), and different colors correspond to different noise

parameters. When equal noise is assumed in input and output (red line), the network learns

the probabilistic model that explains the most variance in the data, so the model learns the

direction in which the data are most spread out. This direction is the same as the first

principal component shown in the dashed red line (any difference between the two lines is

due to the iterative nature of learning in the predictive coding model).

When the noise parameter at the node receiving output samples is large (the blue line in

Figure 7A), the dynamics of the network will lead to the node at the top level converging to

the input sample (i.e.,). Given the analysis presented earlier, the model converges

Whittington and Bogacz Page 17

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

then to the backpropagation algorithm, which in the case of linear f (x) simply corresponds

to linear regression, shown by the dashed blue line.

Conversely, when the noise at the node receiving input samples is large (the green line in

Figure 7A), the dynamics of the network will lead to the node at the top level converging to

the output sample (i.e.,). The network in this case will learn to predict the input

sample on the basis of the output sample. Hence, its predictions correspond to that obtained

by finding linear regression in inverse direction (i.e., the linear regression predicting sin on

the basis of sout), shown by the dashed green line.

Different predictions of the models with different noise parameters will lead to different

amounts of error when tested, which are shown in the left part of Figure 7D (labeled “sin

predicts sout”). The network approximating the backpropagation algorithm is the most

accurate, as the backpropagation algorithm explicitly minimizes the error in predicting

output samples. Next in accuracy is the network with equal noise on both input and output,

followed by the model approximating inverse regression.

Due to the flexible structure of the predictive coding network, we can also test how well it is

able to infer the likely value of input sample sin on the basis of the output sample sout. In

order to test it, we provide the trained network with the output sample and let

both nodes and be updated. The value to which the node corresponding to the

input converged is the network’s inferred value of the input. We compared these values with

actual sin in the testing examples, and the resulting root mean squared errors are shown in

the right part of Figure 7D (labeled “sout predicts sin”). This time, the model approximating

the inverse regression is most accurate.

Figure 7D illustrates that when noise is present in the data, there is a trade-off between the

accuracy of inference in the two directions. Nevertheless, the predictive coding network with

equal noise parameters for inputs and outputs is predicting relatively well in both directions,

being just slightly less accurate than the optimal algorithm for the given direction.

It is also important to emphasize that the models we analyzed in this section generate

different predictions only because the training samples are noisy. If the amount of noise

were reduced, the models’ predictions would become more and more similar (and their

accuracy would increase). This parallels the property discussed earlier that the closer the

predictive coding models predict all samples in the training set, the closer their computation

to ANNs with backpropagation algorithm.

The networks in the cortex are likely to be nonlinear and include multiple layers, but

predictive coding models with corresponding architectures are still likely to retain the key

properties outlined above. Namely, they would allow learning bidirectional associations

between inputs and outputs, and if the mapping between the inputs and outputs could be

perfectly represented by the model, the networks could be able to learn them and make

accurate predictions.

Whittington and Bogacz Page 18

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

4 Discussion

In this letter, we have proposed how the predictive coding models can be used for supervised

learning. We showed that they perform the same computation as ANNs in the prediction

mode, and weight modification in the learning mode has a similar form as for the

backpropagation algorithm. Furthermore, in the limit of parameters describing the noise in

the layer where output training samples are provided, the learning rule in the predictive

coding model converges to that for the backpropagation algorithm.

4.1 Biological Plausibility of the Predictive Coding Model

In this section we discuss various aspects of the predictive coding model that require

consideration or future work to demonstrate the biological plausibility of the model.

In the first model we presented (see section 2.2) and in the simulations of handwritten digit

recognition, the inputs and outputs corresponded to layers different from the traditional

predictive coding model (Rao & Ballard, 1999), where the sensory inputs are presented to

layer l = 0 while the higher layers extract underlying features. However, supervised learning

in a biological context would often involve presenting the stimuli to be associated (e.g.,

image of a letter, and a sound) to sensory neurons in different modalities and thus would

involve the network from “input modality” via the higher associative cortex to the “output

modality.” We focused in this letter on analyzing a part of this network from the higher

associative cortex to the output modality, and thus we presented sout to nodes at layer l = 0.

