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Abstract

To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple 

levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in 

synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in 

synaptic weights is a complex function of weights and activities of neurons not directly connected 

with the synapse being modified, whereas the changes in biological synapses are determined only 

by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that 

approximate the backpropagation algorithm with local synaptic plasticity, but these models require 

complex external control over the network or relatively complex plasticity rules. Here we show 

that a network developed in the predictive coding framework can efficiently perform supervised 

learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for 

certain parameters, the weight change in the predictive coding model converges to that of the 

backpropagation algorithm. This suggests that it is possible for cortical networks with simple 

Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas 

on multiple levels of hierarchy are modified to minimize the error on the output.

1 Introduction

Efficiently learning from feedback often requires changes in synaptic weights in many 

cortical areas. For example, when a child learns sounds associated with letters, after 

receiving feedback from a parent, the synaptic weights need to be modified not only in 

auditory areas but also in associative and visual areas. An effective algorithm for supervised 

learning of desired associations between inputs and outputs in networks with hierarchical 

organization is the error backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986). 

Artificial neural networks (ANNs) employing backpropagation have been used extensively 
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in machine learning (LeCun et al., 1989; Chauvin & Rumelhart, 1995; Bogacz, Markowska-

Kaczmar, & Kozik, 1999) and have become particularly popular recently, with the newer 

deep networks having some spectacular results, now able to equal and outperform humans in 

many tasks (Krizhevsky, Sutskever, & Hinton, 2012; Hinton et al., 2012). Furthermore, 

models employing the backpropagation algorithm have been successfully used to describe 

learning in the real brain during various cognitive tasks (Seidenberg & McClelland, 1989; 

McClelland, McNaughton, & O’Reilly, 1995; Plaut, McClelland, Seidenberg, & Patterson, 

1996).

However, it has not been known if natural neural networks could employ an algorithm 

analogous to the backpropagation used in ANNs. In ANNs, the change in each synaptic 

weight during learning is calculated by a computer as a complex, global function of 

activities and weights of many neurons (often not connected with the synapse being 

modified). In the brain, however, the network must perform its learning algorithm locally, on 

its own without external influence, and the change in each synaptic weight must depend on 

just the activity of presynaptic and postsynaptic neurons. This led to a common view of the 

biological implausibility of this algorithm (Crick, 1989)—for example: “Despite the 

apparent simplicity and elegance of the back-propagation learning rule, it seems quite 

implausible that something like equations […] are computed in the cortex” (O’Reilly & 

Munakata, 2000, p. 162).

Several researchers aimed at developing biologically plausible algorithms for supervised 

learning in multilayer neural networks. However, the biological plausibility was understood 

in different ways by different researchers. Thus, to help evaluate the existing models, we 

define the criteria we wish a learning model to satisfy, and we consider the existing models 

within these criteria:

1. Local computation. A neuron performs computation only on the basis of the 

inputs it receives from other neurons weighted by the strengths of its synaptic 

connections.

2. Local plasticity. The amount of synaptic weight modification is dependent on 

only the activity of the two neurons the synapse connects (and possibly a 

neuromodulator).

3. Minimal external control. The neurons perform the computation autonomously 

with as little external control routing information in different ways at different 

times as possible.

4. Plausible architecture. The connectivity patterns in the model should be 

consistent with basic constraints of connectivity in neocortex.

The models proposed for supervised learning in biological multilayer neural networks can 

be divided in two classes. Models in the first class assume that neurons (Barto & Jordan, 

1987; Mazzoni, Andersen, & Jordan, 1991; Williams, 1992) or synapses (Unnikrishnan & 

Venugopal, 1994; Seung, 2003) behave stochastically and receive a global signal describing 

the error on the output (e.g., via a neuromodulator). If the error is reduced, the weights are 

modified to make the produced activity more likely. Many of these models satisfy the above 
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criteria, but they do not directly approximate the backpropagation algorithm, and it has been 

pointed out that under certain conditions, their learning is slow and scales poorly with 

network size (Werfel, Xiew, & Seung, 2005). The models in the second class explicitly 

approximate the backpropagation algorithm (O’Reilly, 1998; Lillicrap, Cownden, Tweed, & 

Akerman, 2016; Balduzzi, Vanchinathan, & Buhmann, 2014; Bengio, 2014; Bengio, Lee, 

Bornschein, & Lin, 2015; Scellier & Bengio, 2016), and we will compare them in detail in 

section 4.

Here we show how the backpropagation algorithm can be closely approximated in a model 

that uses a simple local Hebbian plasticity rule. The model we propose is inspired by the 

predictive coding framework (Rao & Ballard, 1999; Friston, 2003, 2005). This framework is 

related to the autoencoder framework (Ackley, Hinton, & Sejnowski, 1985; Hinton & 

McClelland, 1988; Dayan, Hinton, Neal, & Zemel, 1995) in which the GeneRec model 

(O’Reilly, 1998) and another approximation of backpropagation (Bengio, 2014; Bengio et 

al., 2015) were developed. In both frameworks, the networks include feedforward and 

feedback connections between nodes on different levels of hierarchy and learn to predict 

activity on lower levels from the representation on the higher levels. The predictive coding 

framework describes a network architecture in which such learning has a particularly simple 

neural implementation. The distinguishing feature of the predictive coding models is that 

they include additional nodes encoding the difference between the activity on a given level 

and that predicted by the higher level, and that these prediction errors are propagated 

through the network (Rao & Ballard, 1999; Friston, 2005). Patterns of neural activity similar 

to such prediction errors have been observed during perceptual decision tasks (Summerfield 

et al., 2006; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). In this letter, we 

show that when the predictive coding model is used for supervised learning, the prediction 

error nodes have activity very similar to the error terms in the backpropagation algorithm. 

Therefore, the weight changes required by the backpropagation algorithm can be closely 

approximated with simple Hebbian plasticity of connections in the predictive coding 

networks.

In the next section, we review backpropagation in ANNs. Then we describe a network 

inspired by the predictive coding model in which the weight update rules approximate those 

of conventional backpropagation. We point out that for certain architectures and parameters, 

learning in the proposed model converges to the backpropagation algorithm. We compare the 

performance of the proposed model and the ANN. Furthermore, we characterize the 

performance of the predictive coding model in supervised learning for other architectures 

and parameters and highlight that it allows learning bidirectional associations between 

inputs and outputs. Finally, we discuss the relationship of this model to previous work.

2 Models

While we introduce ANNs and predictive coding below, we use a slightly different notation 

than in their original description to highlight the correspondence between the variables in the 

two models. The notation will be introduced in detail as the models are described, but for 

reference it is summarized in Table 1. To make dimensionality of variables explicit, we 
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denote vectors with a bar (e.g., ). Matlab codes simulating an ANN and the predictive 

coding network are freely available at the ModelDB repository with access code 218084.