We did this only for this case because it is easy to show analytically the relationship between

predictive coding and ANNs. Nevertheless, we would expect the predictive coding network

to also perform supervised learning when sin is presented to layer 0, while sout to layer lmax,

because the model minimizes the errors between predictions of adjacent levels so it learns

the relationships between the variables on adjacent levels. It would be an interesting

direction for future work to compare the performance of the predictive coding networks with

input and outputs presented to different layers.

In section 3.3, we briefly considered a more realistic architecture involving both modalities

represented on the lowest-level layers. Such an architecture would allow for a combination

of supervised and unsupervised learning. If one no longer has a flat prior on the hidden node

but a gaussian prior (so as to specify a generative model), then each arm could be trained

separately in an unsupervised manner, while the whole network could also be trained

together. Consider now that the input to one of the arms is an image and the input at the

other arm is the classification. It would be interesting to investigate if the image arm could

be pretrained separately in an unsupervised manner alone and if this would speed up

learning of the classification.

We now consider the model in the context of the plausibility criteria stated in section 1. The

first two criteria of local computation and plasticity are naturally satisfied in a linear version

of the model (with f (x) = x), and we discussed possible neural implementation of

nonlinearities in the model (see Figure 3). In that implementation, some of the neurons have

a linear activation curve (like the value node in Figure 3) and others are nonlinear (like

Whittington and Bogacz Page 19

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

the node), which is consistent with the variability of the firing-input relationship (or

f-I curve) observed in biological neurons (Bogacz, Moraud, Abdi, Magill, & Baufreton,

2016).

The third criterion of minimal external control is also satisfied by the model, as it performs

computations autonomously given input and outputs. The model can also autonomously

“recognize” when the weights should be updated, because this should happen once the nodes

converged to an equilibrium and have stable activity. This simple rule would result in weight

update in the learning mode, but no weight change in the prediction mode, because then the

prediction error nodes have activity equal to 0, so the weight change (see equation 2.19) is

also 0. Nevertheless, without a global control signal, each synapse could detect only if the

two neurons it connects have converged. It will be important to investigate if such a local

decision of convergence is sufficient for good learning.

The fourth criterion of plausible architecture is more challenging for the predictive coding

model. First, the model includes special one-to-one connections between variable nodes

 and the corresponding prediction error nodes while there is no evidence for such

special pairing of neurons in the cortex. It would be interesting to investigate if the

predictive coding model would still work if these one-to-one connections were replaced by

distributed ones. Second, the mathematical formulation of the predictive coding model

requires symmetric weights in the recurrent network, while there is no evidence for such a

strong symmetry in cortex. However, our preliminary simulations suggest that symmetric

weights are not necessary for good performance of predictive coding network (as we will

discuss in a forthcoming paper). Third, the error nodes can be either positive or negative,

while biological neurons cannot have negative activity. Since the error neurons are linear

neurons and we know that rectified linear neurons exist in biology (Bogacz et al., 2016), a

possible way we can approximate a purely linear neuron in the model with a biological

rectified linear neuron is if we associate zero activity in the model with the baseline firing

rate of a biological neuron. Nevertheless, such an approximation would require the neurons

to have a high average firing rate, so that they rarely produce a firing rate close to 0, and thus

rarely become nonlinear. Although the interneurons in the cortex often have higher average

firing rates, the pyramidal neurons typically do not (Mizuseki & Buzsáki, 2013). It will be

important to map the nodes in the model on specific populations in the cortex and test if the

model can perform efficient computation with realistic assumptions about the mean firing

rates of biological neurons.

Nevertheless, predictive coding is an appealing framework for modeling cortical networks,

as it naturally describes a hierarchical organization consistent with those of cortical areas

(Friston, 2003). Furthermore, responses of some cortical neurons resemble those of

prediction error nodes, as they show a decrease in response to repeated stimuli (Brown &

Aggleton, 2001; Miller & Desimone, 1993) and an increase in activity to unlikely stimuli

(Bell, Summerfield, Morin, Malecek, & Ungerleider, 2016). Additionally, neurons recently

reported in the primary visual cortex respond to a mismatch between actual and predicted

visual input (Fiser et al., 2016; Zmarz & Keller, 2016).

Whittington and Bogacz Page 20

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

4.2 Does the Brain Implement Backprop?

This letter shows that a predictive coding network converges to backpropagation in a certain

limit of parameters. However, it is important to add that this convergence is more of a

theoretical result, as it occurs in a limit where the activity of error nodes becomes close to 0.

Thus, it is unclear if real neurons encoding information in spikes could reliably encode the

prediction error. Nevertheless, the conditions under which the predictive coding model

converges to the backpropagation algorithm are theoretically useful, as they provide

alternate probabilistic interpretations of the backpropagation algorithm. This allows a

comparison of the assumptions made by the backpropagation algorithm with the

probabilistic structure of learning tasks and questions whether setting the parameters of the

predictive coding models to those approximating backpropagation is the most suitable

choice for solving real-world problems that animals face.

First, the predictive coding model corresponding to backpropagation assumes that output

samples are generated from a probabilistic model with multiple layers of random variables,

but most of the noise is added only at the level of output samples (i.e.,). By

contrast, probabilistic models corresponding to most of real-world data sets have variability

entering on multiple levels. For example, if we consider classification of images of letters,

the variability is present in both high-level features like length or angle of individual strokes

and low-level features like the colors of pixels.

Second, the predictive coding model corresponding to backpropagation assumes a layered

structure of the probabilistic model. By contrast, probabilistic models corresponding to

many problems may have other structures. For example, in the task from section 1 of a child

learning the sounds of the letters, the noise or variability is present in both the visual and

auditory stimuli. Thus, this task could be described by a probabilistic model including a

higher-level variable corresponding to a letter, which determines both the mean visual input

perceived by a child and the sound made by the parent. Thus, the predictive coding networks

with parameters that do not implement the backpropagation algorithm exactly may be more

suited for solving the learning tasks that animals and humans face.

In summary, the analysis suggests that it is unlikely that brain networks implement the

backpropagation algorithm exactly. Instead, it seems more probable that cortical networks

perform computations similar to those of a predictive coding network without any variance

parameters dominating any others. These networks would be able to learn relationships

between modalities in both directions and flexibly learn probabilistic models well describing

observed stimuli and the associations between them.

4.3 Previous Work on Approximation of the Backpropagation Algorithm

As we mentioned in section 1, other models have been developed describing how the

backpropagation algorithm could be approximated in a biological neural network. We now

review these models, relate them to the four criteria stated in section 1, and compare them

with the predictive coding model.

Whittington and Bogacz Page 21

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

O’Reilly (1998) considered a modified ANN that also includes feedback weights between

layers that are equal to feedforward weights. In this modified ANN, the output of hidden

nodes in the equilibrium is given by

(4.1)

and the output of the output nodes satisfies in equilibrium the same condition as for the

standard ANN (an equation similar to the one above but including just the first summation).

It has been demonstrated that the weight change minimizing the error of this network can be

well approximated by the following update (O’Reilly, 1998):

(4.2)

This is the contrastive Hebbian learning weight update rule (Ackley et al., 1985). In equation

4.2, denotes the output of the nodes in the prediction phase, when the input nodes

are set to and all the other nodes are updated as described above, while

denotes the output in the training phase when, in addition, the output nodes are set to

 and the hidden nodes satisfy equation 4.1. Thus, according to the plasticity rule,

each synapse needs to be updated twice—once after the network settles to equilibrium

during prediction and once after the network settles following the presentation of the desired

output sample. Each of these two updates relies just on local plasticity, but they have the

opposite sign. Thus, the synapses on all levels of hierarchy need “to be aware” of the

presence of sout on the output and use Hebbian or anti-Hebbian plasticity accordingly.