2.1 Review of Error Backpropagation

ANNs (Rumelhart et al., 1986) are configured in layers, with multiple neuron-like nodes in 

each layer as illustrated in Figure 1A. Each node gets input from a previous layer weighted 

by the strengths of synaptic connection and performs a nonlinear transformation of this 

input. To make the link with predictive coding more visible, we change the direction in 

which layers are numbered and index the output layer by 0 and the input layer by lmax. We 

denote by  the input to the ith node in the lth layer, while the transformation of this by an 

activation function is the output,  Thus:

(2.1)

where  is the weight from the jth node in the lth layer to the ith node in the (l − 1)th 

layer, and n(l) is the number of nodes in layer l. For brevity, we refer to variable  as the 

activity of a node.

The output the network produces for a given input depends on the values of the weight 

parameters. This can be illustrated in an example of an ANN shown in Figure 1B. The 

output node  has a high activity as it receives an input from the active input node  via 

strong connections. By contrast, for the other output node  there is no path leading to it 

from the active input node via strong connections, so its activity is low.

The weight values are found during the following training procedure. At the start of each 

iteration, the activities in the input layer  are set to values from input training sample, 

which we denote by  The network first makes a prediction: the activities of nodes are 

updated layer by layer according to equation 2.1. The predicted output in the last layer  is 

then compared to the output training sample  We wish to minimize the difference 

between the actual and desired output, so we define the following objective function:1

(2.2)

1As in previous work linking the backpropagation algorithm to probabilistic inference (Rumelhart, Durbin, Golden, & Chauvin, 

1995), we consider the output from the network to be  rather than  as it simplifies the notation of the equivalent 
probabilistic model. This corresponds to an architecture in which the nodes in the output layer are linear. A predictive coding network 
approximating an ANN with nonlinear nodes in all layers was derived in a previous version of this letter (Whittington & Bogacz, 
2015).
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The training set contains many pairs of training vectors , which are iteratively 

presented to the network, but for simplicity of notation, we consider just changes in weights 

after the presentation of a single training pair. We wish to modify the weights to maximize 

the objective function, so we update the weights proportionally to the gradient of the 

objective function,

(2.3)

where α is a parameter describing the learning rate.

Since weight  determines activity  the derivative of the objective function over the 

weight can be found by applying the chain rule:

(2.4)

The first partial derivative on the right-hand side of equation 2.4 expresses by how much the 

objective function can be increased by increasing the activity of node b in layer a − 1, which 

we denote by

(2.5)

The values of these error terms for the sample network in Figure 1B are indicated by the 

darkness of the arrows labeled  The error term  is high because there is a mismatch 

between the actual and desired network output, so by increasing the activity in the 

corresponding node  the objective function can be increased. By contrast, the error term 

 is low because the corresponding node  already produces the desired output, so 

changing its activity will not increase the objective function. The error term  is high 

because the corresponding node  projects strongly to the node  producing output that 

is too low, so increasing the value of  can increase the objective function. For analogous 

reasons, the error term  is low.

Now let us calculate the error terms  It is straightforward to evaluate them for the 

output layer:
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(2.6)

If we consider a node in an inner layer of the network, then we must consider all possible 

routes through which the objective function is modified when the activity of the node 

changes, that is, we must consider the total derivative:

(2.7)

Using the definition of equation 2.5 and evaluating the last derivative of equation 2.7 using 

the chain rule, we obtain the recursive formula for the error terms:

(2.8)

The fact that the error terms in layer l > 0 can be computed on the basis of the error terms in 

the next layer l − 1 gave the name “error backpropagation” to the algorithm.

Substituting the definition of error terms from equation 2.5 into equation 2.4 and evaluating 

the second partial derivative on the right-hand side of equation 2.4, we obtain

(2.9)

According to equation 2.9, the change in weight  is proportional to the product of the 

output from the presynaptic node  and the error term  associated with the 

postsynaptic node. Red upward-pointing arrows in Figure 1B indicate which weights would 

be increased the most in this example, and it is evident that the increase in these weights will 

indeed increase the objective function.

In summary, after presenting to the network a training sample, each weight is modified 

proportionally to the gradient given in equation 2.9 with the error term given by equation 

2.8. The expression for weight change (see equations 2.9 and 2.8) is a complex global 

function of activities and weights of neurons not connected to the synapse being modified. In 

order for real neurons to compute it, the architecture of the model could be extended to 

include nodes computing the error terms, which could affect the weight changes. As we will 

see, analogous nodes are present in the predictive coding model.
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2.2 Predictive Coding for Supervised Learning

Due to the generality of the predictive coding framework, multiple network architectures 

within this framework can perform supervised learning. In this section, we describe the 

simplest model that can closely approximate the backpropagation; we consider other 

architectures later. The description in this section closely follows that of unsupervised 

predictive coding networks (Rao & Ballard, 1999; Friston, 2005) but is adapted for the 

supervised setting. Also, we provide a succinct description of the model. For readers 

interested in a gradual and more detailed introduction to the predictive coding framework, 

we recommend reading sections 1 and 2 of a tutorial on this framework (Bogacz, 2017) 

before reading this section.

We first propose a probabilistic model for supervised learning. Then we describe the 

inference in the model, its neural implementation, and finally learning of model parameters.

2.2.1 Probabilistic Model—Figure 2A shows a structure of a probabilistic model that 

parallels the architecture of the ANN shown in Figure 1A. It consists of lmax layers of 

variables, such that the variables on level l depend on the variables on level l + 1. It is 

important to emphasize that Figure 2A does not show the architecture of the predictive 

coding network, only the structure of the underlying probabilistic model. As we will see, the 

inference in this model can be implemented by a network with the architecture shown in 

Figure 2B.

By analogy to ANNs, we assume that variables on the highest level  are fixed to the 

input sample  and the inferred values of variables on level 0 are the output from the 

network. Readers familiar with predictive coding models for sensory processing may be 

surprised that the sensory input is provided to the highest level; traditionally in these models, 

the input is provided to level 0. Indeed, when biological neural networks learn in a 

supervised manner, both input and output are provided to sensory cortices. For example, 

when a child learns the sounds of the letters, the input (i.e., the shape of a letter) is provided 

to visual cortex, the output (i.e., the sound) is provided to the auditory cortex, and both of 

these sensory cortices communicate with associative cortex. The model we consider in this 

section corresponds to a part of this network: from associative areas to the sensory modality 

to which the output is provided. So in the example, level 0 corresponds to the auditory 

cortex, while the highest levels correspond to associative areas. Thus, the input  presented 

to this network corresponds not to the raw sensory input but, rather, to its representation 

preprocessed by visual networks. We discuss how the sensory networks processing the input 

modality can be introduced to the model in section 3.