Although it has been proposed how such plasticity could be implemented (O’Reilly, 1998),

it is not known if cortical synapses can perform such form of plasticity.

In the above GeneRec model, the error terms δ are not explicitly represented in neural

activity, and instead the weight change based on errors is decomposed into a difference of

two weight modifications: one based on target value and one based on predicted value. By

contrast, the predictive coding model includes additional nodes explicitly representing error

and, thanks to them, has a simpler plasticity rule involving just a single Hebbian

modification. A potential advantage of such a single modification is robustness to

uncertainty about the presence of sout because no mistaken weight updates can be made

when sout is not present.

Bengio and colleagues (Bengio, 2014; Bengio et al., 2015) considered how the

backpropagation algorithm can be approximated in a hierarchical network of autoencoders

that learn to predict their own inputs. The general frameworks of autoencoders and

predictive coding are closely related, as both of the networks, which include feedforward

and feedback connections, learn to predict activity on lower levels from the representation

on the higher levels. This work (Bengio, 2014; Bengio et al., 2015) includes many

Whittington and Bogacz Page 22

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

interesting results, such as improvement of learning due to the addition of noise to the

system. However, it was not described how it is mapped on a network of simple nodes

performing local computation. There is a discussion of a possible plasticity rule at the end of

Bengio (2014) that has a similar form as equation 4.2 of the GeneRec model.

Bengio and colleagues (Scellier & Bengio, 2016; Bengio & Fischer, 2015) introduce another

interesting approximation to implement backpropagation in biological neural networks. It

has some similarities to the model presented here in that it minimizes an energy function.

However, like contrastive Hebbian learning, it operates in two phases, a positive and a

negative phase, where weights are updated from information obtained from each phase. The

weights are changed following a differential equation update starting at the end of the

negative phase and until convergence of the positive phase. Learning must be inhibited

during the negative phase, which would require a global signal. This model also achieves

good results on the MNIST data set.

Lillicrap et al. (2016) focused on addressing the requirement of the backpropagation

algorithm that the error terms need to be transmitted backward through exactly the same

weights that are used to transmit information feedforward. Remarkably, they have shown

that even if random weights are used to transmit the errors backward, the model can still

learn efficiently. Their model requires external control over nodes to route information

differentially during training and testing. Furthermore, we note that the requirement of

symmetric weights between the layers can be enforced by using symmetric learning rules

like those proposed in GeneRec and predictive coding models. Equally, we will show in a

future paper that the symmetric requirement is not actually necessary in the predictive

coding model.

Balduzzi et al. (2014) showed that efficient learning may be achieved by a network that

receives a global error signal and in which synaptic weight modification depends jointly on

the error and the terms describing the influence of each neuron of final error. However, it is

not specified in this work how these influence terms could be computed in a way satisfying

the criteria stated in section 1.

Finally, it is worth pointing out that previous papers have shown that certain models perform

similar computations as ANNs or that they approximate the backpropagation algorithm,

while in this letter, we show, for the first time, that a biologically plausible algorithm may

actually converge to backpropagation. Although this convergence in the limit is more of a

theoretical result, it provides a mean to clarify the computational relationship between the

proposed model and backpropagation, as described above.

4.4 Relationship to Experimental Data

We hope that the proposed extension of the predictive coding framework to supervised

learning will make it easier to test this framework experimentally. The model predicts that in

a supervised learning task, like learning sounds associated with shapes, the activity after

feedback, proportional to the error made by a participant, should be seen not only in auditory

areas but also visual and associative areas. In such experiments, the model can be used to

estimate prediction errors, and one could analyze precisely which cortical regions or layers

Whittington and Bogacz Page 23

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

have activity correlated with model variables. Inspection of the neural activity could in turn

refine the predictive coding models, so they better reflect information processing in cortical

circuits.

The proposed predictive coding models are still quite abstract, and it is important to

investigate if different linear or nonlinear nodes can be mapped on particular anatomically

defined neurons within a cortical microcircuit (Bastos et al., 2012). Iterative refinements of

such mapping on the basis of experimental data (such as f-I curves of these neurons, their

connectivity, and activity during learning tasks) may help understand how supervised and

unsupervised learning is implemented in the cortex.

Predictive coding has been proposed as a general framework for describing computations in

the neocortex (Friston, 2010). It has been shown in the past how networks in the predictive

coding framework can perform unsupervised learning, attentional modulations, and action

selection (Rao & Ballard, 1999; Feldman & Friston, 2010; Friston, Daunizeau, Kilner, &

Kiebel, 2010). Here we add to this list supervised learning, and associative memory (as the

networks presented here are able to associate patterns of neural activity with each other). It

is remarkable that the same basic network structure can perform this variety of the

computational tasks, also performed by the neocortex. Furthermore, this network structure

can be optimized for different tasks by modifying proportions of synapses among different

neurons. For example, the networks considered here for supervised learning did not include

connections encoding covariance of random variables, which are useful for certain

unsupervised learning tasks (Bogacz, 2017). These properties of the predictive coding

networks parallel the organization of the neocortex, where the same cortical structure is

present in all cortical areas, differing only in proportions and properties of neurons and

synapses in different layers.

Acknowledgments

This work was supported by Medical Research Council grant MC UU 12024/5 and the EPSRC. We thank Tim
Vogels, Chris Summerfield, and Eduardo Martin Moraud for reading the previous version of this letter and
providing very useful comments.

References

Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for Boltzmann machines. Cognitive
Science. 1985; 9:147–169.

Balduzzi D, Vanchinathan H, Buhmann J. Kickback cuts backprop’s red-tape: Biologically plausible
credit assignment in neural networks. arXiv:1411.6191v1. 2014

Barto, A., Jordan, M. Gradient following without back-propagation in layered networks. Proceedings
of the 1st Annual International Conference on Neural Networks; Piscataway, NJ: 1987. p. 629-636.

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for
predictive coding. Neuron. 2012; 76:695–711. [PubMed: 23177956]

Bell AH, Summerfield C, Morin EL, Malecek NJ, Ungerleider LG. Encoding of stimulus probability
in macaque inferior temporal cortex. Current Biology. 2016; 26(17):2280. [PubMed: 27524483]

Bengio Y. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906. 2014

Bengio Y, Fischer A. Early inference in energy-based models approximates back-propagation. arXiv:
1510.02777. 2015

Whittington and Bogacz Page 24

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bengio Y, Lee D-H, Bornschein J, Lin Z. Towards biologically plausible deep learning. arXiv:
1502.04156. 2015

Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. Journal of
Mathematical Psychology. 2017; 76:198–211. [PubMed: 28298703]

Bogacz, R., Markowska-Kaczmar, U., Kozik, A. Blinking artefact recognition in EEG signal using
artificial neural network. Proceedings of 4th Conference on Neural Networks and Their
Applications; Politechnika Czestochowska; 1999. p. 502-507.

Bogacz R, Moraud EM, Abdi A, Magill PJ, Baufreton J. Properties of neurons in external globus
pallidus can support optimal action selection. PLoS Comput Biol. 2016; 12(7):e1005004.
[PubMed: 27389780]

Brown MW, Aggleton JP. Recognition memory: What are the roles of the perirhinal cortex and
hippocampus? Nature Reviews Neuroscience. 2001; 2(1):51–61. [PubMed: 11253359]

Chauvin, Y., Rumelhart, DE. Backpropagation: Theory, architectures, and applications. Mahwah, NJ:
Erlbaum; 1995.

Crick F. The recent excitement about neural networks. Nature. 1989; 337:129–132. [PubMed:
2911347]

Dayan P, Hinton GE, Neal RM, Zemel RS. The Helmholtz machine. Neural Computation. 1995; 7(5):
889–904. [PubMed: 7584891]

de Sa VR, Ballard DH. Perceptual learning from cross-modal feedback. Psychology of Learning and
Motivation. 1998; 36:309–351.