Let  be a vector of random variables on level l, and let us denote a sample from random 

variable  by . Let us assume the following relationship between the random variables 

on adjacent levels (for brevity of notation, we write  instead of ):
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(2.10)

In equation 2.10,  (x; μ, Σ) is the probability density of a normal distribution with mean μ 
and variance Σ. The mean of probability density on level l is a function of the values on the 

higher-level analogous to the input to a node in ANN (see equation 2.1):

(2.11)

In equation 2.11, n(l) denotes the number of random variables on level l, and  are the 

parameters describing the dependence of random variables. For simplicity in this letter, we 

do not consider how  are learned (Friston, 2005; Bogacz, 2017), but treat them as fixed 

parameters.

2.2.2 Inference—We now move to describing the inference in the model: finding the 

most likely values of model variables, which will determine the activity of nodes in the 

predictive coding network. We wish to find the most likely values of all unconstrained 

random variables in the model that maximize the probability 

(see Friston, 2005, and Bogacz, 2017, for the technical details, however we are only 

considering the first moment of an approximate distribution for each random variable and 

from now onwards we will use the same notation  to describe the first moments). Since 

the nodes on the highest levels are fixed to  their values are not being changed 

but, rather, provide a condition on other variables. To simplify calculations, we define the 

objective function equal to the logarithm of the joint distribution (since the logarithm is a 

monotonic operator, a logarithm of a function has the same maximum as the function itself):

(2.12)

Since we assumed that the variables on one level depend on variables of the level above, we 

can write the objective function as

(2.13)

Substituting equation 2.10 and the expression for a normal distribution into the above 

equation, we obtain:
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(2.14)

Then, ignoring constant terms, we can write the objective function as

(2.15)

Recall that we wish to find the values  that maximize the above objective function. This 

can be achieved by modifying  proportionally to the gradient of the objective function. To 

calculate the derivative of F over  we note that each  influences F in two ways: it 

occurs in equation 2.15 explicitly, but it also determines the values of  Thus, the 

derivative contains two terms:

(2.16)

In equation 2.16, there are terms that repeat, so we denote them by

(2.17)

These terms describe by how much the value of a random variable on a given level differs 

from the mean predicted by a higher level, so we refer to them as prediction errors. 

Substituting the definition of prediction errors into equation 2.16, we obtain the following 

rule describing changes in  over time:

(2.18)

2.2.3 Neural Implementation—The computations described by equations 2.17 and 

2.18 could be performed by a simple network illustrated in Figure 2B with nodes 

corresponding to prediction errors  and values of random variables  The prediction 

errors  are computed on the basis of excitation from corresponding variable nodes  and 
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inhibition from the nodes on the higher level  weighted by strength of synaptic 

connections  Conversely, the nodes  make computations on the basis of the 

prediction error from the corresponding level and the prediction errors from the lower level 

weighted by synaptic weights.

It is important to emphasize that for a linear function f (x) = x, the nonlinear terms in 

equations 2.17 and 2.18 would disappear, and these equations could be fully implemented in 

the simple network shown in Figure 2B. To implement equation 2.17, a prediction error node 

would get excitation from the corresponding variable node and inhibition equal to synaptic 

input from higher-level nodes; thus, it could compute the difference between them. Scaling 

the activity of nodes encoding prediction error by a constant  could be implemented by 

self-inhibitory connections with weight  (we do not consider them here for simplicity: for 

details see Friston, 2005, and Bogacz, 2017). Analogous to implementing equation 2.18, a 

variable node would need to change its activity proportionally to its inputs.

One can imagine several ways that the nonlinear terms can be implemented, and Figure 3 

shows one of them (Bogacz, 2017). The prediction error nodes need to receive the input 

from the higher-level nodes transformed through a nonlinear function, and this 

transformation could be implemented by additional nodes (indicated by a hexagon labeled 

 in Figure 3). Introducing additional nodes is also necessary to make the pattern of 

connectivity in the model more consistent with that observed in the cortex. In particular, in 

the original predictive coding architecture (see Figure 2B), the projections from the higher 

levels are inhibitory, whereas connections between cortical areas are excitatory. Thus, to 

make the predictive coding network in accordance with this, the sign of the top-down input 

needs to be inverted by local inhibitory neurons (Spratling, 2008). Here we propose that 

these local inhibitory neurons could additionally perform a nonlinear transformation. With 

this arrangement, there are individual nodes encoding  and  and each node sends 

only the value it encodes. According to equation 2.18, the input from the lower level to a 

variable node needs to be scaled by a nonlinear function of the activity of variable node 

itself. Such scaling could be implemented by either a separate node (indicated by a hexagon 

labeled  in Figure 3) or intrinsic mechanisms within the variable node that would 

make it react to excitatory inputs differentially depending on its own activity level.

In the predictive coding model, after the input is provided, all nodes are updated according 

to equations 2.17 and 2.18, until the network converges to a steady state. We label variables 

in the steady state with an asterisk (e.g.,  or F*).

Figure 4A illustrates values to which a sample model converges when presented with a 

sample pattern. The activity in this case propagates from  node through the connections 

with high weights, resulting in activation of nodes  and  (note that the double 

inhibitory connection from higher to lower levels has overall excitatory effect). Initially the 
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prediction error nodes would change their activity, but eventually their activity converges to 

0 as their excitatory input becomes exactly balanced by inhibition.

2.2.4 Learning Parameters—During learning, the values of the nodes on the lowest 

level are set to the output sample,  , as illustrated in Figure 4B. Then the values of 

all nodes on levels l ∈ {1,…, lmax − 1} are modified in the same way as described before 

(see equation 2.18).

Figure 4B illustrates an example of operation of the model. The model is presented with the 

desired output in which both nodes  and  are active. Node  becomes active as it 

receives both top-down and bottom-up input. There is no mismatch between these inputs, so 

the corresponding prediction error nodes (  and ) are not active. By contrast, the node 

 gets bottom-up but no top-down input, so its activity has intermediate value, and the 

prediction error nodes connected with it (  and ) are active.

Once the network has reached its steady state, the parameters of the model  are updated, 

so the model better predicts the desired output. This is achieved by modifying 

proportionally to the gradient of the objective function over the parameters. To compute the 

derivative of the objective function over  we note that  affects the value of function F 

of equation 2.15 by influencing  hence

(2.19)

According to equation 2.19, the change in a synaptic weight  of connection between 

levels a and a − 1 is proportional to the product of quantities encoded on these levels. For a 

linear function f (x) = x, the nonlinearity

Algorithm 1: Pseudocode for Predictive Coding During Learning.

for all Data do

     

     

     repeat

          Inference: Equations 2.17, 2.18

     until convergence

     Update weights: Equation 2.19

Whittington and Bogacz Page 11

Neural Comput. Author manuscript; available in PMC 2017 June 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In the simulations presented, to make for faster simulation, first a prediction was made by 

inputting s̄in alone and propagating through the network layer by layer, as we know that 

all error nodes eventually would converge to zero in the prediction phase (see section 3). 

Then the output s̄out is applied, after which inference took place.

in equation 2.19 would disappear, and the weight change would simply be equal to the 

product of the activities of presynaptic and postsynaptic nodes (see Figure 2B). Even if the 

nonlinearity is considered, as in Figure 3, the weight change is fully determined by the 

activity of presynaptic and postsynaptic nodes. The learning rules of the top and bottom 

weights must be slightly different. For the bottom connection labeled  in Figure 3, the 

change in a synaptic weight is simply equal to the product of the activity of nodes it 

connects (round node  and hexagonal node  For the top connection, the change 

in weights is equal to the product of activity of the presynaptic node  and function f of 

activity of the postsynaptic node (round node ). This then maintains the symmetry of the 

connections: the bottom and the top connections are modified by the same amount. We refer 

to these changes as Hebbian in a sense that in both cases, the weight change is a product of 

monotonically increasing functions of activity of presynaptic and postsynaptic neurons.

Figure 4B illustrates the resulting changes in the weights. In the example in Figure 4B, the 

weights that increase the most are indicated by long red upward arrows. There would also be 

an increase in the weight between  and  indicated by a shorter arrow, but it would be 

not as large as node  has lower activity. It is evident that after these weight changes, the 

activity of prediction error nodes would be reduced indicating that the desired output is 

better predicted by the network. In algorithm 1, we include pseudocode to clarify how the 

network operates in training mode.

3 Results

3.1 Relationship between the Models

An ANN has two modes of operation: during prediction, it computes its output on the basis 

of , while during learning, it updates its weights on the basis of  and . The 

predictive coding network can also operate in these modes. We next discuss the relationship 

between computations of an ANN and a predictive coding network in these two modes.

3.1.1 Prediction—We show that the predictive coding network has a stable fixed point at 

the state where all nodes have the same values as the corresponding nodes in the ANN 

receiving the same input . Since all nodes change proportionally to the gradient of F, the 

value of function F always increases. Since the network is constrained only by the input, the 

maximum value that F can reach is 0; because F is a negative of sum of squares, this 

maximum is achieved if all terms in the summation of equation 2.15 are equal to 0, that is, 

when
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(3.1)

Since  is defined in analogous way as  (cf. equations 2.1 and 2.11), the nodes in the 

prediction mode have the same values at the fixed point as the corresponding nodes in the 

ANN: .

The above property is illustrated in Figure 4A, in which weights are set to the same value as 

for the ANN in Figure 1B, and the network is presented with the same input sample. The 

network converges to the same pattern of activity on level l = 0 as for the ANN in Figure 1B.

3.1.2 Learning—The pattern of weight change in the predictive coding network shown 

in Figure 4B is similar as in the backpropagation algorithm (see Figure 1B). We now analyze 

under what conditions weight changes in the predictive coding model converge to that in the 

backpropagation algorithm.

The weight update rules in the two models (see equations 2.9 and 2.19) have the same form; 

however, the prediction error terms  and  were defined differently. To see the 

relationship between these terms, we now derive the recursive formula for prediction errors 

 analogous to that for  in equation 2.8. We note that once the network reaches the 

steady state in the learning mode, the change in activity of each node must be equal to zero. 

Setting the left-hand side of equation 2.18 to 0, we obtain

(3.2)

We can now write a recursive formula for the prediction errors:

(3.3)

We first consider the case when all variance parameters are set to  (this corresponds to 

the original model of Rao & Ballard, 1999, where the prediction errors were not 

normalized). Then the formula has exactly the same form as for the backpropagation 

algorithm, equation 2.8. Therefore, it may seem that the weight change in the two models is 

identical. However, for the weight change to be identical, the values of the corresponding 

nodes must be equal:  (it is sufficient for this condition to hold for l > 0, because 

 do not directly influence weight changes). Although we have shown in that  in 
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the prediction mode, it may not be the case in the learning mode, because the nodes  are 

fixed (to ), and thus function F may not reach the maximum of 0, so equation 3.1 may 

not be satisfied.

We now consider under what conditions  is equal or close to  First, when the 

networks are trained such that they correctly predict the output training samples, then 

objective function F can reach 0 during the relaxation and hence  and the two 

models have exactly the same weight changes. In particular, the change in weights is then 

equal to 0; thus, the weights resulting in perfect prediction are a fixed point for both models.

Second, when the networks are trained such that their predictions are close to the output 

training samples, then fixing  will only slightly change the activity of other nodes in the 

predictive coding model, so the weight change will be similar.

To illustrate this property, we compare the weight changes in predictive coding models and 

ANN with the very simple architecture shown in Figure 5A. This network consists of just 

three layers (lmax = 2) and one node in each layer (n(0) = n(1) = n(2) = 1). Such a network has 

only two weight parameters (  and ), so the objective function of the ANN can be 

easily visualized. The network was trained on a set in which input training samples were 

generated randomly from uniform distribution  ∈ [−5, 5], and output training samples 

were generated as  where W(1) = W(2) = 1 (see Figure 

5B). Figure 5C shows the objective function of the ANN for this training set. Thus, an ANN 

with weights equal to  perfectly predicts all samples in the training set, so the 

objective function is equal to 0. There are also other combinations of weights resulting in 

good prediction, which create a ridge of the objective function.

Figure 5E shows the angle between the direction of weight change in backpropagation and 

the predictive coding model. The directions of the gradient for the two models are very 

similar except for the regions where the objective functions E and F* are misaligned (see 

Figures 5C and 5D). Nevertheless, close to the maximum of the objective function (indicated 

by a red dot), the directions of weight change become similar and the angle decreases toward 

0.

There is also a third condition under which the predictive coding network approximates the 

backpropagation algorithm. When the value of parameters  is increased relative to other 

 the impact of fixing  on the activity of other nodes is reduced, because  becomes 

smaller (see equation 2.17) and its influence on activity of other nodes is reduced. Thus 

is closer to  (for l > 0), and the weight change in the predictive coding model becomes 

closer to that in the backpropagation algorithm (recall that the weight changes are the same 

when  for l > 0).
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Multiplying  by a constant will also reduce all  by the same constant (see equation 

3.3); consequently, all weight changes will be reduced by this constant. This can be 

compensated by multiplying the learning rate α by the same constant, so the magnitude of 

the weight change remains constant. In this case, the weight updates of the predictive coding 

network will become asymptotically similar to the ANN, regardless of prediction accuracy.

Figures 5F and 5G show that as  increases, the angle between weight changes in the two 

models decreases toward 0. Thus, as the parameters  are increased, the weight changes in 

the predictive coding model converge to those in the backpropagation algorithm.

Figure 4C illustrates the impact of increasing  It reduces  which in turn reduces 

and  This decreases all weight changes, particularly the change of the weight between 

nodes  and  (indicated by a short red arrow) because both of these nodes have reduced 

activity. After compensating for the learning rate, these weight changes become more similar 

to those in the backpropagation algorithm (compare Figures 4B, 4C, and 1B). However, we 

note that learning driven by very small values of the error nodes is less biologically 

plausible. In Figure 6, we will show that a high value of  is not required for good 

learning with these networks.