Feldman H, Friston K. Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience.
2010; 4:215. [PubMed: 21160551]

Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. Experience-dependent
spatial expectations in mouse visual cortex. Nature Neuroscience. 2016; 19:1658–1664. [PubMed:
27618309]

Friston K. Learning and inference in the brain. Neural Networks. 2003; 16:1325–1352. [PubMed:
14622888]

Friston K. A theory of cortical responses. Philosophical Transactions of the Royal Society B. 2005;
360:815–836.

Friston K. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience. 2010;
11:127–138. [PubMed: 20068583]

Friston KJ, Daunizeau J, Kilner J, Kiebel SJ. Action and behavior: A free-energy formulation.
Biological Cybernetics. 2010; 102(3):227–260. [PubMed: 20148260]

Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, et al. Kingsbury B. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine. 2012; 29:82–97.

Hinton, GE., McClelland, JL. Learning representations by recirculation. Neural information processing
systems. Anderson, DZ., editor. New York: American Institute of Physics; 1988. p. 358-366.

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Computation.
2006; 18(7):1527–1554. [PubMed: 16764513]

Hyvarinen, A. Regression using independent component analysis, and its connection to multi-layer
perceptrons. Proceedings of the 9th International Conference on Artificial Neural Networks;
Stevenage, UK: IEE; 1999. p. 491-496.

Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014

Krizhevsky, A., Sutskever, I., Hinton, GE. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems. Pereira, F.Burges, C.Bottou, L.,
Weinberger, K., editors. Vol. 25. Red Hook, NY: Curran; 2012. p. 1097-1105.

Larochelle, H., Bengio, Y. Towards biologically plausible deep learning. Proceedings of the 25th
International Conference on Machine Learning; New York: ACM; 2008. p. 536-543.

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation
applied to handwritten zip code recognition. Neural Computation. 1989; 1:541–551.

Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random synaptic feedback weights support error
backpropagation for deep learning. Nature Communications. 2016; 7:13276.

Whittington and Bogacz Page 25

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mazzoni P, Andersen RA, Jordan MI. A more biologically plausibile learning rule for neural networks.
Proc Natl Acad Sci USA. 1991; 88:4433–4437. [PubMed: 1903542]

McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the
hippocampus and neocortex: Insights from the successes and failures of connectionist models of
learning and memory. Psychological Review. 1995; 102:419–457. [PubMed: 7624455]

Miller LL, Desimone R. The representation of stimulus familiarity in anterior inferior temporal cortex.
Journal of Neurophysiology. 1993; 69(6):1918–1929. [PubMed: 8350131]

Mizuseki K, Buzsáki G. Preconfigured, skewed distribution of firing rates in the hippocampus and
entorhinal cortex. Cell Reports. 2013; 4(5):1010–1021. [PubMed: 23994479]

O’Reilly RC. Biologically plausible error-driven learning using local activation differences: The
generalized recirculation algorithm. Neural Computation. 1998; 8:895–938.

O’Reilly, RC., Munakata, Y. Computational explorations in cognitive neuroscience. Cambridge, MA:
MIT Press; 2000.

Plaut DC, McClelland JL, Seidenberg MS, Patterson K. Understanding normal and impaired word
reading: Computational principles in quasi-regular domains. Psychological Review. 1996; 103:56–
115. [PubMed: 8650300]

Rao RPN, Ballard DH. Predictive coding in the visual cortex: A functional interpretation of some
extra-classical receptive-field effects. Nature Neuroscience. 1999; 2:79–87. [PubMed: 10195184]

Rumelhart, DE., Durbin, R., Golden, R., Chauvin, Y. Backpropagation: The basic theory.
Backpropagation: Theory, architectures and applications. Chauvin, Y., Rumelhart, DE., editors.
Hillsdale, NJ: Erlbaum; 1995. p. 1-34.

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.
1986; 323:533–536.