3.2 Performance on More Complex Learning Tasks

To efficiently learn in more complex tasks, ANNs include a “bias term,” or an additional 

node in each layer that does not receive any input but has activity equal to 1. We define this 

node as the node with index 0 in each layer, so  With such a node, the definition of 

synaptic input (see equation 2.1) is extended to include one additional term  which is 

referred to as the bias term. The weight corresponding to the bias term is updated during 

learning according to the same rule as all other weights (see equation 2.9).

An equivalent bias term can be easily introduced to the predictive coding models. This 

would be just a node with a constant output of  which projects to the next layer 

but does have an associated error node. The activity of such a node would not change after 

the training inputs are provided, and corresponding weights  would be modified like all 

other weights (see equation 2.19).

To assess the performance of the predictive coding model on more complex learning tasks, 

we tested it on the MNIST data set. This is a data set of 28 by 28 images of handwritten 

digits, each associated with one of the 10 corresponding classes of digits. We performed the 

analysis for an ANN of size 784-600-600-10 (lmax = 3), with predictive coding networks of 

the corresponding size. We use the logistic sigmoid as the activation function. We ran the 

simulations for both the  case and the  case. Figure 6 shows the learning 

curves for these different models. Each curve is the mean from 10 simulations, with the 

standard error shown as the shaded regions.
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We see that the predictive coding models perform similarly to the ANN. For a large value of 

parameter  the performance of the predictive coding model was very similar to the 

backpropagation algorithm, in agreement with an earlier analysis showing that the weight 

changes in the predictive coding model then converge to those in the backpropagation 

algorithm. Should we have had more than 20 steps in each inference stage (i.e., allowed the 

network to converge in inference), the ANN and the predictive coding network with 

 would have had an even more similar trajectory.

We see that all the networks eventually obtain a training error of 0.00% and a validation 

error of 1.7% to 1.8%. We did not optimize the learning rate for validation error as we are 

solely highlighting the similarity between ANNs and predictive coding.

3.3 Effects of the Architecture of the Predictive Coding Model

Since the networks we have considered so far corresponded to the associative areas and 

sensory area to which the output sample was provided, the input samples  were provided 

to the nodes at the highest level of hierarchy, so we assumed that sensory inputs are already 

preprocessed by sensory areas. The sensory areas can be added to the model by considering 

an architecture in which there are two separate lower-level areas receiving  and 

which are both connected with higher areas (de Sa & Ballard, 1998; Hyvarinen, 1999; 

O’Reilly & Munakata, 2000; Larochelle & Bengio, 2008; Bengio, 2014; Srivastava & 

Salakhutdinov, 2012; Hinton, Osindero, & Teh, 2006). For example, in case of learning 

associations between visual stimuli (e.g., shapes of letters) and auditory stimuli (e.g., their 

sounds),  and  could be provided to primary visual and primary auditory cortices, 

respectively. Both of these primary areas project through a hierarchy of sensory areas to a 

common higher associative cortex.

To understand the potential benefit of such an architecture over the standard 

backpropagation, we analyze a simple example of learning the association between one-

dimensional samples shown in Figure 7A. Since there is a simple linear relationship (with 

noise) between the samples in Figure 7A, we will consider predictions generated by a very 

simple network derived from a probabilistic model shown in Figure 7B. During the training 

of this network, the samples are provided to the nodes on the lowest level (  and 

).

For simplicity, we assume a linear dependence of variables on the higher level:

(3.4)

Since the node on the highest level is no longer constrained, we need to specify its prior 

probability, but for simplicity, we assume an uninformative flat prior  where c is a 

constant. Since the node on the highest level is unconstrained, the objective function we 

wish to maximize is the logarithm of the joint probability of all nodes:
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(3.5)

Ignoring constant terms, this function has an analogous form as in equation 2.15:

(3.6)

During training, the nodes on the lowest level are fixed, and the node on the top level is 

updated proportionally to the derivative of F, analogous to the models discussed previously:

(3.7)

As before, such computation can be implemented in the simple network shown in Figure 7C. 

After the nodes converge, the weights are modified to maximize F, which here is simply 

During testing, we only set  and let both nodes  and  to be updated to 

maximize F—the node on the top level evolves according to equation 3.7, while at the 

bottom level, 

This simple linear dependence could be captured by using a predictive coding network 

without a hidden layer and just by learning the means and covariance matrix, that is, 

, where  is the mean and Σ the covariance matrix. However, we use a 

hidden layer to show the more general network that could learn more complicated 

relationships if nonlinear activation functions are used.

The solid lines in Figure 7A show the values predicted by the model (i.e.,  after 

providing different inputs (i.e., ), and different colors correspond to different noise 

parameters. When equal noise is assumed in input and output (red line), the network learns 

the probabilistic model that explains the most variance in the data, so the model learns the 

direction in which the data are most spread out. This direction is the same as the first 

principal component shown in the dashed red line (any difference between the two lines is 

due to the iterative nature of learning in the predictive coding model).

When the noise parameter at the node receiving output samples is large (the blue line in 

Figure 7A), the dynamics of the network will lead to the node at the top level converging to 

the input sample (i.e., ). Given the analysis presented earlier, the model converges 
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then to the backpropagation algorithm, which in the case of linear f (x) simply corresponds 

to linear regression, shown by the dashed blue line.

Conversely, when the noise at the node receiving input samples is large (the green line in 

Figure 7A), the dynamics of the network will lead to the node at the top level converging to 

the output sample (i.e., ). The network in this case will learn to predict the input 

sample on the basis of the output sample. Hence, its predictions correspond to that obtained 

by finding linear regression in inverse direction (i.e., the linear regression predicting sin on 

the basis of sout), shown by the dashed green line.

Different predictions of the models with different noise parameters will lead to different 

amounts of error when tested, which are shown in the left part of Figure 7D (labeled “sin 

predicts sout”). The network approximating the backpropagation algorithm is the most 

accurate, as the backpropagation algorithm explicitly minimizes the error in predicting 

output samples. Next in accuracy is the network with equal noise on both input and output, 

followed by the model approximating inverse regression.

Due to the flexible structure of the predictive coding network, we can also test how well it is 

able to infer the likely value of input sample sin on the basis of the output sample sout. In 

order to test it, we provide the trained network with the output sample  and let 

both nodes  and  be updated. The value  to which the node corresponding to the 

input converged is the network’s inferred value of the input. We compared these values with 

actual sin in the testing examples, and the resulting root mean squared errors are shown in 

the right part of Figure 7D (labeled “sout predicts sin”). This time, the model approximating 

the inverse regression is most accurate.

Figure 7D illustrates that when noise is present in the data, there is a trade-off between the 

accuracy of inference in the two directions. Nevertheless, the predictive coding network with 

equal noise parameters for inputs and outputs is predicting relatively well in both directions, 

being just slightly less accurate than the optimal algorithm for the given direction.

It is also important to emphasize that the models we analyzed in this section generate 

different predictions only because the training samples are noisy. If the amount of noise 

were reduced, the models’ predictions would become more and more similar (and their 

accuracy would increase). This parallels the property discussed earlier that the closer the 

predictive coding models predict all samples in the training set, the closer their computation 

to ANNs with backpropagation algorithm.

The networks in the cortex are likely to be nonlinear and include multiple layers, but 

predictive coding models with corresponding architectures are still likely to retain the key 

properties outlined above. Namely, they would allow learning bidirectional associations 

between inputs and outputs, and if the mapping between the inputs and outputs could be 

perfectly represented by the model, the networks could be able to learn them and make 

accurate predictions.
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4 Discussion

In this letter, we have proposed how the predictive coding models can be used for supervised 

learning. We showed that they perform the same computation as ANNs in the prediction 

mode, and weight modification in the learning mode has a similar form as for the 

backpropagation algorithm. Furthermore, in the limit of parameters describing the noise in 

the layer where output training samples are provided, the learning rule in the predictive 

coding model converges to that for the backpropagation algorithm.

4.1 Biological Plausibility of the Predictive Coding Model

In this section we discuss various aspects of the predictive coding model that require 

consideration or future work to demonstrate the biological plausibility of the model.

In the first model we presented (see section 2.2) and in the simulations of handwritten digit 

recognition, the inputs and outputs corresponded to layers different from the traditional 

predictive coding model (Rao & Ballard, 1999), where the sensory inputs are presented to 

layer l = 0 while the higher layers extract underlying features. However, supervised learning 

in a biological context would often involve presenting the stimuli to be associated (e.g., 

image of a letter, and a sound) to sensory neurons in different modalities and thus would 

involve the network from “input modality” via the higher associative cortex to the “output 

modality.” We focused in this letter on analyzing a part of this network from the higher 

associative cortex to the output modality, and thus we presented sout to nodes at layer l = 0. 

We did this only for this case because it is easy to show analytically the relationship between 

predictive coding and ANNs. Nevertheless, we would expect the predictive coding network 

to also perform supervised learning when sin is presented to layer 0, while sout to layer lmax, 

because the model minimizes the errors between predictions of adjacent levels so it learns 

the relationships between the variables on adjacent levels. It would be an interesting 

direction for future work to compare the performance of the predictive coding networks with 

input and outputs presented to different layers.

In section 3.3, we briefly considered a more realistic architecture involving both modalities 

represented on the lowest-level layers. Such an architecture would allow for a combination 

of supervised and unsupervised learning. If one no longer has a flat prior on the hidden node 

but a gaussian prior (so as to specify a generative model), then each arm could be trained 

separately in an unsupervised manner, while the whole network could also be trained 

together. Consider now that the input to one of the arms is an image and the input at the 

other arm is the classification. It would be interesting to investigate if the image arm could 

be pretrained separately in an unsupervised manner alone and if this would speed up 

learning of the classification.

We now consider the model in the context of the plausibility criteria stated in section 1. The 

first two criteria of local computation and plasticity are naturally satisfied in a linear version 

of the model (with f (x) = x), and we discussed possible neural implementation of 

nonlinearities in the model (see Figure 3). In that implementation, some of the neurons have 

a linear activation curve (like the value node  in Figure 3) and others are nonlinear (like 
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the node ), which is consistent with the variability of the firing-input relationship (or 

f-I curve) observed in biological neurons (Bogacz, Moraud, Abdi, Magill, & Baufreton, 

2016).

The third criterion of minimal external control is also satisfied by the model, as it performs 

computations autonomously given input and outputs. The model can also autonomously 

“recognize” when the weights should be updated, because this should happen once the nodes 

converged to an equilibrium and have stable activity. This simple rule would result in weight 

update in the learning mode, but no weight change in the prediction mode, because then the 

prediction error nodes have activity equal to 0, so the weight change (see equation 2.19) is 

also 0. Nevertheless, without a global control signal, each synapse could detect only if the 

two neurons it connects have converged. It will be important to investigate if such a local 

decision of convergence is sufficient for good learning.

The fourth criterion of plausible architecture is more challenging for the predictive coding 

model. First, the model includes special one-to-one connections between variable nodes 

 and the corresponding prediction error nodes  while there is no evidence for such 

special pairing of neurons in the cortex. It would be interesting to investigate if the 

predictive coding model would still work if these one-to-one connections were replaced by 

distributed ones. Second, the mathematical formulation of the predictive coding model 

requires symmetric weights in the recurrent network, while there is no evidence for such a 

strong symmetry in cortex. However, our preliminary simulations suggest that symmetric 

weights are not necessary for good performance of predictive coding network (as we will 

discuss in a forthcoming paper). Third, the error nodes can be either positive or negative, 

while biological neurons cannot have negative activity. Since the error neurons are linear 

neurons and we know that rectified linear neurons exist in biology (Bogacz et al., 2016), a 

possible way we can approximate a purely linear neuron in the model with a biological 

rectified linear neuron is if we associate zero activity in the model with the baseline firing 

rate of a biological neuron. Nevertheless, such an approximation would require the neurons 

to have a high average firing rate, so that they rarely produce a firing rate close to 0, and thus 

rarely become nonlinear. Although the interneurons in the cortex often have higher average 

firing rates, the pyramidal neurons typically do not (Mizuseki & Buzsáki, 2013). It will be 

important to map the nodes in the model on specific populations in the cortex and test if the 

model can perform efficient computation with realistic assumptions about the mean firing 

rates of biological neurons.

Nevertheless, predictive coding is an appealing framework for modeling cortical networks, 

as it naturally describes a hierarchical organization consistent with those of cortical areas 

(Friston, 2003). Furthermore, responses of some cortical neurons resemble those of 

prediction error nodes, as they show a decrease in response to repeated stimuli (Brown & 

Aggleton, 2001; Miller & Desimone, 1993) and an increase in activity to unlikely stimuli 

(Bell, Summerfield, Morin, Malecek, & Ungerleider, 2016). Additionally, neurons recently 

reported in the primary visual cortex respond to a mismatch between actual and predicted 

visual input (Fiser et al., 2016; Zmarz & Keller, 2016).
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4.2 Does the Brain Implement Backprop?

This letter shows that a predictive coding network converges to backpropagation in a certain 

limit of parameters. However, it is important to add that this convergence is more of a 

theoretical result, as it occurs in a limit where the activity of error nodes becomes close to 0. 