Scellier B, Bengio Y. Towards a biologically plausible backprop. arXiv:1602.05179. 2016

Seidenberg MS, McClelland JL. A distributed, developmental model of word recognition and naming.
Psychological Review. 1989; 96:523–568. [PubMed: 2798649]

Seung HS. Learning in spiking neural networks by reinforcement of stochastic synaptic transmission.
Neuron. 2003; 40:1063–1073. [PubMed: 14687542]

Spratling MW. Reconciling predictive coding and biased competition models of cortical function.
Frontiers in Computational Neuroscience. 2008; 2:4. [PubMed: 18978957]

Srivastava, N., Salakhutdinov, R. Multimodal learning with deep boltzmann machines. Advances in
neural information processing systems. Pereira, F.Burges, CJC.Bottou, L., Weinberger, KQ.,
editors. Vol. 25. Red Hook, NY: Curran; 2012. p. 2222-2230.

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. Predictive codes for
forthcoming perception in the frontal cortex. Science. 2006; 314:1311–1314. [PubMed: 17124325]

Summerfield C, Trittschuh EH, Monti JM, Mesulam M-M, Egner T. Neural repetition suppression
reflects fulfilled perceptual expectations. Nature Neuroscience. 2008; 11(9):1004–1006. [PubMed:
19160497]

Unnikrishnan K, Venugopal K. Alopex: A correlation-based learning algorithm for feedforward and
recurrent neural networks. Neural Computation. 1994; 6:469–490.

Werfel J, Xiew X, Seung HS. Learning curves for stochastic gradient descent in linear feedforward
networks. Neural Computation. 2005; 17:2699–2718. [PubMed: 16212768]

Whittington JC, Bogacz R. Learning in cortical networks through error back-propagation. bioRxiv.
2015:035451.

Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning. 1992; 8:229–256.

Zmarz P, Keller GB. Mismatch receptive fields in mouse visual cortex. Neuron. 2016; 92(4):766–772.
[PubMed: 27974161]

Whittington and Bogacz Page 26

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 1.
Backpropagation algorithm. (A) Architecture of an ANN. Circles denote nodes, and arrows

denote connections. (B) An example of activity and weight changes in an ANN. Thick black

arrows between the nodes denote connections with high weights, and thin gray arrows

denote the connections with low weights. Filled and open circles denote nodes with higher

and lower activity, respectively. Rightward-pointing arrows labeled denote error terms,

and their darkness indicates how large the errors are. Upward-pointing red arrows indicate

the weights that would most increase according to the backpropagation algorithm.

Whittington and Bogacz Page 27

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 2.
Predictive coding model. (A) Structure of the probabilistic model. Circles denote random

variables, and arrows denote dependencies between them. (B) Architecture of the network.

Arrows and lines ending with circles denote excitatory and inhibitory connections,

respectively. Connections without labels have weights fixed to 1.

Whittington and Bogacz Page 28

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 3.
Possible implementation of nonlinearities in the predictive coding model (magnification of a

part of the network in Figure 2B). Filled arrows and lines ending with circles denote

excitatory and inhibitory connections, respectively. Open arrow denotes a modulatory

connection with multiplicative effect. Circles and hexagons denote nodes performing linear

and nonlinear computations, respectively.

Whittington and Bogacz Page 29

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 4.
Example of a predictive coding network for supervised learning. (A) Prediction mode. (B)

Learning mode. (C) Learning mode for a network with high value of parameter describing

sensory noise. Notation as in Figure 2B.

Whittington and Bogacz Page 30

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 5.
Comparison of weight changes in backpropagation and predictive coding models. (A) The

structure of the network used. (B) The data that the models were trained on—here, sout =

tanh(tanh(sin)). (C) The objective function of an ANN for a training set with 300 samples

generated as described. The objective function is equal to the sum of 300 terms given by

equation 2.2 corresponding to individual training samples. The red dot indicates weights that

maximize the objective function. (D) The objective function of the predictive coding model

at the fixed point. For each set of weights and training sample, to find the state of predictive

coding network at the fixed point, the nodes in layers 0 and 2 were set to training examples,

and the node in layer 1 was updated according to equation 2.18. This equation was solved

using the Euler method. A dynamic form of the Euler integration step was used where its

size was allowed to reduce by a factor should the system not be converging (i.e., the

maximum change in node activity increases from the previous step). The initial step size was