Thus, it is unclear if real neurons encoding information in spikes could reliably encode the 

prediction error. Nevertheless, the conditions under which the predictive coding model 

converges to the backpropagation algorithm are theoretically useful, as they provide 

alternate probabilistic interpretations of the backpropagation algorithm. This allows a 

comparison of the assumptions made by the backpropagation algorithm with the 

probabilistic structure of learning tasks and questions whether setting the parameters of the 

predictive coding models to those approximating backpropagation is the most suitable 

choice for solving real-world problems that animals face.

First, the predictive coding model corresponding to backpropagation assumes that output 

samples are generated from a probabilistic model with multiple layers of random variables, 

but most of the noise is added only at the level of output samples (i.e., ). By 

contrast, probabilistic models corresponding to most of real-world data sets have variability 

entering on multiple levels. For example, if we consider classification of images of letters, 

the variability is present in both high-level features like length or angle of individual strokes 

and low-level features like the colors of pixels.

Second, the predictive coding model corresponding to backpropagation assumes a layered 

structure of the probabilistic model. By contrast, probabilistic models corresponding to 

many problems may have other structures. For example, in the task from section 1 of a child 

learning the sounds of the letters, the noise or variability is present in both the visual and 

auditory stimuli. Thus, this task could be described by a probabilistic model including a 

higher-level variable corresponding to a letter, which determines both the mean visual input 

perceived by a child and the sound made by the parent. Thus, the predictive coding networks 

with parameters that do not implement the backpropagation algorithm exactly may be more 

suited for solving the learning tasks that animals and humans face.

In summary, the analysis suggests that it is unlikely that brain networks implement the 

backpropagation algorithm exactly. Instead, it seems more probable that cortical networks 

perform computations similar to those of a predictive coding network without any variance 

parameters dominating any others. These networks would be able to learn relationships 

between modalities in both directions and flexibly learn probabilistic models well describing 

observed stimuli and the associations between them.

4.3 Previous Work on Approximation of the Backpropagation Algorithm

As we mentioned in section 1, other models have been developed describing how the 

backpropagation algorithm could be approximated in a biological neural network. We now 

review these models, relate them to the four criteria stated in section 1, and compare them 

with the predictive coding model.
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O’Reilly (1998) considered a modified ANN that also includes feedback weights between 

layers that are equal to feedforward weights. In this modified ANN, the output of hidden 

nodes in the equilibrium is given by

(4.1)

and the output of the output nodes satisfies in equilibrium the same condition as for the 

standard ANN (an equation similar to the one above but including just the first summation). 

It has been demonstrated that the weight change minimizing the error of this network can be 

well approximated by the following update (O’Reilly, 1998):

(4.2)

This is the contrastive Hebbian learning weight update rule (Ackley et al., 1985). In equation 

4.2,  denotes the output of the nodes in the prediction phase, when the input nodes 

are set to  and all the other nodes are updated as described above, while 

denotes the output in the training phase when, in addition, the output nodes are set to 

 and the hidden nodes satisfy equation 4.1. Thus, according to the plasticity rule, 

each synapse needs to be updated twice—once after the network settles to equilibrium 

during prediction and once after the network settles following the presentation of the desired 

output sample. Each of these two updates relies just on local plasticity, but they have the 

opposite sign. Thus, the synapses on all levels of hierarchy need “to be aware” of the 

presence of sout on the output and use Hebbian or anti-Hebbian plasticity accordingly. 

Although it has been proposed how such plasticity could be implemented (O’Reilly, 1998), 

it is not known if cortical synapses can perform such form of plasticity.

In the above GeneRec model, the error terms δ are not explicitly represented in neural 

activity, and instead the weight change based on errors is decomposed into a difference of 

two weight modifications: one based on target value and one based on predicted value. By 

contrast, the predictive coding model includes additional nodes explicitly representing error 

and, thanks to them, has a simpler plasticity rule involving just a single Hebbian 

modification. A potential advantage of such a single modification is robustness to 

uncertainty about the presence of sout because no mistaken weight updates can be made 

when sout is not present.

Bengio and colleagues (Bengio, 2014; Bengio et al., 2015) considered how the 

backpropagation algorithm can be approximated in a hierarchical network of autoencoders 

that learn to predict their own inputs. The general frameworks of autoencoders and 

predictive coding are closely related, as both of the networks, which include feedforward 

and feedback connections, learn to predict activity on lower levels from the representation 

on the higher levels. This work (Bengio, 2014; Bengio et al., 2015) includes many 
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interesting results, such as improvement of learning due to the addition of noise to the 

system. However, it was not described how it is mapped on a network of simple nodes 

performing local computation. There is a discussion of a possible plasticity rule at the end of 

Bengio (2014) that has a similar form as equation 4.2 of the GeneRec model.

Bengio and colleagues (Scellier & Bengio, 2016; Bengio & Fischer, 2015) introduce another 

interesting approximation to implement backpropagation in biological neural networks. It 

has some similarities to the model presented here in that it minimizes an energy function. 

However, like contrastive Hebbian learning, it operates in two phases, a positive and a 

negative phase, where weights are updated from information obtained from each phase. The 

weights are changed following a differential equation update starting at the end of the 

negative phase and until convergence of the positive phase. Learning must be inhibited 

during the negative phase, which would require a global signal. This model also achieves 

good results on the MNIST data set.

Lillicrap et al. (2016) focused on addressing the requirement of the backpropagation 

algorithm that the error terms need to be transmitted backward through exactly the same 

weights that are used to transmit information feedforward. Remarkably, they have shown 

that even if random weights are used to transmit the errors backward, the model can still 

learn efficiently. Their model requires external control over nodes to route information 

differentially during training and testing. Furthermore, we note that the requirement of 

symmetric weights between the layers can be enforced by using symmetric learning rules 

like those proposed in GeneRec and predictive coding models. Equally, we will show in a 

future paper that the symmetric requirement is not actually necessary in the predictive 

coding model.

Balduzzi et al. (2014) showed that efficient learning may be achieved by a network that 

receives a global error signal and in which synaptic weight modification depends jointly on 

the error and the terms describing the influence of each neuron of final error. However, it is 

not specified in this work how these influence terms could be computed in a way satisfying 

the criteria stated in section 1.

Finally, it is worth pointing out that previous papers have shown that certain models perform 

similar computations as ANNs or that they approximate the backpropagation algorithm, 

while in this letter, we show, for the first time, that a biologically plausible algorithm may 

actually converge to backpropagation. Although this convergence in the limit is more of a 

theoretical result, it provides a mean to clarify the computational relationship between the 

proposed model and backpropagation, as described above.

4.4 Relationship to Experimental Data

We hope that the proposed extension of the predictive coding framework to supervised 

learning will make it easier to test this framework experimentally. The model predicts that in 

a supervised learning task, like learning sounds associated with shapes, the activity after 

feedback, proportional to the error made by a participant, should be seen not only in auditory 

areas but also visual and associative areas. In such experiments, the model can be used to 

estimate prediction errors, and one could analyze precisely which cortical regions or layers 
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have activity correlated with model variables. Inspection of the neural activity could in turn 

refine the predictive coding models, so they better reflect information processing in cortical 

circuits.