0.2. The relaxation was performed until the maximum value of was lower than

 or 1 million iterations had been performed. (E–G) Angle difference between the

gradient for the ANN and the gradient for the predictive coding model found from equation

2.19. Different panels correspond to different values of parameter describing sensory noise.

(E) (F) (G)

Whittington and Bogacz Page 31

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 6.
Comparison of prediction accuracy (%) for different models (indicated by colors; see the

key) on the MNIST dataset. Training errors are shown with solid lines and validation errors

with dashed lines. The dotted gray line denotes 2% error. The models were run 10 times

each, initialized with different weights. When the training error lines stop, this is when the

mean error of the 10 runs was equal to zero. The weights were drawn from a uniform

distribution with maximum and minimum values of where N is the total number of

Whittington and Bogacz Page 32

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

neurons in the two layers on either side of the weight. The input data were first transformed

through an inverse logistic function as preprocessing before being given to the network.

When the network was trained with an image of class c, the nodes in layer 0 were set to

 and After inference and before the weight update, the error node

values were scaled by so as to be able to compare between the models. We used a batch

size of 20, with a learning rate of 0.001 and the stochastic optimizer Adam (Kingma & Ba,

2014) to accelerate learning; this is essentially a per parameter learning rate, where weights

that are infrequently updated are updated more and vice versa. We chose the number of steps

in the inference phase to be 20; at this point, the network will not necessarily have

converged, but we did so to aid speed of training. This is not the minimum number of

inference iterations that allows for good learning, a notion that we will explore in a future

paper. Otherwise simulations are according to Figure 5. The shaded regions in the fainter

color describe the standard error of the mean. The figure is shown on a logarithmic plot.

Whittington and Bogacz Page 33

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 7.
The effect of variance associated with different inputs on network predictions. (A) Sample

training set composed of 2000 randomly generated samples, such that and

 where a ~ (0, 1) and b ~ (0,1/9). Lines compare the predictions made by

the model with different parameters with predictions of standard algorithms (see the key).

(B) Structure of the probabilistic model. (C) Architecture of the simulated predictive coding

network. Notation as in Figure 2. Connections shown in gray are used if the network predicts

the value of the corresponding sample. (D) Root mean squared error (RMSE) of the models

with different parameters (see the key in panel A) trained on data as in panel A and tested on

a further 100 samples generated from the same distribution. During the training, for each

sample the network was allowed to converge to the fixed point as described in the caption of

Figure 5 and the weights were modified with learning rate α = 1. The entire training and

testing procedure was repeated 50 times, and the error bars show the standard error.

Whittington and Bogacz Page 34

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Whittington and Bogacz Page 35

Table 1
Corresponding and Common Symbols Used in Describing ANNs and Predictive Coding
Models.

Backpropagation Predictive Coding

Activity of a node (before nonlinearity) yi
(l) xi

(l)

Synaptic weight wi, j
(l) θi, j

(l)

Objective function E F

Prediction error δi
l εi

l

Activation function f

Number of neurons in a layer n (l)

Highest index of a layer l max

Input from the training set si
in

Output from the training set si
out

Neural Comput. Author manuscript; available in PMC 2017 June 12.

	Abstract
	Introduction
	Models
	Review of Error Backpropagation
	Predictive Coding for Supervised Learning
	Probabilistic Model
	Inference
	Neural Implementation
	Learning Parameters

	Results
	Relationship between the Models
	Prediction
	Learning

	Performance on More Complex Learning Tasks
	Effects of the Architecture of the Predictive Coding Model

	Discussion
	Biological Plausibility of the Predictive Coding Model
	Does the Brain Implement Backprop?
	Previous Work on Approximation of the Backpropagation Algorithm
	Relationship to Experimental Data

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