The proposed predictive coding models are still quite abstract, and it is important to 

investigate if different linear or nonlinear nodes can be mapped on particular anatomically 

defined neurons within a cortical microcircuit (Bastos et al., 2012). Iterative refinements of 

such mapping on the basis of experimental data (such as f-I curves of these neurons, their 

connectivity, and activity during learning tasks) may help understand how supervised and 

unsupervised learning is implemented in the cortex.

Predictive coding has been proposed as a general framework for describing computations in 

the neocortex (Friston, 2010). It has been shown in the past how networks in the predictive 

coding framework can perform unsupervised learning, attentional modulations, and action 

selection (Rao & Ballard, 1999; Feldman & Friston, 2010; Friston, Daunizeau, Kilner, & 

Kiebel, 2010). Here we add to this list supervised learning, and associative memory (as the 

networks presented here are able to associate patterns of neural activity with each other). It 

is remarkable that the same basic network structure can perform this variety of the 

computational tasks, also performed by the neocortex. Furthermore, this network structure 

can be optimized for different tasks by modifying proportions of synapses among different 

neurons. For example, the networks considered here for supervised learning did not include 

connections encoding covariance of random variables, which are useful for certain 

unsupervised learning tasks (Bogacz, 2017). These properties of the predictive coding 

networks parallel the organization of the neocortex, where the same cortical structure is 

present in all cortical areas, differing only in proportions and properties of neurons and 

synapses in different layers.
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Figure 1. 
Backpropagation algorithm. (A) Architecture of an ANN. Circles denote nodes, and arrows 

denote connections. (B) An example of activity and weight changes in an ANN. Thick black 

arrows between the nodes denote connections with high weights, and thin gray arrows 

denote the connections with low weights. Filled and open circles denote nodes with higher 

and lower activity, respectively. Rightward-pointing arrows labeled  denote error terms, 

and their darkness indicates how large the errors are. Upward-pointing red arrows indicate 

the weights that would most increase according to the backpropagation algorithm.
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Figure 2. 
Predictive coding model. (A) Structure of the probabilistic model. Circles denote random 

variables, and arrows denote dependencies between them. (B) Architecture of the network. 

Arrows and lines ending with circles denote excitatory and inhibitory connections, 

respectively. Connections without labels have weights fixed to 1.
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Figure 3. 
Possible implementation of nonlinearities in the predictive coding model (magnification of a 

part of the network in Figure 2B). Filled arrows and lines ending with circles denote 

excitatory and inhibitory connections, respectively. Open arrow denotes a modulatory 

connection with multiplicative effect. Circles and hexagons denote nodes performing linear 

and nonlinear computations, respectively.
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Figure 4. 
Example of a predictive coding network for supervised learning. (A) Prediction mode. (B) 

Learning mode. (C) Learning mode for a network with high value of parameter describing 

sensory noise. Notation as in Figure 2B.
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Figure 5. 
Comparison of weight changes in backpropagation and predictive coding models. (A) The 

structure of the network used. (B) The data that the models were trained on—here, sout = 

tanh(tanh(sin)). (C) The objective function of an ANN for a training set with 300 samples 

generated as described. The objective function is equal to the sum of 300 terms given by 

equation 2.2 corresponding to individual training samples. The red dot indicates weights that 

maximize the objective function. (D) The objective function of the predictive coding model 

at the fixed point. For each set of weights and training sample, to find the state of predictive 

coding network at the fixed point, the nodes in layers 0 and 2 were set to training examples, 

and the node in layer 1 was updated according to equation 2.18. This equation was solved 

using the Euler method. A dynamic form of the Euler integration step was used where its 

size was allowed to reduce by a factor should the system not be converging (i.e., the 

maximum change in node activity increases from the previous step). The initial step size was 

0.2. The relaxation was performed until the maximum value of  was lower than 

 or 1 million iterations had been performed. (E–G) Angle difference between the 

gradient for the ANN and the gradient for the predictive coding model found from equation 

2.19. Different panels correspond to different values of parameter describing sensory noise. 

(E)  (F)  (G) 
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Figure 6. 
Comparison of prediction accuracy (%) for different models (indicated by colors; see the 

key) on the MNIST dataset. Training errors are shown with solid lines and validation errors 

with dashed lines. The dotted gray line denotes 2% error. The models were run 10 times 

each, initialized with different weights. When the training error lines stop, this is when the 

mean error of the 10 runs was equal to zero. The weights were drawn from a uniform 

distribution with maximum and minimum values of  where N is the total number of 
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neurons in the two layers on either side of the weight. The input data were first transformed 

through an inverse logistic function as preprocessing before being given to the network. 

When the network was trained with an image of class c, the nodes in layer 0 were set to 

 and  After inference and before the weight update, the error node 

values were scaled by  so as to be able to compare between the models. We used a batch 

size of 20, with a learning rate of 0.001 and the stochastic optimizer Adam (Kingma & Ba, 

2014) to accelerate learning; this is essentially a per parameter learning rate, where weights 

that are infrequently updated are updated more and vice versa. We chose the number of steps 

in the inference phase to be 20; at this point, the network will not necessarily have 

converged, but we did so to aid speed of training. This is not the minimum number of 

inference iterations that allows for good learning, a notion that we will explore in a future 

paper. Otherwise simulations are according to Figure 5. The shaded regions in the fainter 

color describe the standard error of the mean. The figure is shown on a logarithmic plot.
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Figure 7. 
The effect of variance associated with different inputs on network predictions. (A) Sample 

training set composed of 2000 randomly generated samples, such that  and 

 where a ~  (0, 1) and b ~  (0,1/9). Lines compare the predictions made by 

the model with different parameters with predictions of standard algorithms (see the key). 

(B) Structure of the probabilistic model. (C) Architecture of the simulated predictive coding 

network. Notation as in Figure 2. Connections shown in gray are used if the network predicts 

the value of the corresponding sample. (D) Root mean squared error (RMSE) of the models 

with different parameters (see the key in panel A) trained on data as in panel A and tested on 

a further 100 samples generated from the same distribution. During the training, for each 

sample the network was allowed to converge to the fixed point as described in the caption of 

Figure 5 and the weights were modified with learning rate α = 1. The entire training and 

testing procedure was repeated 50 times, and the error bars show the standard error.
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Table 1
Corresponding and Common Symbols Used in Describing ANNs and Predictive Coding 
Models.

Backpropagation Predictive Coding

Activity of a node (before nonlinearity) yi
(l) xi

(l)

Synaptic weight wi, j
(l) θi, j

(l)

Objective function E F

Prediction error δi
l εi

l

Activation function f

Number of neurons in a layer n (l)

Highest index of a layer l max

Input from the training set si
in

Output from the training set si
out
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